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Formulas for the evaluation of all U(N) integrals are derived. Tables display the results for
integrands involving up to six U’s and six U "’s. The complete pole structure of De Wit-"t Hooft
anomalies is unveiled. The effects of 1/N 2 corrections and De Wit-"t Hooft anomalies on two-
dimensional U(N ) lattice gauge theories in the strong coupling 1/N expansion is discussed.

I. INTRODUCTION

This paper derives a set of formulas which immediately
allow the evaluation of U(V) group integrals. These formu-
las have intrinsic mathematical value. But not only are they
interesting from a mathematical standpoint, they are valo-
able from a physics standpoint. A theory of strong interac-
tions has béen proposed: quantum chromodynamics (QCD).
It is in qualitative agreement with the general features of
strong interactions. There appear to be no other theories
having these qualities. QCD is unique in having asymptotic
freedom and the possibilities of quark confinement. Howev-
er, in QCD it is extremely difficult to calculate except in
selected high energy processes. A proposed calculational
method is to put the theory on a lattice. Immediately, the
problem of doing group integrations arises. Therefore, this
paper’s integral formulas are valuable to anyone attempting
to compute QCD on a lattice. Furthermore, this study of the
U(N) integral reveals many interesting phenomena some of
which may lead to new computational methods.

Inaddition to U(¥ ) integrals the 1/N expansion and the
De Wit-"t Hooft anomalies' are studied. Much of Sec. II is
spent defining the notation. A general formula for U(V ) inte-
gralsis derived. The answer [Eq. (2.10)] is expressed in terms
of the characters of the permutation groups (all of which are
known in closed form?). Hence all U(V ) integrals are known.
This is an important result because the integrals appear in
strong coupling lattice gauge theories.

Section I1I derives a set of recursion relations for the
U(XN) integrals.

Section IV discusses the De Wit—"t Hooft anomalies.
The U(V) integrals behave nonanalytically in N. For inte-
grals involving n U’s and n U s analytic expressions exist
for N>n. When extrapolated to N < n, poles appear and in-
validate the formulas. These poles are known as the De Wit
’t Hooft anomalies. Section IV gives a complete description
of the pole structure. Amazingly, not only do simple poles
appear in N but for n large enough poles of arbitrary high
order appear.

Section V explains a procedure for extrapolating N>n
results to N < n so that no anomalies occur. In other words, a
correct method of handling the anomalies is found. Thus,
Sec. II results can be applied to the N < n case.

Section VI contains a set of tables displaying the inte-
grals up to n = 6 for all N. These tables are for theorists
performing lattice strong coupling expansions.
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Section VII contains simple algebraic formulas for the
U(2) coefficients.

Section VIII discusses the generating function for U(N)
integrals.

Section IX focuses on the two-dimensional lattice
gauge theory. This is a solvable model in which large N and
De Wit—"t Hooft anomalies can be analyzed exactly. It is
shown that large N strong coupling expansions are bad be-
cause of the anomalies. For 1/g°N small, large N is a reason-
able approximation to finite N but 1/N?* corrections cannot
and do not improve on this. For 1/g°N sufficiently large, 1/N
strong coupling expansions give erroneous results.

The analysis of this paper suggests two trends of
thought. There seems to be a connection between large N
and the permutation groups. These groups naturally arise
when doing U(/V) integrals and they may play an important
role in higher dimensions. The interplay of the permutation
groups with large N deserves more consideration and might
uncover a deeper relation.

Secondly, the De Wit-"t Hooft poles are extremely im-
portant for finite N. They hamper the extrapolation of large
N to finite N. From this point of view they are an annoyance,
a barrier to be overcome. I believe the situation should be
looked at differently. Instead of being considered destruc-
tive, they should be considered as an interesting theoretical
phenomenon to be taken advantage of. One should ask how
can they be put to good use to obtain finite N results; how can
new approximation schemes be found (can some sort of pole
dominance of integrals be made?) These ideas beckon more
attention.

I. THE U(V) INTEGRAL
The problem is to compute

IV = f dU U} U ..Uy U U¥...U¥-, .1
for U(V). The group measure in Eq. (2.1) is the right and left
invariant normalized (fd U==1) Haar measure.? Throughout
this paper U, =Uj, (U"),,,=U¥, capital N is the N of U(V),
and lower case n refers to the number of U’s and U s in Eq.
(2.1). Of course, integrals are zero unless the number of U’s
is equal to the number of U "’s.

Because the U(NV) measure is invariant under multipli-
cation from theright [d (V' U) = d U], eachi, index must con-
tract with aj, index (likewise for / and m indices). Hence Eq.
(2.1) must be of the form
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where 2, means to sum over all permutations, o, of the
integers 1, 2, ..., n. C,__ (N are coefficients which depend
ono, and 0. Know]edge of these coefficients is equivalent
to knowing all the U(N ) integrals. The main result of this
section is a formula [Eqs. (2.10), (2.11), and (2.12)] for
C, ., (V) in terms of the characters of §,,, the permutation
group on n objects.

Another way of expressing U(N ) integrals is to multiply
Eq. (2.1) by (Al)l,i, (AZ)l,i,"'(An)l,,i,, (B, amy (Bz)j,m,"'(Bn )j,,m,,
and sum over all indices:

IY¥{(4,B)} = JdUTrA,UTrA2U~-»TrA" U

XTtB,U'TtB,U"...TtB, U", 2.3)
where Tr standsfor trace. Equation (2.3) must be of the form

L, .1,
sy blololel o

partitons o o
II 12 A B
of n

X [TrAa,mBa.,mAa,(szanm Ay 11y Bogin)

X [Trld o, 4+ 1Bogt, + 117 Ao i, + 1ty Bort, +13)]

XX [Tt gt 1ttt v+ 0 Bostit tyt et b1+ 1)
---Aa‘(n)BaB(,,))]. (2.4)

In Eq. (2.4) and throughout this paper a partition of n is a set
of integers /,, 5, ..., I, such that/, + 1, + .+ [ =nand

>

partitions
Lylyeeondn Of 11

means to sum over /,, L, ..., I, (and m) with the constraints
that n>!,>0L>->I _>land !, + 1,4 -+ 1, =n.Fora
partition, /,, [,, ..., [ the right-hand side of Eq. (2.4) has the
following structure: there is a trace of a product of /, (4B )’s,
times the trace of a product of /, (4B )’s etc. Summing over
the permutations, o, and o, generates all possible terms
with the same trace structure. g, (/;, /,, ..., 1,,,)/n! [givenin Eq.
{2.5) below] insures that each distinct term on the right-hand
side of Eq. (2.4) occurs precisely once (summing over all o,
and o, leads to duplication). Sometimes it is convenient to
adopt an alternative expression of a partition.” Let @, be the
numberof Usin(/,,/,, ..., ); let a, be the number of 2’sin {/,,
L, ..., 1), etc. Use the standard? abbreviation

I7{4,B)} =

1= d ),
Then (a,, 5, ..., a,) means {1, L, ..., 1,,} = (1%, 2%, ..., n™)
[some of the a,’s will be zero indicating the absence of / from
(1 Ly .oy 1,,)]. Furthermore, /, + I, + ...1,, = n implies
a, + 2a, + 3a; + ... + na, = n. The notation is the same
as in Ref. 2. In terms of the a’s

g.l0) = n!/1%(a,1)2%(a,)..n(a,,}). (2.5)

In Eq. (2.5) and throughout this paper adopt the notations
a=(a,a,..qa,)andl =1, ...,1,)and the conventions
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gn(II’ 12’ ey Im) = gn(l) = gn ((1) = (al’ Qs "'an) and
Cont, N} =CIN}=C,(N)= C,a P «,(N ) when the
partition associated with I notation corresponds to the one
associated with a notation.

Equation (2.4) may look complicated with its vast array
of indices but it is actually quite simple. For example,

JdU Trd,UTtB,U" = C,(N)Tt4,B,,

fd U Tt4,UTr4,UTtB,U'TtB,U?
= C,:(N)(Tt4,B,TtA,B, + TtA,B,Trd,B,)
+ C,(N )(TrA4,B,4,B, + TtA,B,A,B,). (2.6)

Contact can be made between the matrix index formu-
lation [Eqgs. (2.1} and (2.2)] and the trace formulation [Egs.
(2.3) and {2.4)]. The following is true: the coefficients,
C,,.,(N)in Eq. (2.2) depend only on the conjugacy class’ of
0,90 . Recall® that a permutation can be uniquely speci-
fied by exhibiting its cycles and that two permutations are in
the same conjugacy class if they have the same cycle struc-
ture (i.e. they leave the same number of objects invariant (1-
cycles), they have the same number of 2-cycles, 3-cycles,
etc.). There is a one-to-one correspondence between cycle
structures (and hence conjugacy classes) and partitions. Let

a,,a,, ..., a, be the number of 1-cycles, 2-cycles, ..., n-cycles
ing,°0; . Then
C,.0,lN)=C,., . n.,n(N). (2.7)

Equation {2.7) relates the coefficients in Eq. {2.2) with those
in Eq. (2.4) and bridges the two formulations,
To derive a set of equations for the C’s, choose two

permutations oy and op, Set iy =j . s 2 =J, 0 = I
=Jor i L= m,. L= Mo oo l,=m,_., inEq 2.2)
and sum over all indices. What results is
2 Ca Y N[f(0004)+f(aﬂv‘78'l - le(C'A ‘73” (28)
AYR

TR
where

flo,o')= # ofcyclesin g~ 'og, (2.9)

(that is, if o~ 'o¢’ has a cycle structure corresponding to (a,,
Ay @) then flo, ) =a, +a, + ... + ).

For n< N Egs. (2.8) are sufficient to determine the C,
uniquely:

Copopl¥) = ZXr(UA °oy 'y, (e)/nYf, (V).

Here 2, is a sum over all irreducible representations of the
permutation group S,, ¥, (o) is the character of o in the rth
representation, y, (e) [see Eq. (2.11)] is the character of the
identity element, and f,(N ), a polynomial in N of order n
vanishing at certain integers, is specified below in Eq. (2.12}).
The proof of Eq. (2.10) is presented in Appendix A. Recall
that there is a one-to-one correspondence between conju-
gacy classes and irreducible representations so that a repre-
sentation, 7, of S, can be characterized by an ordered parti-
tion (A,, A2, .0y A, ) (With 4,34, ... >4,,) of n in the
standard manner.? A formula? for y, (e} is

Je=n T[4 — 4 +J_z)/H(,1 +m—i(2.11)

i<j

4:0n

(2.10)

X (212 greriih
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Finally f,(V )is

Sasiiy W)= [V +4; — /(N — i)}

i=1
= [NN+1)+(N+4, - 1)]

XN = DNV + 1N + 4, —2)]

X[(N—m)N—m+ 1}(N+ 4, —m]. (212}
Because all the characters of S, are known (in terms of the
Frobenius generating function)* Egs. (2.10) and (2.11) repre-
sent a complete solution. They allow the quick calculation of
anyC,, ., (N). For example, if 7,005 ' = e then one need
only to substitute Eqgs. (2.11) and (2.12) to obtain C.(V ). As
another example, consider C,, (V). Let o be an n cycle. From
the Frobenius generating function one deduces thaty,. ,
(@) = ( — 1) and for other representations y (o) = 0. Equa-
tion (2.11) gives

Xie,@=(n—~D/g!(p~1)
{where p + q = n). Thus

A e (D1
‘7"(”""!,,20( b dn—g—1 N

1 1 1 ]
X . ave
[N—H N+2 N+n—q-—1

1 1 1
X[N—l N-2 N-q]’ @13
from which one concludes
C,(V)
_ (-n! (n—Dl(n—1)
NNV DNV =4 (N2 = (n—1)?) n
g L1 ! ! 2.14)

g gl (n—g—D (n1—g—11
All coefficients, C,(V), can be calculated in the above
manner.

ii. RECURSION RELATIONS

This section presents a complete set of recursion equa-
tions relating the C’s to the C ' ~"’s. For clarity a super-
script, n, has been appended to the C,’s (i.e. C{ are the coeffi-
cients for 7 Y). The recursion relations provide an alternative
method of computation. This method was used, for example,
in Ref. 4. For small n there is little difference in computa-
tional complexity between the two methods; for large n,
however, the use of character tables is much more efficient.

Recursion relations can be generated in the following
manner: Take the integral in Eq. (2.3) and replace 4,, and B,
by A 74, and B, A 7 and sum over y (here the A 7 are the ¥ 2
generators of the Lie algebra of U(XV); they satisfy 2, (17);
Ay = 6,,,9;). The left-hand side of Eq. (2.4) becomes

IY _,({4,B})Tr4,B,, 3.1
while a variety of terms depending on the trace structure are
generated on the right-hand side. Here is a summary of what
can happen under 4, —»A "4, and B,-—»B, A"

{a) Invariant Processes: Terms such as Tr4, XB, become
NTr4, XB, and are simply multiplied by a factor of N. Here
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X stands for any matrix product of 4 ’s and B’s and by fiat
includes the case, X = the identity matrix, for which Tr4,
B,—NTrd,B, also.

(b} Fission Processes: Terms such as TrXA4, YB, break
into two trace terms (fission), i.e., TrY4, XB,—TrY Tt4,XB,.
Here X and Y are arbitrary matrix products of 4’s and B’s
and X may also be just the identity matrix.

(c) Fusion Processes: Terms such as Tr4, X TrYB,, in
which 4, and B, appear in different traces, fuse into a single
trace: Tr4, X TrYB, —»TrYB, A4, X.

Collecting all terms of the form (T4, B, ) X (something) and
comparing to Eq. (3.1) results in the following recursion
relations:

n—1 — n
Cl,,I,,A..,l,,, - NC’“va»».,I

"l’1

+ 2 UICT bttty

s=1

3.2)

where (/,, 1, ..., [,,) is a partition of # — 1. No particular
ordering is assumed for the /.’s and for convenience C;
is chosen to be symmetric in the /; indices. The first term of
the right-hand side of Eq. (3.2) comes from invariant pro-
cesses whereas the second term comes from fission pro-
cesses. Fusion processes do not contribute because they can-
not lead to a (Tr4,B,) X (something) structure.

All terms not of the form (Tr4, B, ) X (something) must
sum to zero and lead to the following consistency conditions:

L1
—_ n n
0=NC}, . + Z Cl o

i=1

m
+ 2 (ls) C;', + a0,

s=1

(3.3)

where ({,, 1,, ..., 1, } is any unordered partition of # for which
1,>2. The ”hat” over /. indicates the absence of that index
symbol. The three terms in Eq. (3.3) are generated respec-
tively by invariant, fusion, and fission processes.

Equations {3.3) and (3.2) are the main result of this sec-
tion. They are a complete set which uniquely determine the
C™s in terms of the C"~ Vs,

IV. THE DE WIT-"t HOOFT ANOMALIES

In aletter,’ De Wit and ’t Hooft found poles in a certain
subset of diagrams at integer values of N when attempting to
do U(¥ }integrals in lattice gauge theory calculations. In par-
ticular, they found in low orders poles at V=1 and N = 2.
This phenomenon made it impossible to write the contribu-
tion of a high temperature (strong coupling) graph for arbi-
trary N, Separate formulas were needed for ¥ = 1 and
N = 2. This anomalous behavior in X, they argued, presents
a serious barrier to performing strong coupling 1//N expan-
sions and prevents such expansions from approximating fin-
ite values of N. This nonanalytic behavior casts doubt wheth-
er strong coupling large N expansions are relevant. This
section studies the nature of the De Wit—"t Hooft anomaly. A
complete description of the anomaly will be given. It will be
shown that the situation is much worse: not only do simple
poles occur at all integers, but poles of arbitrarily high order.

The pole structure is easily analyzed using Egs. (2.10)
and (2.12). In fact poles are due to the £, (N ) which vanish at
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integer values and appear in the denominator of Eq. (2.10).
Define D, (N) to be the common denominator of the
C{(N)’s. Using the results of Sec. II:

D(N)=N

Dy(N)=N@N?2—1),

DN)=N©N?—-1)N? -4,

D(N)=N N2—D(N?—4HN?2-9),

DyN)=N*N?—1)(N?—4)(N>—-9)N?—16),

DyN)=N¥N?—1) (N2 —4)(N? —9)N % — 16)(N 2 —25).
(4.1)

A double pole at N = 1 first occurs when N = 6, i.e. in inte-
grations involving six U’s and six UPs. In general

NN =",

s=1

D, (N) 4.2)

where

m, = The biggest integer such that m_(m, + s)<n.
4.3)

Equations (4.2) and (4.3) imply that the C () coefficients
will eventually have poles at all integers to arbitrary high
powers. As an example, for U(3) no poles occur in C{'(3) for
n = 1,2, and 3; simple poles occur for n = 4-9; double poles
occur for n = 10~17, triple poles for n = 18-27, etc. In gen-
eral a pole of order / will first occur at Nwhen /(I + N) = n.

If De Wit and 't Hooft are correct about the nonextra-
polation of large N to finite ¥ in strong coupling 1/N expan-
sions then the results of this section imply the situation is
infinitely worse.

V.FINITEN

For N < n the coefficients C (V) are infinite. This is due
to the poles in ¥V at the integers — (n — 1) to (n — 1j. These
singularities are the De Wit—"t Hooft anomalies discussed in
the last section. Of course, the integral in Eq. (2.1) is well
defined and always finite. The source of difficulty is the lack
of independence of the index structures in Eq. (2.2) [see Eq.
(5.2) below]. Similarly, in the trace formalism not all the
trace structures in Eq. (2.4) are independent [see Eq. (5.3)
below]. Because an overly determined set of tensor struc-
tures is being used it is naturai that singularities occur.
Hence the formalism of Sec. Il appears invalidated for N < n.
However, Eqgs. (2.2) and {2.4), as well as the solution [Eq.
(2.10)] still work in the following sense:

For N X Nmatrices M,, M,, .., M, and N < nasymme-
trized trace of n matrices, [2, Tr(M ;M 4,,...M )] can be
written as sums of products of traces of less than # matrices.
Examples are:

TrM M, = TtM TtM,, for N=1,
TeM M M, + TtM MM, = TtM M, TrM,
+ TeMLM,TIM, 4+ TeM M, TtM,
— TeM  TtM, TtM,, forN=20orN=1. {5.1)
When this happens in Eq. (2.4) terms involving traces of
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more than N matrices can be regrouped into terms involving
traces less than or equal to N matrices. The C’s then combine
and all poles cancel. Hence by expressing dependent tensor
structures in terms of an independent set, a nonsingular for-
malism with finite coefficients resuits.

Call the process of decomposing a trace into products of
smaller traces a decay process. The goal is to obtain all decay
processes. Consider the completely antisymmetric delta
function on n indices:

511 jl: ——Z(mgna)é,vm&}‘;n * J':( " (52)
for which the indices, i; and j,, take the values 1,2, .,N.If
N < n, antisymmetry in the j,’s implies 61"1': - = 0. Multiply

Eq. (5.2) by (M), ;, (M)),;,-~(M,);; and sum over all indi-
ces. The following trace identities are generated and repre-
sent a complete set of decay processes:

grx(pb Pz: oee
n!

sPm)

Z Sign (P1,p2) '-"pm)

partitions
PiPas-pof n

XZ(TrMO‘(I)MO(Z)”'MG(p.)) (TrMO(p. +1) "'Ma(pl +P1))

X o X(TrMa(Pn +Pit Py D ”'MO'("‘)) = 0' (5‘3)

for N <n, where g,( Py, Pz -+ P )/ 1! [se€ Eq. (2.5)] serves
the same purpose as in Eq. (2.4), namely to insure that each
distinct term on the right-hand side of Eq. (5.3) appears
once. In Eq. (5.3)

1) L (5.49)

sign(py, Py -+or Pm):—_-AH (-

i=1
Equation (5.3) has the following structure: a trace of a prod-
uct of p, M’s times a trace of a product of p, M ’s etc. Equa-
tions (5.1) are examples of Eq. (5.3).
Regrouping traces according to the decay processes of
Eq. (5.3) modifies the C|’s as follows:

1 N=Co 5,V

PrProsPrr bplae:

&n (11: 12’ seey q)gl.(Pls D2 ey Pm]
gn(pls P2 s P> 129 13’ vee Iq)(ll - 1)!

X (— 1)'sign(py, pys -y Pm)C 1.,V ), (5.5)
where!, = p, + p, + - + p.., [, must be greater than N, the
g’saredefined in Eq. (2.5), and (/, [,, ..., {,) form a partition of
rn whereas ( P, Pa» -, P, ) form a partition of /,. Equation (5.5)
can be thought of as the process in which (/,, [, ..., /,) decays
into (py, Pas e Pms Loy L3y ooy 1)

When N < n, keep doing Eq. (5.4) until all the /; in
C (N )are less than or equal to N. Then this generates a set of
C (N )’s (which shall be denoted C V') without poles in ¥
and Eq. (2.4} is valid if one sums only over those partitions (/,,
L,, ..., 1) of n such that all /; are less than or equal to .

For example, if n = N + 1 then C J%', —0 and

=C (V)

PP oPm

+ =1 (i

i=1

3
Pppzy-"vpnl'iﬁlf!

U(N)
CP1 PP

— 1PN (56)
The decay processes in Eq. (5.5) can be combined with
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TABLE L Table of d ).

TABLE III. The CY"”s for n = 3.

3 24

4 240 2160

5 1440 15120 161280

6 30240 967680 21772800 435456000

the invariant, fusion, and fission processes of Sec. III to yield
recursion relations for C "*?, For example, for U(2)

CUR =201+ 1)CY., + mU—m+2DCYD . |

—im(m —1)(m —-2)C ;% . ., (X))
for [0 and m>0.
0=CU® .. +(1+2m +1)CY2
mm =1 cua (5.8)

+ v .,
) ,

for I>1, m>0, and the last term is absent if m = 0. Section
VII presents the solution to these equations yielding in
closed form the C3¢)’s.

VI. THE INTEGRAL TABLES

This section computes all U{¥ )integralsupton = 6(i.e.,
six U’s and six U ’s) and displays the results in Tables II-VI.
These tables will be particularly useful in strong coupling
expansions of lattice U(NV ) gauge theories and other lattice
U(N ) field theories. Enough information is contained in these
tables to do computations to at least twelfth order [i.e.,
(1/g’N)"*).

For N>n, integrals were computed using Eq. (2.10). For
N < n the “decay” reduction process of Sec. V were carried
out.

In reference to Tables II-VI, the C"¥”s have been
written in fractional form, (numerator)/(denominator). The
numerators are the entries in the tables. The denominators,
denoted by d %, are given in Table I for N < n and are equal to
D, (N)[Eq. (4.1)] for N>n. In general, for N <n, thed Y
would be defined as

@y = [T o+ T w—sm]

s=1

(6.1)

s=1

where the m, are given in Eq. (4.3). Hence 1/d Y is 1/D,(N)
with the polesatn — 1,n — 2, ..., N+ 1, Nremoved. d ¥
naturally arises in carrying out the decay processes. The

TABLE II. The CY"”s for n = 2.

N32

DN)C N
Dy(N)C™ -1

N=2 N33
dicy® 4 N2
dycym™ -1 -N
dicy™ 0 2

C P™>s are written in fractional form to avoid the unpleas-
ant appearance of ratio’s of large numbers.
Forn=1,

C,(N)=CY™ = I/N. (6.2)

For n = 2-6, the d YC "™”s are displayed in Tables II-
VI

Vil. THE U(2) INTEGRALS

When N = 1 there is a single coefficient for each n:
CU®, and CY" = 1/n!. The first nontrivial case is U(2).
The U(2) integrals can be computed by writing the measure
and integrand in terms of the four parameters needed to de-
scribe U(2): three SU(2) angles and one U(1) phase. Explicit
integration then gives

I(—1)’
cva, = M=)
(n+ 1)

n—=2! 1

r= 0,2,4,;“'11 is even r!((’l - r)/z)!((n - r)/2 - 1)!2((n -n2=0 ’

r=13,5,.if nis odd
7.1

where n = m + 2/. These coefficients represent the complete
solution to Egs. (5.7) and (5.8) and the U(2) integral.

Table VII summarized the U(2) coefficients up to
n = 12. To avoid ratios of large fractions (n + 1)! C '3, is
shown. Columns one, two, and three specify n, m, and I (of
course n = m + 2!') and column four displays

(n+ 1) CYD,

X

VIIi. THE GENERATING FUNCTION

This section studies the generating function

(8.1)

where 4 and B are arbitrary matrices. I (4B ) is a function
only of the invariants Tr4B, Tr4BAB, ... Such an integral is
interesting for several reasons:

I(4B)= deexp[B'TrA U+ B'TrB UY),

TABLE IV. The CY*”s for n = 4.

N=2 N=3 N»4
drcum 17 55 N*—8N246
dycuy -3 —18 — N3 44N
dycvm ] 7 IN? -3
dyoum 1 1 N24+6
dayci{™ 0 0 —~5N
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TABLE V. The CY*”s forn = 5.

N=2 N=3 N=4 N>5
dycum 37 151 384 N —20N? 478N
dycusy -5 —38 130 —N*4+14N?2-24
drcue 0 10 64 2N*_ 18N
drcuy 1 5 32 NP-2N
d¥Cve 0 0 —26 —5N2424
darcyy 0 -2 -2  —2N?_-24
dycym 0 0 0 14N

(a) It appears as an intermediate integration in lattice
U(X) gauge theories and other lattice U(WV) field theories.
For example, the calculation of I (4B ) would be the first step
of a real space renormalization program in which a set of link
variables were integrated out. This integral also arises in oth-
er approximation methods such as that of Ref. 4.

(b) Often simple integrals [such as Eq. (8.1)] are studied
to gain insight into higher dimensional field theories. For
example, similar one variable integrals can be used to count
the number of Feynman graphs.

(c) When 4 equals B equals I, the identity matrix, the
integral in Eq. (8.1) becomes the vacuum functional for the
two-dimensional lattice U(V ) gauge theory® and is exactly
solvable for all V.® In this model B’ = 1/g°, where g is the
gauge field coupling constant. Thus 7 (4B ) contains as a sub-
case an interesting model.

(d) Knowledge of I (4B ) is commensurate to knowledge
of all the integrals in Eq. (2.1): differentiating 7 (4B ) with
respecttod !, A%, ., A}, B. B .., B’ and setting
A = B = 0Qyields Eq. (2.1). This is why I (4B) is called the
generating function.

In general

1(4B) = exp[zv2 $ 6

=1 n!

where f='/N ( = 1/g”N for gauge models) is the real ex-
pansion parameter and (@, a,, ..., @, ) (with some a, = 0)
represents the partition of  of the form (1%, 2%, ..., n). The
N?infront of the sum indicates that for large N the “vacuum
energy” is proportional to N 2, that is, the coefficients,

C i (N), satisfy

CLININ®"~2const + O (1/N?), (8.3)

as N— . The superscript, ¢, on C¢ (N ) stands for connected
part. The C¢ (N ) can be recursively related to the C V), are
the analogs of the contribution from connected Feynman
graphs, and appear in the exponent because connected vacu-
um bubbles exponentiate.

Forn=1and N=2

CivV)=1,

CiL(V)=1/(N? -1,

C5(N)= —1/(N*—1). 8.4)
Tables VIII, IX, and X display the results forn = 3, 4, and 5.
After the completion of this work, another manuscript by
Bars appeared which also obtains the generating function to
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IX. DISCUSSION OF LARGE N AND DE WIT-"t HOOFT
ANOMALIES IN TWO-DIMENSIONAL LATTICE U(V)
GAUGE THEORIES

The two-dimensional U(N ) lattice gauge theory is ex-
actly solvable for all N finite® or infinite.> This provides a
framework in which questions about large N and De Wit-
’t Hooft anomalies can be answered. Consider large N first.
Reference 6 has thoroughly analyzed the large N behavior,
so only the impact on strong coupling expansions will be
discussed. Let 7,,(8) = I(4AB) [Eq. (8.1)] for 4 = B = the
identity matrix. Define

Ty(B)=(I/NYinIy(B)= 3 B¥c,(N),

n=1

TrAB\~
c Q2n —2) .
x 3 cwne (T r.(B)= limy(B), 9.1)
ay,Qs,.. 00, N
a, +2a,+ ...+ na,=n and
TrABAB\=: [Tr(AB)" \«.
, 8.2
X( N ) ( N ®2) Fn(B)=% B¥c,(N). (9.2)
n=1
TABLE VI. The CU*""s for n = 6.
N=2 N=3 N=4 N=35 N>6
dycum 246 3498 17890 69562 N® _41N° 4+ 458N* — 1258N? 4 240
drcyy —27 — 726 — 5024 — 21850 — N7+ 33N5 —254N> 4 342N
dycuy 0 144 2044 11182 2N® — 5IN* 4+ 229N% — 60
dyeiy 4 118 986 6722 N®—19N* 4+ 58N?% — 160
dycyy 0 0 — 586 — 5750 — 5N® 4+ 93N3 - 208N
dgcyy) 0 —36 — 149 — 2650 —2N° 4+ 5N* 4+ 11IN
dy¥cym 0 0 0 2352 14N* ~ 154N % + 140
e ~1 -2 — 288 — 450 — N5 N3®—-358N
daycyy 0 0 9% 142 S5N* 4 75N? 4+ 40
dycum 0 18 22 52 4AN* 4+ 116N ? — 360
dNcowi 0 0 0 0 — 42N 4+ 42N
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TABLE VIL The CY*sup to n = 12.

TABLE VIIL The C& (N )'s for n = 3.

n m ! (n+ 1ICY2,
1 1 0 1
2 0 2
2 0 1 ~1
3 0 4
3 1 1 —1
4 0 81/2
4 2 1 —112
0 2 172
5 0 18 1/2
5 3 1 —2172
1 2 172
6 0 41
p 4 1 —_41/2
2 2 2/3
0 3 - 1/6
7 0 92
, 5 1 © 2812
3 2 1
1 3 — 1/6
8 0 208 3/8
6 1 —165/8
8 4 2 15/8
2 3 — 5/24
0 4 1/24
n m ! (n+ CT2,
9 0 4753/8
7 1 —1335/8
9 5 2 219/24
3 3 — 124
1 4 1724
10 0 1090 3/4
8 1 —683/8
0 6 2 5
4 3 — 53/120
2 4 1720
0 5 ~1/120
11 0 2514172
9 1 —1423/8
. 7 2 9 1/4
5 3 —17/24
3 4 1/15
1 5 —1/120
12 0 5819 5/16
10 1 —3007/16
8 2 179/16
12 6 3 —13/16
4 4 23/240
2 5 —7/720
0 6 1/720

Equation (9.1) defines ¢, (N ). I'y( B8) is the vacuum energy
density per degree of freedom for the two-dimensional U(NV)
lattice gauge theory. I', ( £ ) is the strong coupling approxi-
mation to /"y ( B) to pth order. Take the large N limit of Eq.
(9.2); write ¢, (V) as

N =3 e, (1/NY" 9.3)

2701 J. Math. Phys., Vol. 21, No. 12, December 1980

N=2 N>3
CoN) .2 __ 8
! 3 (N2 1)N2—4)
C51N) -2
2 2 (N2-1)(N2—4)
. 4
W) 0 (N2 1)NT—4)

Aslong as p < N no anomalies occur, ¢, (N ) is a ratio of poly-
nomials in NV and the expansion in Eq. (9.3) can be done.
Large N replaces the coefficientsc,(N)in I, y by ¢, , of Eq.
9.3):

r,.(B)=3 B¥,.

n=1

4

Equation (9.4) is the strong coupling large N approximation
to pth order. For sufficiently large £ (8> 1) the series in Eq.
(9.4) does not convergeto I'_ () in Eq. (9.2) as p— 0. In
other words

lim ( lim I, y( ﬂ)) # lim (lim r,y(B ))EI"@ (B) (9.5
p—>0 \N—oo N-roo \p— oo
for B> 1. This is deduced from the large NV results of Refs. 5
and 6 and the S expansion of I" [see Eq. (9.10)]. What does
Eq. (9.5) say about strong coupling large N calculations?
I, y is what one computes in the strong coupling lattice ex-
pansion to order p. In the large N limit, I', , is obtained and
is a bad approximation (for sufficiently large £) to the exact
large N limit [the right-hand side of Eq. (9.5)]. One is ulti-
mately interested in weak coupling (in g and hence large )
so that a continuum limit can be taken. The large N strong
coupling expansions give erroneous results in precisely the
most interesting region. Thus strong coupling 1/ expan-
sions are of virtually no value. This does not mean that the
1/N expansion fails; it means that if 1/N expansions are to
succeed that they must be done nonperturbatively in S.
Roughly what is going wrong can be seen in Sec. VIII.
The 1/N ? corrections in the C ¢ (N ) get big as n gets big. For
example, consider C ¢ (V) which is just N (n — 1)! times
C,(N) [Eq. (2.14)]. The ratio of the leading contribution of
C<(N)to the 1/N? correction is precisely

Correction to C¢ (N ) in large N
n—1
=( S mz) N2 ~n3/N2. (9.6)

m=1
Other connected coefficients seem to have similar correc-
tions. The 1/N 2 corrections become uncontrollably large as
n increases.® Even for n < N, 1/N 2 corrections grow like N if
nis close to V. Of course nth order corrections are important
only if 3 1is sufficiently large. This explains Eq. (9.5). Of
course, De Wit—"t Hooft anomalies enter in the right-hand
side of Eq. (9.5) but are absent from the left-hand-side and
also ruin large N. These two effects are intimately related
since the reason for Eq. (9.6) is a tower of poles in N at
— {n — 1).through (n — 1).
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TABLE IX. The C5 (N )'s for n = 4.

N=2 N=3 N>4
C.(N) ! _an 144N% —216
15 320 N2 1N —H(N2-9)
Co (V) R A1 —288N2 £ 432
: 15 160 (N2 = 1N —4)(N2_9)
C5 (V) 0 _1 120
6 N2 —1)N2—4)(N2—-9)
c, ) 17 —11 54N —126
2 60 320 (NP — 1N —4)(N2—9)
Ci(V) 0 0 ~30
N2 —1)(N?—4)(N2-9)

Now consider the effect of De Wit—"t Hooft anomalies
on the strong coupling expansion. One’s attitude might be as
follows: the connected coefficients, C {(V), are ratios of poly-
nomials in N. They have polesat N=1,2,...,(n —1)and a
completely different set of C (N )’s must be used for N < n.
However, by expanding in a power series in 1/N ?, terminat-
ing it after several orders, and extrapolating to N < n, the
connected coeflicients become finite. One might hope that
via this extrapolation strong coupling contributions com-
bine to give reasonable results and that 1/N corrections im-
prove on this, thereby bypassing the De Wit-"t Hooft prob-
lem. It will be shown that this does not happen. Define

(1) — 2n

re g)y= (Nz), 2 Bc,,
'Y (B)isthelthcontribution in the 1/N ? strong coupling
expansion. For g sufficiently large I’ (8) is a bad ap-
proximation to exact results. One might hope that the 1/¥?
correction, I ("’ (B), rectifies the situation (for 8> 1) both
for finite and 1nﬁmte N and improve results for § <.
Amazingly

' (0)=0 foralll>1. (9.8)
In the two-dimensional model in a strong coupling expan-
sion all 1/N ? corrections are zero. It is impossible to bridge

the gap between infinite N results and finite N results. Al-
though a strong coupling 1/N expansion is a reasonable ap-

©.7)

TABLE X. The CL(N)sforn=>5.

proximation for £ <1, there is no way to improve on this by
taking into account 1/N ? corrections. In higher dimensions,
Eq. (9.8) does not hold and some improvement can be ob-
tained by treating 1/N * corrections; however, many contri-
butions are still ruined by trying to extrapolate due to the De
Wit-t Hooft anomalies.

Equation (9.8) is proved by using the definitions of
C,(N) and f,(N) in Appendix A. The contribution in nth
order [obtained by expanding the exponent in Eq. (8.1) and
picking out the term proportional to ( 8 '%)"] is (for n <N)

fd U (—éﬂ (trU)"(tr Uty
nln!

(B
- 2

n'in! .
ay,dy,..d,
A b 20, et nty,

zc (O-)Nfla')
(B )2" ZZ x,(e)x,(a)N i

_(8 )2"[2

n!

g (QnIC, (NN @+ ot +a

=n

(ﬁ )2n

x,(e)xr(e)].

- (9.9)

The term in brackets is 1. The nth contribution is just the
exponentlatlon of the first order contribution: I", (8) =
Biforallpand I'" (B)=0forallpand />1. The first

N=2 N=3 N=4 N>$S

Co.(N) 62 51 — 304 4224N7? — 13824

" 45 140 945 (N2 — 1P(N2 — 4N — (N2 — 16)

ConsN) 28 -9 110 — 10560N'2 + 34

" 9 56 189 (N )2(N2 ;(N2—9)(N2—16)

Co N 0 11 — 194 9600

hath) 168 945 (v -1)2(N2 4N —9)N? — 16)

CEN) 3 —17 —33 4320N7 - 18720

i 2 56 2801 N2 — 13N — 3(1v2—9)(1v2 16)

3 0 0 —_—

Clv) 24 N2 1)N? —4)1&1,\'2 - 9)11872 —16)

C5A(V) a 17 41 — 1440N 2 + 62

= 168 3780 N2 1)3N? —43)(év2 —9N2I—16)

3

¢ 0

C3(¥) 0 0 (NP )N —4{N?—9)N% - 16)
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contribution to I', (8) beyond B2 occurs when the first
anomaly appears (i.e. atp =N +1):

rB)=8*+ S a,p™

p=N+1

(9.10)

For finite NV, the exact high temperature expansion begins
with a B2 term but the next term. does not appear until the
(N + 1)th order in B2 This explains the statement in Ref. 6
after Eq. (50). Equation (9.10) shows why all 1/N? correc-
tions vanish as N— o and shows how the De Wit~"t Hooft
anomalies ruin a 1/N ? strong coupling approximation.
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APPENDIX A

The proof of Eq. (2.10) given below is due to Frits
Beukers. Let A, i, v, 0, and 7 be permutations and let ¢ be the
identity permutation. Denote F (o) = N/” where f(0)is the
number of cycles in 0. Let 5, be the delta function of S,
that is

_ {1 ifo=e
>¢ " |0 otherwise

Important ingredients in the proof are:

(a) Uniqueness of the solution, C,, , of Eq. (2.10);

(b) F(0) = F (rooor™),
F(o')y=F(o); ‘

(c) Orthogonality relations for the characters of S ,:

n!

(o7 ouly, (o) = —= 8, x. (1).
;xw wx- (o) xx)**”

Equation (2.8) reads
SC, Foow)F (rov') = F(gor). (A1)
uyv
It is easy to see that C,,., .., also satisfies Eq. (A1) by plug-
ging it in, changing summations to u—u°4 - and v—vo1 -,
and using (b) above. Uniqueness [(a) above] implies C, ,
= Con,104 S0 that C, , is a function of uov™!, which will be
denoted by C (uov"). Take Eq. (A1), shift the summation
variable & to ;0v, and set 7 = e to get an equation for C (u)

S C(wF(oov'iou)F (v') = F (o). (A2)
Equation (A2) can be satisfied if

SCF©@vion™) =6y, (A3)

[

and by uniqueness this must be the solution. The new equa-
tion to solve is

SC(wF o™ =8,,. (A%
"
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It immediately follows from (A4) that C(u) = C(rouor™?)
and C(u) = C(u™"). C(pu)isaclass function. Equation (A4)
is a group convolution of class functions and therefore dia-
gonalizes by group Fourier transform, i.e. by writing all class
functions in character expansions:

Clp)=YCx.(u)
Floou™") = ;fof(oop“),

60,8 = zsrXr(a)'

Here C,, F,, §, represent the Fourier components of C, F,
and &. Plug Egs. (A5) into Eq. (A4) and use orthogonality
{(c) above]:

(A5)

SCF, X—:'(:—)—xr(a)= 6.0,60), (A6)
or

C =6,/f, (A7)
where by definition ‘

f, = F.n\/y,(@). (A8)

F_and é, are determined by taking the inverse Fourier trans-
form of Eqs. (A5):

1
6r = __'-Xr(e)r
nt

F, =—,:; S XOF @) (49)
Summarizing,
C@)= };—X;’,?x,(o), (A10)
X.(@F @)
-y X979 All
% ; x.(e) (A1

Equation (A 10) is precisely Eq. (2.10). The author has
guessed the solution of Eq. (A11), namely that £, is given by
Eq. (2.12). This has been verified up to n = 7 but a general
proof of Eq. (2.12) is lacking.
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Lie groups, spin equations and the geometrical interpretation of solitons
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The integrable evolution equations imbeddable in SU (2) are shown to have two gauge equivalent
forms; the AKNS form, and a spin form for which the field is a three-dimensional vector of unit
length. These equations are the compatibility conditions for the existence of a bilocal Lie group in
two distinct frames of reference. These frames are associated with moving bases on surfaces
formed by the motion of the strings introduced by Lamb. Both forms of the evolution equation are
derivable from a locality assumption for the generators of the bilocal Lie group. The assumption is
sufficient to distinguish between integrable and nonintegrable systems imbedded in SU (2).

The interpretation of soliton equations as the compati-
bility condition for the existence of a Lie group' suggests at
the same time a direction in which one might be able to
extend the structure these equations manifest to higher di-
mensions and a cohesive perspective for interpreting the in-
sufficiently understood aspects of these equations in two di-
mensions. The latter set of concerns is of interest in its own
right. The equivalence of the nonlinear Schrodinger equa-
tion and the continuum limit of the classical Heisenberg
chain,” two systems shown independently®* to be integrable
by inverse scattering methods and of independent interest as
descriptions of apparently diverse physical systems, is an
example of what we regard as an insufficiently well under-
stood aspect of two particular soliton equations. We will
show, making use of the Lie group perspective that this
equivalence is in fact a general feature of a class of soliton
equations [those that can be imbedded in SU (2)]. That is,
that the equations have two forms, a “y form,” in terms of a
complex field, which is the familiar form for most of the
historically important examples, and an “S form,” in terms
of a unit vector on a sphere S(x,t).

The two forms of the equation correspond to the com-
patibility conditions for the existence of a group manifold
expressed in two different bases. These bases arise naturally
in giving the structure of the equations a geometrical inter-
pretation. The spin vector is the tangent in the space direc-
tion of a particular one of a family of surfaces associated with
each solution of the equations. The S form of the equation is
associated with a coordinate system fixed in the three dimen-
sional space in which the surface is imbedded. The ¥ form is
associated with a coordinate system whose orientation is de-
termined by the tangent curve on the surface in the x direc-
tion and a free parameter that is the eigenvalue of the inverse
scattering method.

The S form may be constructed from the 3 form by an
algorithm that we will present in the case that they are evolu-
tion equations, i.e.

% - * ...
at —K(V/’lb ’wkﬂl/x ) (01)

We conjecture that there is a spin equation for all the equa-
tions that can be imbedded in SU (2), even those, such as the

2704 J. Math. Phys. 21(12), December 1980

0022-2488/80/122704-11$1.00

sine—Gordon equation which are not evolution equations,
and, indeed there is such an equation for the sine~Gordon
example. This turns out to be the same equation derived
previously by Pohlmeyer.® After completing this work, we
became aware that Zakharov and Taktajan® had obtained
the transformation given by our algorithm for the particular
case of the nonlinear Schrodinger equation and Heisenberg
model.

We show in addition that a certain locality condition
suffices to distinguish between integrable and nonintegrable
equations imbeddable in SU (2), and suffices, furthermore,
to produce the associated linear operator in the case that
they are integrable. The “squared eigenfunctions” of the lin-
ear problem have a natural geometric interpretation here.

The Hamiltonian structure of the equations is also in-
teresting. If Hn is a sequence of conserved densities, corre-
sponding to a hierarchy of integrable equations in their 3
form, so that the nth equation of motion is

9% _ _Hn+2
E -’
then the corresponding spin equation is
as 6Hn
D g ,
ot X S

where Hn is the nth conserved density of the  form of the
equation, expressed in terms of S (and the nth conserved
density of the S form as well).

We begin in Sec. I with a review of the connection be-
tween the geometrical interpretation of the soliton equations
and the significance of the equations as the compatibility
conditions for the existence of a bilocal Lie group. The con-
struction that defines S(x) is given, and the relationship to
the work of Lamb’ on the motion of strings, and the later
work by Lund® and Sym and Corones® is made explicit.

Section II shows how one may construct the “S form”
given the linear problem of the “¢ form.”

Section I1I gives the construction of the linear problem
for a given evolution equation, and gives a criterion by which
one can decide if the equation has an inverse scattering the-
ory or not. The example of the modified KdV equation is
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worked out in detail. A method of calculating the .S form of
the equations directly is given.

Section IV discusses the sine-Gordon example and its
spin equivalent, and makes contact with the work of
Pohlmeyer.

Section V discusses the relation between the Hamilton-
ian structures of the two equations.

I. GEOMETRICAL INTERPRETATION

Suppose we have a surface in R, parametrized by co-
ordinates (s,t ), where ds is taken to be the arc length along a
coordinate curve for fixed ¢. That is a vector function X(s,? )
such that |d X/ds| = 1. Each coordinate curve for fixed ¢
may be regarded as the position of a space curve, and the
surface regarded as the locus of the curve as it moves in time.
At each point of this space curve, we can define the Serret—
Frenet basis, i.e., an orthonormal coordinate system in R,
determined by the three unit vectors t, n, b.

X

=72 (1.1a)
ds
_, 0t ‘ at
="', k=|—|, 1.1b
= Js Js (1.10)
b=tXn. (1.1c)
The torsion of the curve is defined by
b _ (1.2)
Js
from which it follows that
LR (1.3)
Js

(1.1b), (1.2), (1.3) are called the Serret—Frenet equations,
and give the evolution of the basis vectors as one moves along
the curve in terms of two functions « and 7, the curvature
and torsion at each point.

If we pick two points (s,%,) (s,¢ ), then evidently there is
a unique rotation that takes us from the Serret-Frenet basis
at (5q.2,) to the Serret—Frenet basis at (s, ). Denote this ab-
stract element of the rotation group by g(s,; so,%,)- If we pick
a third point (s',z '), then the rotation that takes the basis at
(s0s%o) into that at (s, ') must be the same as that which is
obtained by first transforming to (s,f ) and then transforming
to(s',t'), i.e.,

8(s's1"; Souto) = (8", 5,1 ) &(5,8; Sorko)- (1.4)
This must be true for every point (s,# ) and defines bilocal Lie
group, here the rotation group in three dimensions, intro-
duced by Corones, Markovski, and Rizov! (see Fig. 1).

We now imagine specifying not the surface, but the gen-
erators of the group at each point (s, ) ¥ and 7 for instance
can be used to parametrize the generator in the s direction,
and there will be two additional functions that will specify
the generator in the ¢ direction. To be specific, we will repre-
sent g as an element of SU (2), two-dimensional unitary ma-
trices with trace 1.

Then gis,t; s,,%,) can be obtained by integrating
8:(8:55 Sosto) = A (5,2 ) 8ls,t; Sorto) &lSorte; Sosto) =1,

1 (S,t; SO’IO) = B(S,t )g(s,t; sOstO), (15)
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g (Sl,f‘; s,t)

a(s,t; 50,10)

FIG. 1. A surface defines a bilocal Lie group and vice versa g(s,¢; So,¢,)
rotates the basis at 5,7, into the basis at s,£.

where 4 (5,¢) and B (5,1 ) are elements of the Lie algebra of
SU (2) i.e. can be represented as linear combinations of the

2% 2 anti-Hermitian matrices a, they satisfy
[e,a;] =€ ,a;.

(1.6)
‘Specifically, a representation for the a; is

B A N
(1.7

and

A@st)= z A,(s,t)a;, B(st)= z B,(s,t)a;,
i=1 i=1
(1.8)
where the 4;, B, are real functions.

We will write expressions such as (1.8) that map a vector
field into the Lie algebra as 4 = A-a. To obtain the inverse
mapping, we observe that

al= — 1/41,
(1.9)

aa; = —a;a;, Ii#],
so that

A, = —4T,(4a,). (1.10)
We note that

AB+ BA= —}AB (1.11)
and

AXB-a = [4,B]. (1.12)

The specification of two vector fields A(s,? ) B(s,? ) then
serves to define g, and, one may show, a surface that is associ-
ated with g. Of course, one must be able to simultaneously
integrate both equations, that is, they must be compatible, so
we are not free to choose A and B arbitrarily. The compati-
bility condition is simply

g g
T = T 1. 3
Jsat dt Is (1.13)
which implies
A, —B, +[4,B]=0. (1.19)
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If 4 and B satisfy (1.14), then one can obtain a g which has 4
and B as its generators.

The known soliton equations can all be written in the
form (1.14), for perhaps a different group, where 4 and B are
parametrized by the field, perhaps complex, that satisfies the
soliton equation. That is,

A(st) =AY YY)

and similarly for B, and then (1.14) is equivalent to the soli-
ton equation for y(s, ). This is what we mean by imbedding
the soliton equation in a group.

We think it is important to point out that equations that
are not soliton equations can also be put in this form. In fact,
if we regard the surface as being traced out by a moving space
curve, as in the work of Lamb, then it is clear that we will
obtain a surface whatever the equation of motion for the

curve, while only rather special types of equations of motion

produce solitons. What makes these equations special is
their relationship with a free parameter in the theory, the
eigenvalue of earlier works.

The role of this parameter is not well understood in the
present context. We will here introduce it in an ad hoc fash-
ion by defining 4 to be of the form?

A(s,t) =Aa, — @/2)(s,t ya™ + (i/2Y*(s,t)a ™,
(1.15)
wherea * = a, + ia,. Thisis almost the most general form
for A, we have only restricted the coefficient of , to be a
constant, independent of x and ¢. ¥ will be closely related
with x and 7 in a manner we shall see shortly. If we want to
represent the most general equation of motion for the space
curve, we can parametrize B as’
B(st)=R(st)a, + (@(/2p(st)a™ —(i/2r*G,t)a™,
(1.16)
where y(s,t ) = Y[}, and the bracket { } denotes “‘a func-
tional of.” The compatibility conditions together with the
commutation relations for the @, imply the two equations

R, = (i/2)[yy* — ¥y*],
Y, + ¥, —iAy—iyR =0.

(1.17a)
(1.17b)

[The third equation given by (1.14) is the complex conjugate
of (1.17b).] (1.17a) determines R, molulo an integration con-
stant, in terms of ¥, and (1.17b) is an equation of motion for
. ¥ may also depend upon A, and it is one of the remarkable
feature of soliton equations that the dependence on A cancels
out of (1.17b) with an appropriate choice of the integration
constant in (1.17a), and the A dependence of . We do not,
however, need A at all to describe an arbitrary motion of the
space curve, and if we set 4 = 0 and let ¥ be an arbitrary
functional of ¥, we can still obtain the equation of motion for
1 that will generate the surface determined by the choice of
y. Itis not therefore, the ability to imbed equations of motion
as the compatibility conditions for the existence of a surface
that is the distinguishing feature of soliton equations, but
rather the existence of a family of surfaces, corresponding to
different values of the free parameter, all having the same
equation of motion for the compatibility condition.
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Lamb’ gives various choices for the functional y that
lead to different known soliton equations and we refer the
reader to his paper for examples.

We will now show the connection between ¢ and x and
7. (¢ in fact turns out to be the same function as defined by
Lamb).

Consider a coordinate system fixed at (s,,?,). Then g(s,z;
Sgolo) provides the transformation of a vector, v, in this co-
ordinate system to one in the rotated frame, v’, by

v = gug ", (1.18)
where v = v-q, v’ = v"a. For the tangent vector t(s, ) pre-
viously introduced, we require that t' = 2, i.e., g describes a
transformation to a basis where the z axis coincides with the
Z axis of the Serret-Frenet basis. Then

tist) =g~ st Sotol.8ls,t; Sooto)- (1.19)
We define also
N =(s,t) = g7 (s,8; Soulox Tg{s,t; Sosly). (1.20)

The vectors associated with z, {(N * + N —), [N~

— N * ] form an orthonormal basis and, as elements of the
Lie algebra, these matrices satisfy the same commutation
relations as do the a,, i.e.,

[tkN*]=FiN*, [N*N-]=2 (1.21)
This basis differs from the Serret-Frenet basis only by a
space dependent rotation about t. The magnitude of this ro-
tation is determined by 7 and A. To make the identification
complete, note that we have
t,=g '[a.88 ' lg=g""[a.4]g

=1[YN* +¢*N ], (1.22a)

NE=g'latgg '|= +tiAN* — ['f*]t (1.22b)
While the Serret-Frenet equations imply
t, = xn,

(1.23)
d .
a—[n + ] = FTir[n £ b] —«t.
s
(1.23) and (1.22) are equivalent if we make the identification

Yis,t ) = kst )exp[ — iJ:

ol

N *(s,t) = [n(st) + ib{s,t )]
[s2)+A1] ds’],

S, L

[rlsst) + 4] ds’},

5.t

X exp{ii

Sot

£(s,t) = t{s,t )a. (1.24)

(1.24) differs from Lamb’s work only in that A is called — 7,
there. The transformation that maps the Serret—Frenet basis
at (so,%,) onto the Serret—Frenet basis at (5,2 ) is generated by

A'lst)=[—7ist)a, +«is,tha, ] (1.25)
The two generators are related by a gauge transformation.
That is, if g(s,2,; s5,,) is the solution of (1.5) with the 4 of
(1.15), and g'(s,2y; So.2,) is the solution of (1.5) with the 4’ of
(1.25) then

8'(8:t0; Sorto) = &1lSite; Sorto) &S, Soto),
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with
5, Loy

[rssty) + 4 1at. ds’]
(1.26)

gl(s!t(); so,to) = exp{ —_ f

Sorfo

and A ' and 4 are related by
A'(s’t)zgl,xglﬁ‘ + 8,48, 7. (1.27)

ll. EXISTENCE OF INTEGRABLE SPIN EQUATIONS

We have seen that associated with each soliton equation
that can be imbedded in SU (2) there is a family of surfaces,
characterized by the eigenvalue parameter A. The wavefunc-
tion ¢ that satisfies the soliton equation parametrizes the
generators of the bilocal Lie group associated with the sur-
face and determines directly the infinitesimal rotation angle
in a basis closely associated with the Serret-Frenet basis. We
wish to show now how to construct the equivalent spin
equation.

For evolution equations, that is, equations of the form
(0.1), this construction is an algorithm, and leads to spin
equations of the form

s _ SXK'(S,S, ) = 9B (5,5, ),
ot ox
where we will determine K’ and B explicitly in terms of K.
For the sine-Gordon equation,
Iy .
Ixdt sin ¢
there is an equivalent spin equation with the spin vector
identified in a similar way, although there is no algorithm for
obtaining it. (We will call the variables of the previous sec-
tion x henceforth.)

2.1

(2.2)

We define
S(x’t ) = gO B l(x’t ;xmto)azgo(x’t ;XO’tO)’ (23)
where

8o (%15 xoto) = [ — (i/Dp(x,t)a ™ + (/2)p*(x,t ) ™ ]
X 8oX,t ;5 Xo:to) 24
and
80(Xost03%080) = 1.
That is, S(x,¢ ) is the tangent vector to the surface generated
with the parameter A = 0, and with the tangent vector t at
X0ty Oriented along the z direction in a basis fixed in R;.

The Serret-Frenet equations, in the form (1.22) with
A = 0 become

S, =[YN + ¢y*N *],

(2.5)
v |Ys
Since
WN Y= ")y =0,
while
[N*N-" 4N N*]= —1,
(2.6)
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()= =4l T= — WL
Also
S = 4[N~ + 02N T ] - YIS, @7
[S::Su ] = + (/) [Y2y — ¢yp*1S = — k1S (2.8)
andsince §? = — 1,
S[S.,S. ] =W 2.9)

(2.6) and (2.9) are Lakshamanan’s equations” relating S and
. They permit the inversion of (2.3), (2.4) to obtain ¢ in
terms of S. For the nonlinear Schrodinger equation, Laksh-
manan was able to use them to show the equivalence of the
soliton equation in the 3 form and the equation in its S form,
the Heisenberg chain, by direct substitution. This procedure
requires that one know the spin equation thought to be
equivalent to the equation in its ¢ form, and is not suitable
for determining the spin equation. It also does not reveal the
connection between the linear problems of the two forms of
the equation, which in fact are related by a gauge
transformation.

From (2.4) we have

as

— =g '[2..8,.8 'lg

E 2.10)

But

8.8 '=B@YA=0)=BWAl=0)1a,
where by B (¥,4 ) we mean a matrix of the form 1.16. Hence

ﬁg = [Sg "B = 0)go) = [SK'[S)],

where X {S } is obtained by using the Lakshmanan equations
to eliminate ¢ in (2.4).

(2.11) shows in principle that there is an S form of the
equations, although the means of calculating K (S ] is so far
purely formal. Furthermore, there is no reason to suspect
that K'(S,S, ---) will be a local function of §, i.e., involve only
S and its derivatives. In fact, it appears that this is only the
case if the original equation was a soliton equation, although
one could in principle construct B as a functional of S, using
the Lakshmanan equations, for any evolution equation. This
locality requirement is tied up with the invariance of the
form of the equation to a choice of 4 in ways that are not
clear to us at the moment.

(2.11) may also be interpreted as the compatibility con-
ditions for the existence of a surface, in a frame related to
that in which we have expressed the generator (1.15) (which
we will call the i frame) by a gauge transformation. Specifi-
cally, let g(4 ) be the solution of (1.5) with (1.15) and a com-
patible expression for B, and let g, be defined as in (1.24).
Then we introduce g, defined by

81 ) =go&,(4). (2.12)
From (1.26) and (1.27) appropriately reinterpreted we find
that

81.(A) =45 (x,1)g,(1), (2.13)

where S is defined by (2.3). This is the form of the linear
eigenvalue problem used by Takhtajan® to integrate the Hei-
senberg chain. We will refer to the frame obtained by apply-

(2.11)
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FIG. 2. Relationship between the elements g,,g and the surfaces generated
with A = 0 and 4 #0. The moving frames are at the same distance, mea-
sured along their respective surfaces, from the fixed frame.

ing g;' to the ¢ frame as the S frame. Geometrically, if we
have the two surfaces defined by the generators of (1.15) and
(2.4), i.e. one for nonzero A, one for A = 0, then

8o ' (x,t; sp.l) takes the ¢ frame at any point ¢, for the sur-
face with A = 0, back to a fixed frame at x,,z,. When applied
to the ¢ frame for the A #£0surface at x,¢, it returns the frame
to one which is rotated from the fixed frame at x,,¢, by an
amount that is determined by A, and S(x,¢ ) along the curve
between x, and x (see Fig. 2). The generator for time transla-
tions associated with (2.13) is given by

B(SA)=g, '[B(WA)— B = 0)]g,. (2.14)
The compatibility condition (1.14) becomes
295 9BSA) L sBEA =0 @15
at ax
From (2.11) it follows that
BED _ i sg, 'BWAg). 2.16)

Jx
If the equation in its ¢ form is an evolution equation, then
B (§,4 ) will be a polynomial in 4 beginning with A, as we will
show later, so that
BSA)Y=AB, +A°B,+ - A"B,. 2.17)

The highest power of 4 is equal to the order of the highest
derivative appearing in the evolution equation. The equation
of motion (2.11) can also be written as

a5 _ 9B, (2.18)
ot dx

where (2.15) implies
9Bn _(sBn—1), n>1 (2.19)

Ix
if we define B, tobe g, ' B (¥,A = 0)g,,.

The vector associated with B, by the mapping (1.10) has
the further property that it is the tangent in the ¢ direction to
the surface generated when A = 0. To see this, observe that
(2.18) is equivalent to

dIX. _ 3 X

9 - 9 d(By)
at ox

o= —=I, 2.20
dx ot ¢ Ox ( )
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Therefore
ﬁ-a:Bl + C().
dx
We will see later that B, always involves at least one deriva-
tive of S, and for the problem we are considering, S — a, as
X — — oo. Evaluating C (¢ ) at x — — o, we see that it is
zero if we assume that X/t = 0 at x — — oo, that is, that
the end of our space curve is fixed in the reference frame we
are considering. This seems sufficiently general for the
boundary conditions we are considering, and we have then

(2.22)

221

—a=25,

ax
It is satisfying that the transformation of the “y form” into
the “S form” of the equation also produces explicitly the
information needed to construct the surface.

We do not yet have a self contained spin equation, since
8o and B (#,A ) are given in terms of 4, withA = 0.

To actually construct the spin equation for an arbitrary
evolution equation requires that we first construct the ap-
propriate linear operator B (,4 ).

llil. CONSTRUCTION OF INTEGRABLE SPIN
EQUATIONS

Given a nonlinear evolution equation thought to be a
soliton equation, the problem of finding the linear operators
associated with it has generally been solved by guesswork
and intuition. As pointed out by Corones,’ if one assumes
that the equation will be the compatibility conditions for the
existence of a bilocal Lie group, then one can construct 4 and
B if one knows, or thinks one knows, the group the equation
corresponds to, by a procedure that appears to work general-
ly. If one assumes that the group is SU (2), and one has
chosen A to be in the form (1.15) one can in fact derive all
possible integrable evolution equations associated with SU
(2) and 4 in the form (1.15), from a simple locality condition
on B. The locality condition, which states that B can only be
a function of 3 and its derivatives at a given point, and can-
not depend upon an integral of ¢ over a region seems to us to
be a necessary condition for the system to be integrable. For
if B evaluated at + oo depended upon the values of ¢ for all
x, then the scattering data would not evolve simply in time
with a frequency depending only on A, and no decomposi-
tion into action angle variables labeled by 4 would be
possible.

In any event, we show here that the locality condition
implies that the most general evolution equation, having a
given linear dispersion relation, imbeddable in SU (2}, with 4
given by (1.15), is of the AKNS® form. Furthermore, the B
associated with a particular equation is provided automati-
cally by the procedure we use to show this.

If g is any solution of

g, = A48, (3.1)
and we wish to find a B such that

A —B +[4B]=0 (3.2)
we can represent B as
B=gBg ' 3.3)
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Then

B, =[4,B)+gB,. g~ " (34
If 3.2 holds, then

Bt ) = Blrot ) + | 8~ '4gdx, 3.5)
which is the result in AKNS. Now in the case we are
considering

A4, = — —pa + —p*a* (3.6)

2 2

and

g*‘A,g=—§¢,N~+é¢,N+ (.7

if we take for g the solution which is the identity at x,,2,. If ¢,
satisfies an evolution equation, then ¢, = K (¥,%¥,,¢,,-).
Using the generalized Serret-Frenet equations (1.22), we
can integrate (3.5) by parts repeatedly. If the equation is a
soliton equation, we conjecture that the integration can be
done completely and B, will be of the form

By =Py AIN * + P*Wh¢b,-A)IN ~
+R @A), (3.8)

where the P,R are polynomial functions of their arguments.
Or stated differently, we assume that

— i, N+ L, N = 3‘9— [P (ip, AN -
IX

+P*W AN + R AN ) (39

Using 1.22 we find that the left hand side of (3.9) is equiv-
alent to

aP _ oP* . ]
— — AP+ RY IN ——— +IAP* L+ IRY* [N
[6): “EtS ¢'] +[ ox t +2R¢
+ ﬁ—Plﬁ*—P*d' ]t. (3.10)
ox

Since N *,¢ are linearly independent matrices, (and corre-
spond to an orthogonal basis of vectors) we have

JR

ZE =Py* + Py (3.11)
Ox
or
R=R(— )+ J (PY* + P*y) dx. (3.12)
Assuming that ¢ vanishes at x = — o0, R (— oo) is deter-

mined by the linear dispersion relation. For, if for sufficient-
ly small ¢ o >

the the left-hand side of (3.9) is
QUNIN ~ + 9N *) =0 1) 2L (314

and (3.9) can be satisfied by choosing R ( — o) = 2(4).

The two remaining equations that come from identify-
ing the components of ¥ * on the right- and left-hand sides
of (3.9) can be written as

#(f ) _4 (PP ) ++aq )( _‘bw,) - 7(';0 )

(3.15)
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where

b v

e 2w |
(.16)

Let us assume that 22 (4 ) = CyA ™. Then the solution of
(3.15) for (£. ) is of the form

a X
—+iY s
_7=—:- Jx le

(PP,) = nilx"—'(:jn), (3.17)
where ‘

(oo )=~ 5 %) 19
and

(PP:“ )= f(:j ) (3.19)
ie. T '

()--for (%) om

The term independent of A leads to the equation of motion

(4, ) -iev () =o

For an arbitrary polynomial dispersion relations it is easy to
see that this generalizes to

(4)-acr{ %)

which is, with the definition (3.15), the AKNS equation ap-
propriate to the special case we are considering. The expres-
sions for P,P * generalize simply to the linear combinations of
the expressions for each power of A appearing in the disper-
sion relation. AKNS derived these equations by considering
the equations of motion for certain squared eigenfunctions.
The relation between their method and ours can be seen by
noting that if we denote the elements of g by

e=(4 2)
¢, P

then the elements of N * ¢ are quadratic products of the
elements of g. Since the entries in the matrices correspond to
components of the vectors associated with these matrices,
the squared eigenfunctions can be thought of as the compo-
nents of the basis vectors of the frame moving along the
surface, in a fixed frame. For instance, if we integrate the
equation for ¢ , in (1.15), and eliminate # from the remaining
equations, we obtain

v ol v o)

(3.21)

(3.22)

(3.23)

(3.24)

This is nothing but the evolution equation for the basis
vectors in the moving frame, with the condition that
t (— o) =a,. We observe that
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re=(y-)--()

and hence the generalized Serret-Frenet equations (1.15)
imply the eigenvalue equation

2= -4 ()

which, with slight changes of notation, is the starting point
for the AKNS derivation of the form of the soliton equa-
tions. One may obtain the other evolution equations for dif-
ferent products of the ¢,, such as appear in Flaschka and
Newell!! by taking appropriate components of the equations
(1.15), rewritten in the form (3.24).

Returning to our main theme, we see that we have suc-
ceeded in characterizing the possible integrable equations
imbeddable in SU (2), with our choice of 4, as well as obtain-
ing the compatible expression for B. For, from (3.5) and (3.3)
we see that

(3.25)

(3.26)

B@WA)=Pa~ +P*a* + Ra,. (3.27)

Itis not obvious that P,P * R are in fact polynomialsin 3
and its derivatives, since L is an integrodifferential operator,
but this is the case. We do not have any proof of this for the
moment, but observe that it can be shown by direct caicula-
tion for the lowest few terms. For instance, taking

NA)= +12
leads to the modified KdV equation, for which

¥, )_. N (wm +372[9*Y. )
(1//"‘, = (—'ﬁ*)“ P 32091294,
(3.29)

(3.28)

and for which
P — %"'/" Pz = - '/’x’ P = + %i('/’xx + 1/2|¢|2¢)-

(3.30)
Defining R, by
N
R= 2 A"R, (3.31)
n=90

we find, using (3.12) and (3.16)

Ry;=1, R,=0, R, = —i¢

Ro= /D[y, ¢* — ¥, ¥). (3.32)

Having obtained B (1,4 ) for the general evolution equa-
tion, we can obtain B (S,4 ) from (2.14), and the equivalent
spin equation follows from either (2.18) or (2.11), which we
rewrite as

s _
= =ISB@A=0)]

Of course, one has B, expressed in terms of ¥, and one
wants it in terms of S. By(S,4 = 0) is actually a simple func-
tional of S in this case, and in the general case. It is rather
easy to see how to do this, for our particular example.

We have, (since ¢t = S when 4 =0)

Bo,0) = [Lih. + Li[YIYIN ~ + [cc]
+ %l‘(wx ¢* - ¢*x ¢)S

(3.33)

(3.34)
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From (2.7)

Sxxx = [%wxx - £I¢IZ¢]N - + {C.C.}
—32[4.¢* + ¢.¥]S. (3.35)

The term with the highest derivative in (3.20) can therefore
be represented as, making use of (1.21)

[S:Sexx ] = i[¢hx [¥7YIN ~ + fcc.}. (3.36)
Inasmuch as it is only the coefficients of N * that detemine
the equation of motion, we have only to correct for the incor-
rect coefficient of |3|*¢ in (3.36) to obtain the desired spin
equivalent of By(,0).

Using (2.5) and (2.7), we have

[SeSe I =4ilg1PYN ~ + fec) + 4i[Ugh*, — g*,¢*]S.

(3.3
Thus, using (2.6) as well,
Bo(#,0) = + [S,Sexx ] + 3[Sc8xc ]
+ {5 [S..S.c ] + [S.,5.. 1S S
(3.38)

Hence, the equivalent spin equation for the modified KdV
equation is

as

= - (S{[S:Scee ] + 3505 131, (3.39)

To convert this back to an equation for the vector S, we note
that

[4,B] = AXBa (3.40)
from which we conclude that
‘;—f=SxHS><Sxx, +35,XS..] |- (3.41)

Although we have used an apparently ad hoc procedure
to pass from B(1,0) expressed in terms of ¢ to its form in
terms of S for this particular example, the procedure may be
systematized. We observe that S, S, , SXS, are an orthogo-
nal basis, and we have

S, +i[8S,.]= {"Z}N *. (3.42)
Differentiating once, we have

Se £i[8S,, 1= {ﬁ ]N £ yPs. (3.43)
Since |¢|* = —45,S,, (3.4) expresses terms of the form

(7 )N = in terms of S and its derivatives. Taking another

derivative, we see that (ﬁ )N * canbe expressed in terms of
S and its derivatives, plus a term that is

(¢*x ¥

VA

But this can be expressed as for instance
[¢.N *,¥N ~ ], which have both been previously expressed
in terms of S and its derivatives. Continuing in this way we
see that we can always express any term of the form 3"¢yN —,
J"Y*N T in terms of S and its derivatives.

If we assign an index to polynomials in ¥ and ¥* and
their derivatives, P (,¢*,¥, -), according to how they
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transform under an ordinary gauge transformation, i.e.,

v— eia,/}’

Y*—>e” ia¢*,

P y* ) — €™ P@y* ¢ ),
then one sees immediately from the specific form of the
AKNS evolution operator (3.16) that only terms with index

+1 enter the equation for ¢, , —1 for ¥*, . The most gener-

al term that will be needed to express B, in terms of S'and its
derivatives will be of the form

ﬂaﬂ’i)ar*é] -
(G (5=)wete

or its complex conjugate, wherea + y — f—6=1.1f
¥ > 8, we can replace |¢|* by (S,.S,)° leaving a term

(523
a." ar

still to be represented in terms of S and its derivatives.
If 8 > ¥, we obtain

(G

In the case of (3.46), we can construct the expression by
commuting a factors of (6"¢/8x™)N —, (y — &) factors of
YN — and B factors of (§™y/8x™)N —, alternating factors
proportional toN ~ and N *.Sincea + (¥ —8) = B +1,
we will have one more N ~ term than N ¥ term, and the
result will be proportional to N ~. Similarly for (3.47). In all
cases, we can reduce the terms that appear in the expression
for By(¥,A ) arising from an AKNS evolution equation to
terms involving S and its derivatives. Hence, one can always
obtain the spin equivalent of an AKNS evolution equation in
SU (2) by the procedure outlined above. We have, therefore,
an algorithm for the construction of the spin equivalents.
The expression for B (S, ) that is associated with
A (S,A4) = ASisobtained bysubtractingfrom By(1,4 ) theval-
ue of By(¥,A = 0) and converting the remainder to its spin
equivalent. The equation of motion can be obtained this way
as well, using (2.18). The result will not be manifestly in the
form (2.11) however, and it will generally require some ma-
nipulation of the identities that follow from differentiating

(3.44)

(3.45)

(3.46)

(3.47)

S$?= —1to put it in that form. For instance, for the modi-
fied KdV equation
Bi= —W.N~ —*N* —4y’s

= — [§,, —65.5.5] (3.48)

and
3 _

at - [Sxxx _6(SxSxx +SxxSx)S_6SxSxSx ]’

(3.49)
which is not self-evidently the same equation as (3.41). Using
S$S. +S5.5=0,
28. S, + 85, +S,.5=0,
S8 cex + SexS +3(SxSx + 54x8:) =0,
one can, however, transform (3.50) into (3.41).
The full expression for B (S,4 ) is, for the KdV equation
BSA)= —A[S, —65.5,.S]1—A%[S,S,1+4°S.
3.51)
For the nonlinear Schrédinger equation [2 (1) =47%] ,we
have from (3.18)

(3.50)

N B ERPPROEE PPe
B, _[ LN — W 551 (.52

which leads to the equations for the Heisenberg model,

as as
— =[S8,5,,] or —=8X8S,,. 3.53
5 = [SSu] 5 = 5% (3.53)
The full expression for B (S,4 ) in this case is
BSA)=A[S.S,]—A%5=24SS, —A°S. (3.54)

(3.43) is equivalent to the expression for B given by Takta-
jan.* In fact, we have shown that all the AKNS evolution
equations that can be imbedded in SU (2) have equivalent
spin equations with a linear eigenvalue problem in the Tak-
tajan form, i.e., 4 = AS.

eigenvalue problem in the Taktajan forms i.e. 4 = AS.

We have seen that the assumption of locality in the ¥
frame leads directly to the AKNS equations, which may
then be converted to an S form. The S form may be obtained
directly by requiring the locality to hold in the S frame. That
is, we require that there exist a B (4 ) depending only on S'and
its derivatives, such that

_ a _
8 'AS, g1 = — (& 'B(A)g)).
ox

This leads immediately to (2.15) and the relations (2.18) and
(2.19) for the coefficients Bn defined in (2.17). These recur-
sion relations may be solved for the Bn. We have

Bn—1= — [S,@—’Z—] + (S'Bn —1)S.
dx

(3.55)

(3.56)

Since dBn — 1/0x has no component in the S direction, we

TABLE I. The first few elementary tangent vectors in the time direction, and their projections along the tangent in the space direction.

J B, ., SB, _;
0 S 1
1 —8,S, —-SxS, 0
2 ~ 8. — ¥S.'8,)8 —I8.'§,
3 SXS8,.. + #S,'S,)SXS, — 8§, x8,,

— (88, X8,,)8
4 : B8, 87— 18,8, — |- (55..)

ax
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have

SBn—1) o 3Bn

" -S. 3.57
Jx dx ( )

Again, it is not obvious that the right-hand side of (3.57) is in
fact a perfect derivative, but that does prove to be the case.
With By =S, we have for B, _ ,, the results shown in the

first column of Table I. In column two we give the associated
expression for ‘B, .

IV. SINE-GORDON GEOMETRY

The sine-Gordon equation is not amenable to being
cast into a spin equation by the method above as it is not an
evolution equation. We will treat it here as a special case, and
show that nevertheless, a spin equation exists, and is in fact
identical with that already obtained by Pohlmeyer. The deri-
vation will make clear the relationship between the Lie
group approach and the various geometrical interpretations
of the equation.

We begin with the linear problem for a curve of con-
stant torsion, 7 = — A, and we define the curvature as
0, (x,t). Then ¢ can be taken as real and equal to o (x,?),
and the generator of g in the space direction becomes

A=Aa, +o0.a,. “.1)

In this case, the frame of reference is identical with the Ser-
ret—Frenet frame.
If the curvature is to satisfy the sine~-Gordon equation,

o, =sing, “4.2)
then the generator in the time direction must be

B= —1/4((cos o), + (sin o)a,). 4.3)
Let us define

Sxt)=g '(xt)a,gxt), 4.4)

where we have suppressed the initial coordinate (x,,?,) in the
definition of g, and otherwise it satisfies (1.5). .S is the binor-
mal to the curve in this case, rather than the tangent.

Then we readily verify that

S =Ag 'a g, (4.5a)
S, = —(1/4)g~ Ycos oa, —sinoa,lg, (4.5b)
S, S, = —1% (4.5¢)
S,S, = —}1/43, (4.54)
S.S, +8, 8, =lcoso. (4.5¢)
Thus, for the vector S we have
S8, =42 S,S, =1/A2 S8, = —coso.
4.6)

Inasmuch as S_,S, must be perpendicular to S, the relation-
ships between the three vectors and o is as shown in Fig. 3.
We have finally, the equation of motion for .S, obtained from
(4.5a) and (4.3) or (4.5b) and (4.1),

S., =(cos o)S 4.7

or

S, +(S.'S,)S=0. (4.8)
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—>
Sy —
Sy
FIG. 3. The relationship between the spin vector and its derivatives when o
satisfies the sine—~Gordon equation.

This equation was first derived by Pohlmeyer from the La-
grangian density

y=98.95_ &8

ar ot Ox Ox
with the constraint S«S = 1. The o of his work is 7 — o of
ours.
The parameter A serves to change the lengths of S, .S, ,
and can be regarded as arising from a lorentz transformation
of the coordinates. That is, if we define x',z ' by

(4.9)

x—A "X, t—At,

(4.10)

the linear problem in the primed coordinates reduces to that
one obtains by setting A = 1 in (4.11) and (4.3). Evidently
A = 1has a special role in the problem, analogous to that for
A = Oin the case of evolution equations. As in that case also,
we can obtain the 4 # 1 case by a gauge transformation from
A=1

If we define

g(4d) = g(1)g', #11)-
then a straightforward calculation shows that

g =(1-2)[SS, ¢,

- (4.12)

g =(01-1/2)[SS, ]g,
where

S=g()"'a,g(l),

S=g 'Sy, (4.13)

S8, =85S, =1
g is the coadjoint representation in SU (2) of the elements of
O (3) denoted as R, by Pohlmeyer.

(4.12) is analogous to the linear problem of Taktajan for
the S form of the equation, for the compatibility equations
imply that

S, =A4S. (4.14)
But S‘S = 1 implies S-S, = — §,-S, and hence we have
the equation of motion (4.8) as the compatibility condition.

V. HAMILTONIAN STRUCTURE

The ¢ form of the equation we have been considering
can be written in terms of a Poisson bracket,'!'!? defined for
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two functionals of ¥ as

{A[¢},B{¢}}1=ijdx 04 6B 94 JB

ap > It I
é.1)
and a Hamiltonian Hn such that the nth equation of motion
is
dHn
., ={Hn} = —i . 5.2
b, = Hn) = i 92 (52)

The Hn are conserved quantities for all the equations that

are integrable using the linear problem associated with

(1.15). The lowest few Hn are Hn = (%% ndx, 7, = |¢|?,

I, = /2 — U, *Y), 55 = |, |2 — §|9I*. The first

two constants yield linear equations when inserted in (5.2).
Since S is a functional of ¥, we must have

as
— = {Hn,S},.
Y {Hn,S},

A straightforward calculation, using a result readily ob-

tained by functional differentiation of (1.5) using (1.15),

shows that
as (x)
Y(x")

(5.3)

= [S(x), - %N “(x’)], x>x,
=0, (5.4)

From (5.4) and its conjugate relation, using (5.2), we have
os [ f x [ L oar s
— =[S s - =N X t
% (x) . 5 =)
2N o, *ax

which from (3.7) and (3.3) is equivalent to (2.11), and is the
correct equation of motion for S.

The constants of the motion can all be expressed in
terms of spin fields. There is another Poisson bracket defined
for functionals of a spin degree of freedom from which one
typically obtains the equations of motion for spin fields in
physical applications,

x<x'.

(5.5)

04 JB
as; ds;

As we have seen, the integrand appearing in (5.5) is
actually a perfect derivative, and the integral can be ex-
pressed entirely in terms of the field S and its derivatives at x.
Remarkably, when this is done, we find that Eq. (5.5) can
also be written as

{4 {S},B{S}}, =€, Sy. (5.6)

as dH'n —2
—_— = S, _— e, 5.7
ot [ IS 7
where H'n = CnHn, Cn a constant. (5.7) is equivalent to
Js 9H'n -2
— ={H'n—-2S8),=Sx ——=_. 5.8
o { }2 X 3S (5.8)

That is, for any n > 2, we conjecture that (5.2) and (5.8) are
the equivalent pair of equations derived previously. We have
no proof of this at the moment, but show in Table II that it
holds for the first few densities. (It is well known that H,
gives the modified KdV equation, and one may check that
the equations associated with H gives the same spin equa-
tion as H ', by observing that (5.8) can also be obtained from
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TABLEIL The first few conserved densities in their 3 and S form. The spin
equation of motion are S/3t = SX(3H 'n/3S).

Hn H'n JdH'n/dS

l¢? — 18,8, S.

/D)WY — ¢ ¥*)SS, XS, SXS,.. +3S.XS§,,
it — 1. 1SS — i(5.8.Y Seeex +5(8,°8,,)SXS,

+ #8.8.)SXS,.

the By, _ ; of Table I using Eq. (2.18), and the results agree
with Table II.

Comparing Tables I and I1, we make one further con-
jecture, that the S-Bn are to within a multiplicative constant
and a divergence, the conserved densities. If true, this would
provide a simple geometric interpretation for the constants
of the motion.

VI. EXTENSIONS

Some of the results presented here have extensions to
more general settings. The requirement of locality as a
means of constructing the B operators has a natural general-
ization to other groups, and clearly generates the AKNS
equations associated with SL (2,R ). It would be interesting
to compare its predictions for SL (3,R ) with the results of the
Gel’fand-Dikii'* analysis.

The notion of strings moving in space—time clearly gen-
eralizes to that of surfaces moving in space-time, and the
problem then is to find a parametrization of the surface such
that the compatibility conditions can be fulfilled simulta-
neously. One would expect the space directions to be equiv-
alent, and the compatibility conditions for these directions
to be satisfied identically.

Since the Miura transformation maps the generalized
KdV equations onto the modified KdV equations, these also
have spin equivalents, and we suspect the Miura transforma-
tion can be given a geometrical interpretation.
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We extend global particle symmetries from the traditional group framework to that of generalized
groups. The nature of these latter are presented, and various invariants constructed for them. The
problem of gauging generalized groups is discussed and a no—go theorem proved under reasonable

conditions on the generalized group structure.

1. INTRODUCTION

Since group theory has been so useful in analyzing the
natural world it is of interest to ascertain if any more general-
ized notion than that of a group would also be of value. In
particular one can ask if it is possible that the symmetries of
elementary particles could be clarified by such a generaliza-
tion. It is our purpose in this paper to attempt to answer this
latter question in the case of generalized groups. These re-
place the requirement that the (binary) product of two ele-
ments of a group belong to the group by the condition that an
n-fold product belong to the generalized n-group. Thus for
n =3, a generalized 3-group G, is essentially a set of ele-
ments (g,, g,, -+-) such that for any g,, g,, and g, in G, the
generalized product (g,£,¢5) is also in G, (though a product
of any pair of elements need not even be defined).

Generalized groups have been considered at an abstract
level'? but we will follow our earlier work®* and consider
them in a more concrete form. In particular we will consider
problems associated with their representations and invar-
iants, and of their putative gauging. We will also restrict our
discussion solely to that of 3-groups, though much of it is
very similar for other n-groups.

One of the most important concepts in applications of
group theory is that of an infinitesimal group element. In
order for such a concept to exist it will be necessary to re-
quire the existence of an identity element e, which we define
by the condition

(e°8) = (ege) = (ge*) =g, 1.1
for any geG;. We may define the inverse g”! of g by
(geg ™) =e. (1.2)

A 3-group G; is thus defined as a set of elements with the
binary product g,, £,, 8:->(g,8,8,) in G, satisfying (1.1) and
for which all elements g in G, have an inverse g} in G, satis-
fying (1.2).

A concrete example of a 3-group is the three-dimen-
sional array g, , where , j, and k are integers (though con-
tinuous variables could be included), with 3-product one of
the four possible expressions for (g g@ g@),, (the sum-
mation convention is used)

88 gk (1.3a)
g8 .8, (1.3b)
8im8o. 8%, (1.30)
g8 8- (1.3d)
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We note that there are other possible definitions of the 3-
product besides (1.3). If we wish to keep 4, j, and & in the
appropriate places for an identity to exist these can only cor-
respond to interchanging the suffices in (1.3), so do not need
separate consideration.

It is possible to interpret the elements of the 3-group as
“vertex functions” with three external legs denoting the
three possible labels 7, j, and k in the same way that a matrix
can be represented by a two point function, as in Fig. 1. The
matrix product now becomes the Feynman diagram with
one internal line, whilst the 3-group products (1.3) can be
represented by the triangle diagram, as shown in Fig. 2. We
can see immediately from this graphical approach that the 3-
product (1.3) is nonassociative, as seen by the differences
between [ggP(ggg™)] and [(g'gPg)g“g] in Fig. 3.
This may cause difficulties in applications to particle phys-
ics, though it may alternatively be important in algebraic
confinement, as has been suggested by Giirsey and others.’
We can also reduce the problem of nonassociativity by work-
ing with infinitesimal elements.

We may consider the quantities g, as the 3-group ana-
logues of elements of GL(n,R ), and so expect to need sub-3
groups, the analogues of SO(17) or SU(n), which will preserve
quadratic scalars. These latter must also be constructed to be
positive definite in order that they have physical import.
Given such constructs we would be ready to analyze detailed
physical applications of these results. For example we could
determine if there are suitable groupings of particles to fill
irreps of suitable 3- (or higher) groups. We would then at-
tempt to gauge such n-groups, as was remarked earlier.

We start our analysis in the next section by considering
the problem of the existence of the identity defined by (1.3).
In order for this to exist for the generalized 3-group with
elements &, for 1<i, <N, wefind weneed N = 3, and then

‘_}-
(4N

(@) (b)

FIG. 1. (a) A graphical representation of the matrix g; as a propagator; (b)
A graphical representation of the 3-group element g, as a vertex function.
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Fig. 2(a) 2(v)

FIG. 2. (a) A graphical representation of the matrix product g g’ . (b) A
graphical representation of the 3-products ( g''’g'*’g*>") of (1.3), the orders of
the labels differing according to the choices (1.3a) to (1.3d).

only for the product (1.3d): Furthermore this identity is only
an infinitesimal one, in the sensé made more precise in Sec. 2.
In the following section we consider infinitesimal symmetry
operations on the n-group (the analog of the adjoint repre-
sentation) and construct a quadratic invariant; the question
of representations is also discussed in this section. In Sec. 4
we attempt to make the global symmetry into a local one, but
find that this is not possible. Possible directions for further
analysis and applications of #-groups are discussed in the
last section.

2. EXISTENCE OF AN IDENTITY

Our analysis will be carried out in this paper only for the
concrete case of the three-dimensional array of real numbers
8, With 3-product (1.3). While this is a severe limitation we
have not been able to develop detailed results for any other
case, though some of our restrictions will be expressed in a
form independent of the 3-product actually chosen.

It does not appear possible to construct an identity for
the labels /, j, and k taking more than three values. For the
only nontrivial numerical 3-index quantities available are
the Kronecker and permutant symbols €,,, &, defined to
be ( —1)” and 1 when jjk is a permutation of signature p of
1,2,3, and zero otherwise; these are only defined if 1<, j,
k<3.

Let us construct the identity e, as a linear combination
of €, and &,

2.1)

We will attempt to choose @ and b so that (1.1) is valid under
one or other of the product rules (1.3). Let us consider first
the 3-product rule (1.3a). Then (1.1) becomes

[02(61']6/'1 - sin 61]) + ab (eilm 6mjn + Emjn 6ilm)
+ b 2(smil‘smjn ] glnk’ (223)
and so we require the square bracket in (2.2) to be propor-
tional to 8,8, This is impossible, since, for example, when
i = I #j = nthebracketin (2.2) vanishes. A similar situation
arises for the 3-product (1.3b). For (1.3¢) the bracket in (2.2)
must be proportional to §,,8,, whilst for (1.3d) the bracket
becomes
[— 02(6:‘;’51" — b 51'/) + ab (€, ‘Snjm + i enjm)
+ b 26rru'16mjn]’

(2.2b)
and must again be proportional to §,,8,,. But this again can-

not in general be satisfied for any nonzero b. The only way to

ey = a€y + by
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satisfy (1.1) appears to be to take a = 1, b = 0, and also
require

8 = 8iji = 8ji = 0. 2.3)

For the choice (2.3) we have e, = €.

The 3-group product (1.3d) does not preserve (2.3). We
will therefore restrict our discussion to infinitesimal ele-
ments of form (e + g), for g satisfying (2.3), and with pro-
ducts approximated as

(e+g)le+gXe+8))=e+(@g +8+g) (24

where (g, 4 g, + &;) also satisfies (2.3). The set of such infin-
itesimals will be all that is required for our further discussion
of symmetry transformations. We say that e acts as an infini-
tesimal identity.

We conclude that there is a unique 3-product, (1.3d),
for which there exists the infinitesimal identity €, . Further-
more, this exists only for this particular 3-group. We now
need to determine if it is possible to use this infinitesimal
identity to construct symmetry transformations.

3. GENERALIZED SYMMETRIES

For any elements U, g of the 3-group we can define the
symmetry transformation of g by U in the usual manner,

g—~(UgU™. (3.1
This can be analyzed infinitesimally, for U = (e + T),
U-' = (e — T), with T satisfying (2.3), as
Sg=(UgU")—g=(Tge)— (egT). (3.2)

The rhs of (3.2) thus plays the role for our 3-group of the
commutator for a 2-group. We note that in order that

(e — T') is the inverse of (¢ + T') to Ist order in T, it is only
necessary that e act as an infinitesimal inverse, in the manner
we discussed in the previous section.

We now consider the quadratic expression (denoted by
Tr)

Trg* = gui 8- (3.3)
The variation of Tt g° is given by (3.2) and (1.3d) as

6 Trg2 = 2gijk [nlmgnjm enlk - ex'lmgnjm Tnlk ] = 0

Thus (3.3) is a positive definite quadratic, invariant under
3.2).

Fig. 3(s) 3(v)

FIG. 3. (a) A graphical representation of the 5-product

P!
(g"g' (g >g'“g>") . (b) A graphical representation of the 5-product
((glhg<2>g(3))gc4)g(5)) A
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We must also consider the problem of defining the
equivalent of the fundamental representation for a 2-group.
We see that if 1, (x) is introduced as a complex-valued field,
its transformation under U, obtained by saturating indices,
generates a companion 2-index field #,;(x). Thus we take
{¥, (X),¥.5(x)} = ¥ (x) as defining the analog of the funda-
mental representation of a 2-group, with

Yo = iT,p,Yp,, Y =iT ¢, . 3.4
We can construct the positive definite quadratic form
VY =y, + Vit (3.5)

and find that under (3.4)

6(W*W) = hp:ﬂwy(Ta/}y - Tyaﬁ) + i¢:¢ﬁy(TaBy - T/)’ya)'
This is zero provided T, is invariant under cyclic
permutations,

Topy = + Tppe = + Tyap - (3.6)

The factor /in (3.4) is essential; without it (3.6) becomes 7,5,
= — Tp,, = — T,.5, whose only solution is T .5, =0.
Thus we are forced into a complex fundamental
representation.

The set of elements T, satisfying (3.6) and the trace
condition (2.3) is a seven real-parameter subset of the 3-
group. Furthermore it acts on the 12 complex-dimensional
space ¥ by (3.4), and on the 27 real-dimensional space of g,
by (3.2). We may use the space of ¥’s to describe Dirac spin-
ors, and can write down a Lagrangian ¥¢¥ invariant under
the global transformations (3.4). We have thus constructed
the beginnings of a suitable global symmetry theory for ele-
mentary particles based on a 3-group. We propose to discuss
detailed applications of this elsewhere.

4. GAUGING THE 3-GROUP

In view of the recent great successes of gauge theories
based on the 2-group Su(3), X SU(2) X U(1) it is natural to
determine if we can allow the seven-parameter infinitesimal
set T, satisfying (2.3) and (3.6) to be space-time depen-
dent. To achieve this we would require the presence of a
gauge vector field 4, (x), with values in the 3-group, and
transforming under the local version of (3.2) as

0A, =(TA,e)—(e4,T)+ 3,T. “.1)
We will attempt to construct a field strength F,,, transform-
ing covariantly as (3.2), so that — Tr(F,, F**) defined by
(3.3) will be a satisfactory Lagrangian. Let us consider

69, A, =(T3,4,) — (ed,A4,,T)

+ (a{p TAv}e) - (eA(vap, ]T) (4'2)
We wish to add to J, 4, the analog of the commutator
bracket [4,,, 4, ] for 2-groups. This analog could be chosen
as (4,,ed,) — (A, eA,), but its variation under the last term
of (4.1) gives (9, Ted, ) — (4,ed,, T), which does not

cancel with the last two terms of (4.2) unless there are the
identities

(Ted,) = (TA,e) (4.3a)
and

(e4,T) = (4,.eT). (4.3b)
2717 J. Math. Phys., Vol. 21, No. 12, December 1980

Using (1.3d), (4.3) becomes in components
TineuimA, =TunA, e

ilm S njm < g, im0

(4.42)

and
e, A

Am T gt

T..=A, e

Him im

T - (4.4b)
The solution of (4.4a) for 4, is given by the trivial solution
A, =ewA, 4.5)

Mo

where 4, is a single vector field. This choice of generaliza-
tion of the commutator bracket is therefore unsatisfactory.
But this is also true of the other choices, being (4,4, €)

— (4,4, e), (ed,A,) — (ed, A,), or their linear combina-
tions. Similar conditions to (4.3) arise, such as

(A4,Te)=(e4,T), (4.6)

which again can only be satisfied by (4.5). We therefore con-
clude that it is not possible to obtain a satisfactory local the-

ory under the gauge transformation (4.1). The above diffi-
culty is absent for the modified transformation

64, = (Ted,) —(4,eT)+3,T, 4.7)
for which
60,4, =(Ted A, — 3,4, eT)
+(3,Ted, ) —(4,ed,T). (4.8)

The last two terms in (4.8) now agree with those arising in
(4, ed,)). Thus if we define

F,, =d,4, —(A,ed,), (4.9

then under (4.7) F,,, will transform without the inhomoge-
neous term,
OF,, = (TeF,,) — (F,eT), (4.10)
provided we have the identity
(Te(4,e4,)) — ((Ted,)ed,) + (4,e(4,eT))
—((4,,e4,)eT)
= (A4,e(Ted,)) — ((4,eT) ed,,). “.11)

Yet again, by inspection it only seems possible to satisfy
(4.11) by the trivial solution (4.5). We conclude that there is
a no-go theorem for gauging 3-groups.

5. DISCUSSION

We have only presented here the bare preliminaries of
the framework for n-groups and their applications in particle
symmetries. We have found that a sensible framework can be
constructed when the transformations are global and belong
to a particular 3-group. Undoubtedly similar results should
be possible for higher generalized groups, and the detailed
construction of such cases would be of interest. There are
also many related questions as to the definition and nature of
higher representations and the construction of alternate in-
variants. Indeed one might attempt to extend all of the stan-
dard technology for Lie groups and their associated algebras
to the generalized group setting; our results (together with
those in Ref. 4) can be regarded as a preliminary step in that
direction.

There are also numerous questions as to the possible
applications of these ideas to elementary particles. Can any
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clue be detected as to the existence of a 3-group or higher
global symmetry in the particle mass spectrum? This would
seem a difficult question to answer until a reasonable analog
of the representation theory of Lie algebras has been
developed.

One of the purposes of this paper has been constructive:
to point out the possible generalization of the idea of a parti-
cle symmetry, and to sketch its possible nature. However the
other purpose is also constructive, but involves the no-go
theorem of Sec. 4. If it is not possible to sensibly gauge the 3-
group (and, by implication, higher generalized groups) then
nature would not have used these objects to describe the
fundamental forces. Such a result supports the recent suc-
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cesses of electroweak and color gauge theories, and indicates
that there may well be few alternatives to them. At least the
alternative discussed here does not seem viable.
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Invariance conditions for gauge fields under smooth group actions are interpreted in terms of
invariant connections on principal bundles. A classification of group actions on bundles as
automorphisms projecting to an action on a base manifold with a sufficiently regular orbit
structure is given in terms of group homorphisms and a generalization of Wang’s theorem
classifying invariant connections is derived. Illustrative examples on compactified Minkowski

space are given.

In the study of gauge field equations at the classical
level a standard method of simplification involves the re-
quirement that the fields be invariant under a group of space-
time transformations.' Such a requirement leads to a reduc-
tion in the dimension of the free variables and a reduction of
the gauge freedom to those changes of gauge which preserve
the invariance condition. The specification of how the trans-
formation group acts on the fields may involve an auxiliary
gauge transformation. In local terms this gauge transforma-
tion will be determined by a function which we shall call a
transformation function, depending on the group element
and the space-time point and subject to an appropriate com-
position law. A change in gauge changes the local expression
for the transformation function to an equivalent one. Since
the form of the transformation function determines the form
of the invariance equations and thus affects the difficulty in
finding the invariant fields it is useful to have a reduction
procedure for simplifying the invariance equations. An asso-
ciated problem is determining all inequivalent transforma-
tion functions for a given transformation group. In this pa-
per we study these problems and show how to find the most
general gauge fields possessing a given symmetry using the
language and methods of fiber bundle theory. Forgics and
Manton? have studied the same problem from another point
of view. For further applications to problems in symmetry
breaking and dimensional reduction see Refs. 3-6.

Since a change of gauge can be interpreted as a change
of fiber coordinates in a fiber bundle, our first step will be to
formulate the problem in coordinate free language. So ex-
pressed, the problem of determining all inequivalent trans-
formation functions is seen to be essentially the same as de-
termining all inequivalent lifts of the transformation group
action from the base to automorphisms on the bundle. For a
homogeneous space, a known result’ reduces the problem to
a classification of group homomorphisms. For the general

“Research supported in part by the National Sciences and Engineering
Research Council of Canada.
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case, no result is known, however, provided the orbit struc-
ture is regular enough we can solve the problem under the
additional hypothesis that the gauge group is compact. The
gauge fields determine a connection on the bundle and the
symmetry problem is equivalent to the classification of G-
invariant connections. Again, for a homogeneous G space
the solution is standard and may be extended to certain more
general cases.

1.BASIC RESULTS FOR HOMOGENEOUS SPACES

Let Hbe the gauge group with Lie algebra 4, M a differ-
entiable manifold, and G a Lie transformation group acting
on M such that the map

G X M—M (g1}, (x)
is differentiable and satisfies

Jex)=x fo,(fo, X)) = foq, (x). (1)
When no confusion can arise we shall write gx for £; (x).

The gauge fields which we consider are defined on an
open covering { U, } of M by a set of £ valued 1-forms w_ on
U, related by

ws =Adk Z'o, +k p'dk,g,

where the functions k,5:U,nUp—H satisfy k,,=e, kgkp,
= k,, on U,nUgnU, . The k_; are transition functions for a
principal H bundle E over M trivial over each U, that is,
there are functions
7o Uy X H—E,

with 75 '7,:U,nUy X H—U,nU, X H, such that -
Tﬂ— lfa (x,h ) = (x’kaﬁ(x)_lh )

= (X.kgq (X) ). (2)
The right actien of the gauge group H on E is given by
R 7 {x,h)=r1,Ix,hk), for xeM; hkeH. 3)
Define a local section o, by

0. (x) = 74 (xse).

When there is no possibility of confusion we write o, (x)k for
R, 0,(x). The form w, is the pull-back under o, of a connec-
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tion form w on E. The pull-back of w under 7, is given by

(TR ) = Adh ~ Y@, ), +h "' dh, 4)
which in fact defines w.

If the open sets U, are G invariant the condition for G
invariance of the w,, up to gauge transformation is

(ffo.) = Adp,(8X) 0. ) +ps '(8X) dpa(g.x),

(5)

where the differential in p, is in the x variable. The function
p. is what we call a transformation function. The
Po:G X U—H satisfy

Pal8182%) = ol 82X) Pul 81:82%) (6)
in order to satisfy the group composition law (1) and the
compatibility condition, and

Pl 8X)kap( 8X) = kop(x) ps( 8.%) (7)
for the consistency of (5) under change of section. The func-
tions p,, define a G action on E
G XE—E (g7,(x.h)~f,7.(x.h)

=T,(gx, pa{gx)'h). (8)
[Thisis a valid G-action on E by virtue of (6) and independent
of the local trivialization 7, by virtue of (7).] Again writing
8o, (x) for £, (o, (x)),

804 (x) = 0,(8x) palgx) " (9)
The invariance condition (5) implies that the connection de-
fined in (4) satisfies

flo=o. (10)
This is the coordinate-free form of the invariance condition
which we shall study.

Before proceeding, note that if the open sets U,, over
which E is trivial cannot be chosen so that they are G invar-
iant, then given xeU,, , we must restrict the geG appearing in
Eq. (5) to those for which gxeU,, . Alternatively we can find
an infinitesimal invariance equation which can be expressed
in local coordinates as follows.

Let V(M ) be the smooth vector fields on M. Denoting by
9 the left invariant vector fields on G (identified with the Lie
algebra) define mappings:

pIVIM) p(g) =2

. exp( — 15 Jx

and

raEx) = — 2| p.(exptéx).

dt
The invariance equation in infinitesimal form becomes
L g16)0a = [ral EX)0, ] — dr,(£x), (11)

where the left hand side denotes the Lie derivative and the
differential on the right is in the x variable.
The function 7, satisfies the composition law

ro ([ Em]x) = [ro( £X)ra(7X)] + @ (€)1, (7.X)

r.:9 XM—/4

o

— @ M)ra(5:X) (12)
and the compatibility condition
Pap £X) = Adkog(x) 7' rp( £%) + K 55" dk o (13)
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The interpretation of the infinitesimal invariance con-
dition on the bundle level is as follows.® Let

P (&) om =T l@ (&) + Adh ~'r (£,x)). (14)

Equation (13) guarantees that this defines unambiguously a
vector field on E and Eq. (12) implies that #: % —¥ (M )isan
algebra homomorphism

D& =[P (£),2 ()]

One checks that (11) is equivalent to
L g0 =0. (15)

This infinitesimal form seems more general since it does not
assume the existence of a group action in finite (integrated)
form. However, if the infinitesimal action on M integrates
and if the gauge group is compact the infinitesimal action on
E given by @ integrates.

We can now formulate the problem in terms of fiber
bundles as the determination of all principal A bundles with
G action (as automorphisms) projecting to the given action
on M and all invariant connections on such bundles. Howev-
er the question posed in this form is too general since it in-
volves the topological problem of classifying all H bundles
over M. We restrict attention to the structure of the bundle
over a neighborhood of an orbit in M and begin with the
structure of £ over a single orbit.

ForxeMlet G, betheisotropy group at x and let G (x) be
the orbit through x. Assume the orbit is an imbedded sub-
manifold of M then G /G, is diffeomorphic to G (x) and the
structure of E over G (x) is determined by (see e.g. Ref. 7).

Proposition 1: There is a one-to-one corresponidence
between

(a) Equivalence class of principal H bundies E over
G /G, admitting a G action which projects to left multiplica-
tion of G on G /G, ; and

(b) Conjugacy classes of homomorphisms 4:G,—H.

Equivalence in (a) means an isomorphism of bundles
which commutes with the action of G and projects to the
identity mapping.

We shall sketch a proof in order to clarify the result and
establish notations.

Proof: Given a bundle E from one of the equivalence
classes in (a) any geG, maps the fiber E, over x = eG, into
itself. If we pick a point peE, we have

gp =pA(g),
where A:G,—H. One sees immediately that A is a homomor-
phism since the G and H actions commute and that if p is
right translated by A then A is conjugated by A. Also if
@:E—E’ is a G equivariant bundle isomorphism so that E
and E ' are equivalent, the points p and ¢ ( p) determine the
same homomorphism A.

Conversely given 4:G,—H we can construct a princi-
pal H bundle E; over G /G,. On the set G X H define an
equivalence relation

(gh)~(g8nA(8)~'h),
Let [g,h ] be the equivalence class of ( g,/ )and let E; betheset
of equivalence classes. Another notation often used for E; is
G X H. Projection on the first factor G X H—G defines a

for g,eG,.
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projection
mG X H-G /G, .
The left action of G and right action of H defined by

(81(&h))—~>(8:8:h),

((g:h )7h1)_’( gshhl)
preserve the equivalence relation and so define group actions
of Gand Hon E; . The action of Gon E, projects by 7 to left
multiplication on the coset space G /G, . The right action of
H is transitive on the fibers of 7. To verify the bundle struc-
ture, let UC G /G, be an open set on which there is a cross-
section o:U—G of G—~G /G .. Then we can define a cross-
section of E; over U by

y—loty)el

and a corresponding local trivialization

(y.h }>lolyhh].
Since G—G /G, itself has a bundle structure, there exists a
covering of G /G, by such opensets U. Having shown how to
go from (a) to (b) and (b) to (a), we show that the composite in
either order gives back the same equivalence class. If we pick
the point [e,e] in the fiber of E; over x = eG, we have for
gel,

glee] = [g.e] =[ed (g)] = [eeld (g).
Thus we recover the homomorphism A from the bundle £ .
Finally if £ is a bundle and for peE, the associated homo-
morphism is A, we define a G equivalent isomorphism:

E A= G X (;XH—"E,
[&h1—gph.
In local terms we can use this result to show how the

transformation function depends on the homomorphism A
and the section ¢ of GG /G,

glot y).el = [ go{ y).e] = [olgylolgy)~ 'go{ y).e]
= [o( gy} (o gy) ™ 'go{ p))]
= [o{ gy).elA (o gy)~ ' go(y)).
Thus

p~(&y)=4lo(gy)”" goy)) (16)
if we use the section of E,

y ——>[U(y),€]

For a given homomorphism A, the bundle E,; need not
be trivial and therefore the transformation function may not
be defined throughout the orbit. The case when it can be is
given by:

Corollary 1: The bundle E is trivial over G /G, if and
only if the homomorphism A:G, —H extends to a smooth
function A:G—H such that

A(gg)=A(g(g,), for geG, g,cG,.

Proof: If o is a section of E defined over all of G /G,,,
define A { g) by go{x) = of gx)A ( g). Conversely given A satis-
fying the hypotheses, ¢:¢G, —[ g,4 ~( g)] defines a section
of the bundle G X ; H over G /G, .

The section o satisfies

80(8G,) =884 ~'(g)]
=[g.:gA (g8 (g8 ~'(g)
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for g,,geG and so the associated transformation function is

p(8:1.8G.)=A(gA (88", £.8€C. (17)

The condition for p to be independent of its second variable,
the point in the orbit, is given by the following corollary.

Corollary 2: The following two conditions are
equivalent.

(a) The bundle E—G /G, is trivial with gauge function
p( g1,8G, ) independent of the point gG, .

(b) The homomorphism A: G, —H extends smoothly to
a homomorphism A:G—H.

Proof: Equation (17) shows that
pl81:8G,) =p(8,G.) =A(g)) ' ifand only if A is a
homomorphism.

The simplest transformation function is just the identi-
ty, the criterion for which is the folowing.

Corollary 3: The transformation function p( £,,8G, ) re-
duces to the trivial function =e if and only if it is trivial when
restricted to the isotropy group G, . That is, the image of A in
Hise.

One case in which this always occurs is when the G-
action on M is free, i.e., G, =e.

We continue with the discussion of G-invariant connec-
tions on E—G /G, . We shall give a proof of the theorem of
Wang® classifying these connections, in which we make use
of thebundle E; = G X H.

Proposition 2: Let & be the Lie algebra of G, & , the Lie
algebra of G,C G and 4 the Lie algebra of H. The G invariant
connections on the bundle E; determined by A:G,—H arein
one to one correspondence with linear mappings A4: 9 —4
satisfying the following two equations:

A(§)=4,(§), for (e¥, and A, (18a)

the homomorphism 4 :& ;—/ determined by the differen-
tial of 4.

A(Adg7')=AdA(g) "4 (£))
geGy,.

for £e% and
(18b)

Proof: Let w be a G-invariant connection on G X ¢ H,
let :G X H—~G X ; H bedefined by ¢( g,h) = [ g,h ] and let
J:G—G X Hbej(g)={g.e). Then y*w is a G-invariant con-
nection on the trivial H bundle G X H and j*y*w, its pull-
back to the base space G, is a left G-invariant 4 valued form
and thus is determined by its value at T,G which can be
identified with &. We conclude that if 6, is the left-invar-
iant Maurer—Cartan form on G then there is a linear map
A:% —4 such that

J*Y*e = A4°0, .
LetY*o = w, + w,, where w, acts on the tangents to the first
factor and w, on the tangents to the second factorin G X H. If
ne4 and 1 is the vertical vector field on G X  H generated
by R.,;, y» then w(7f) = 5 which implies w, is the Maurer—
Cartan form on £, 6,. From the equivariance condition

R*ow=Adh '
we conclude
¢*w( gh) = Adh ‘I(Aoey/ )+6,.
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Proof: The argument is very close to that in the proof of
Proposition 2 so we will omit most of the details. As in that
proof we define :G X H X§—G X ; H XS by
¥(g.h.s) = ([ gh],5) and find

Y*o(g,hs) = Adh (4,00, +pu)+6,,
where u is a one-form on S. Left G invariance shows that
there is no “‘g dependence” in the form u. The conditions
that the right-hand side define the pull-back of a form on
G X g, H XS impose in addition to Eqgs. (18a) and (18b) on
the linear mappings 4, the additional equation,

p=Adl(g) 'y,

Thus z must take values in the subalgebra of £ of elements
invariant under the adjoint action of A (G,).

for geG,,.

3.EXAMPLES

We now illustrate these results with some examples. let
M,, be compactified Minkowski space which we identify’
with U(2), let M = SU(2) X U(1) be the twofold covering and
let the gauge group H be SU(2). For the transformation
group G also equal to SU(2) consider the following actions of
G on M. Given geG = SU(2) and (x,e Y)eM = SU(2)x U(1)
define

a, (x’eiw) = (gx’ei¢)’

Bg (x’ei'/}) = (xg— l’ei'/')’

Velx,e") = (gxg™",e").
Both « and S define simple actions with special cross-sec-
tions through (x,e¥) given by @ (s) = (x,e " * ¥). The action
defined by y is not simple since there are two orbit types for
the conjugation action of SU(2) on itself. Therefore we re-

strict to the open submanifold M, = (SU(2) — { + I'})xU(1)
on which the action ¥ is simple, where

I= ((1) (1)) eSU(2).

On M,
0_ is) , e+ t))
e

oo (e

defines a special cross-section through (x,e ¥).

Since a and f commute there is a well defined action
a X B of SU(2) x SU(2) on M which we shall also consider.

Example a: The isotropy group is the identity / and
therefore the orbits are identifiable with G. By Corollary 3
the bundle structure over any orbit is trivial. By Theorem 1
the same is true over a neighborhood of an orbit and by
Theorem 2 the connection form pulled back to the base space
M under any G invariant section is given by

where 4, is a smoothly parameterized family of linear maps
Y = 5u(2)—4 = 5(2), B is a smooth S«(2) valued function
of i, and the Maurer—Cartan form 8, is regarded as de-
fined, on a neighborhood of orbits, on the first term in
M ~SU(2) X U(1). The triviality of the bundle in this case
may be proved to be global (see Ref. 1).

Example B: This is completely equivalent to the pre-
vious example with the left invariant Maurer—Cartan form
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0 replaced by the right invariant Maurer—Cartan form in
the expression for @.

(For the above two examples, the gauge group SU(2)
may be replaced by arbitrary H with algebra 4, with 4,
interpreted as any smooth family of linear maps
Ay su(2)—4.

Example a X 3: The transformation group G is
SU(2) X SU(2) and along the cross-section @{s) = (I, “) the
isotropy group is the diagonal subgroup
4 = {(g.8)lgeSUQ2)}CCG
= SU(2) X SU(2). Up to conjugacy in H = SU(2) there are
two homomorphism A:4—H

Aol g:8)=I and 1,(g.8) =¢.
These both extend to homomorphisms of G—H by choosing
the extension independent of the second factor; therefore, by
Corollary 2, there exists a section of E; and E; over the
entire orbit. The bundle E; is defined by the equivalence
relation

(81820 )~ (8185 885 k)
and E; is defined by the equivalence

(8187 )~(8:85 885 '&3h ).
The group action on both is given by

axﬁ( g:.83) [ gl»g29h ] = [ g;gl!gigﬂh ]’

where[ ] denotes an equivalence class. We can identify the
orbits with G /4 and G /4 can be identified with SU(2) by

x—{x,])4eG /4, for xeSU(2).
Define sections o, and E; and o, of E;, over an orbit by
oolx) = [x,1,I] and o,(x) = [x,I,I].
(The different notations used, distinguish between the two
definitions of equivalence.) Then
aXB, g g 0olx) = [ 81831 |
= [gixg;~ 1]
=0y(g1xg5 ")
and
AXB gy 01l¥) = [ 817,851 ]
= [gixg; ™ ".1g; ]
=0,(gix8: ") &-
If we consider E; XS and E; XS and define o, and o, by
o4x,e™) = ([x,1,I ],6").
a,(x.e") = ([x,II 1,e").

We get the same transformation equations. Write the
Maurer—Cartan form 8 as 8, + 6, corresponding to the
direct product decomposition. An invariant connection on
E, XS or E; XS pulled back to G X H XS looks like

Oy gonety = Adh 14,6, + 0;) + B, dy) + 6,

subject to compatibility with 4, or 4,. For A, the condition
(18b) implies

A,(Ad(g.8) (6, + 6,)) = 4,(0, + 6)),
which implies 4,,=0. The s«(2) valued function B, is arbi-
trary and the connection pulled back to the base by o, is just

J. Harnad, S. Shnider, L. Vinet 2722



The mapping ¥ defines a fibration of G X H over
G X ; H with G, acting on the fibers. The conditions for a
formon G X Htobethe pull-back by Y ofaformon G X o H
are first that it vanish on tangents to the fibers and second
that it be invariant under the action of G,. The tangents to
the fibers are given by differentiating in ¢ the expression
[ g exp(¢£)), A (exp{ — t£ ))h ] hence are of the form

[& —Adh ~'A,(£))ign) for £
The condition Y*w &, — Adh ~'A_ (&) = 0 implies

A(8)=4,(§).
The G, action is given by

Eral EMgn, = (ADET 6N gg 0150101
The invariance of ¥*o implies
Adl (g4 (Adg™'E)=A(£).

Since these conditions are necessary and sufficient the pro-
position is proved.

2.GENERALIZATION TO INTRASITIVE GROUP
ACTIONS

Now we study the situation when the base space M is
not a homogeneous space. The structure of the bundle over
the orbit through x is determined by a homomorphism
A.:G.—H. To put together the information over a set of
orbits we need a smooth cross section, a submanifold inter-
secting each orbit in one point. Such a cross section may not
exist even locally if the conjugacy class of isotropy group
changes from orbit to orbit.

For xeM, let G (x) be the orbit of G through x,if yeG (x)
theny = gx and G, = gG,g~"; the isotropy groups are con-
jugate. Associated to each orbit is a unique conjugacy class
which we call the type of the orbit. If the action of G on M has
just one orbit type one can often show that for all xeM there
is a smooth imbedding of an open set SCR * (k = dimM

— dimG /G,) into M ¢:S—M with ¢ (0) = x and ¢ (S ) inter-
secting each orbit in a unique point, further the isotropy
group of all the points ¢ () is the same, G, ,, = G, for all
PES. We call such a situation a simple G action and such an
imbedding a special cross section. For a simple G action we
can formulate a reasonable theorem without involved tech-
nical conditions on the orbit structure. One can best deal
with the more complicated cases involving several orbit
types individually.

Given an H bundle 7:E—M with G action projecting to
a simple G action on M, let ¢ be a special cross section and
o:S—Ebe a “section of E over ¢” that is wo{s) = @ (s). Define
A,:Gy—H by

gols) = ols\,(8), &€G, = G,

Lemma: If Gy and H are compact the section o can be
chosen so that A, is independent of 5, equal to its value at
s=0.

Proof: Let T, be a maximal torus in G, and let ¢ be an
element such that {¢"} is dense in 7;,. We shall show that
thereisasmooth function4:S'—~Hh (0) = e, withS ' D0open
in S, such that 4 (s\4, (¢ )h (s) ' is constant. Then the homo-
morphism 4 ; corresponding to the section ofs)4 (s) ' is con-
stant in S on T,
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First observe that if y is any character on H then yo4_ is
a trigonometric polynomial on 7, whose coefficients are in-
teger valued functions continuous in s, hence constant. Thus
¥°A,(t)is constant and letting y vary over all characters we
see that all A, {t) are in the same conjugacy class. Let Z be the
centralizer of A4( . What we have shown is that S is mapped
smoothly into one orbit of the conjugation action of H on
itself. That orbit is diffeomorphic to H /Z. Hence we have a
smooth map S—H /Z and composing with a local section of
H—H /Z wehave, after possibly restricting to an open subset
S§'CS, a function A:5— H such that

sV (0)h(s)™" = Aoft).

Since Gy and H are compact each is a product of a torus
and a compact semisimple group — G =A4 X Fand
H = B XK with 4,B tori and F,K compact semisimple
groups. We can assume that 4 C T, and Ty F = T, is a maxi-
mal torus in Fand that for some maximal torus 7in H, BC T
and TnK = 7, is amaximal torus in K. The restricted homo-
morphism (thatis, A, :T,—T composed on the right with the
inclusion T',— T, and on the left with projection 7—T5)

A, :T\—T, is constant in S and using the results of Dynkin'®
this shows that all the subgroups A, {F} are conjugate in K.
More precisely, the condition that A, : T,— T, is constant in s
implies that all A(F) are equivalent in every representation
of K. For all semisimple groups there are at most finitely
many conjugacy classes of semisimple subgroups of X which
are equivalent in every representation. The continuity in s of
A, implies that the conjugacy classes cannot vary with s and
therefore all the A, (F ) are conjugate. That the conjugacy can
be carried out with smooth dependence on s follows from the
existence of smooth sections of K /N {A,(F)) the coset space of
K by the normalizer of the subgroup A,(F).

Combining this lemma with Propositions 1 and 2 gives
us the following two theorems.

Theorem 1: Let M be a manifold with simple G-action
and compact isotropy groups. Let E be a principal H bundle
with G-action projecting on the G-action on M. Assume H is
compact. Let ¢:S—M be a special cross-section through
xeM and U = G-@ (S)C M. Then there is an isomorphism

E|,=E; XS, for some A:G,—H.

This theorem together with Proposition 1 and its corollaries
completely analyzes the structure of a bundle with G action
over the neighborhood of an orbit in space with a simple G
action.

Proof: Let ¢:S—M be a special cross-section and ¢ a
section of E over @ such that the homomorphism A, is inde-
pendent of s. Then define a mapping

.f:E/lo XS—E|,,
f([gsh ],S) =g0'(s)h

It is immediate to check that this is a G equivariant
isomorphism.

Theorem 2: The G invariant connections on E, X .S are
determined by

(i) A family of linear maps 4, : ¥ —»/4 depending smooth-
ly on s and satisfying (18a) and (18b).

(ii} A one-form z on S with values in the subalgebra of 4
of elements invariant under the adjoint action of Ao(G,).
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B, dy. For A, the condition that B, takes values in the Ad-
invariants of the image of A, implies B, =0. The remaining
conditions are (18a)

A.p(Ad( 8860, +6)) = Adg‘lA,,,(Hl + 6,),
which implies

A|l,(ol + 62) = ad’gl + b¢62
for a,,b, scalar function of ¢ and the right-hand side inter-
preted as taking values in su(2). By condition 18b, for £esu(2),

A6+ 08, —&)=A, (8 —8)=6,
thus @, — b, = 1. The connection pulled back to the base is
5 = a'pel.

Example y: This is an example which, in view of the
orbit structure in M, goes beyond the scope of Theorems 1
and 2. We therefore begin by considering only the dense
submanifold M.

Using the special cross section defined for 0 < s <7 and
O<t <27

@lst)= ((e (34),e"), we find
0 e 5

- (g 2 s

For peM, and q in the fiber of E over p define 4,:G,—H by

Ved = 9A,(8),
where y is the action on E. The homomorphism A . is conju-
gate to some u,, :Gy—H, neZ, defined by

(ei: 0 ) _ (eins O )
l‘" 0 e—i: - 0 e—ins

hence, by continuity, the integer n characterizing the homo-
morphism of the isotropy group into the gauge group is inde-
pendent of p. There exists an extension of 4, to A, . :G—H if
and only if n( p) = 0 or 1. Suppose the bundle E over M,
extends to K over M and the G action on E extends to an
action on E projecting to the y action on M. We can find a
section o of E near p(i) = (I,e ) and since the isotropy group
at p(¢) is SU(2) we have a homomorphism A4 ,:SU(2)—>8U(2).
Restricted to G,

eis 0 ein[w)s 0
Ay (0 e”'s) - ( 0 e"'"“”’")

where n()=1 or n(¢)==0.

2724 J. Math. Phys.,, Vol. 21, No. 12, December 1980

By continuity the first case implies #( p)=1 for peM,
and the second case implies n{ p)=0. In either case the ho-
momorphism A extends to i_q :G—H and we conclude that
the transformation function can be chosen independent of
the pointin M. This implies that we can choose the transfor-
mation function to be either

Pol &:y)=I1eSU(2),

pilgy) =g~ 'eSU().
The invariant connections corresponding to these transfor-
mation functions may be determined through Theorem 2 or
by applying the theory of orthogonal invariants directly in
the base space. The pull-backs w, and o, of the generic invar-
iant connections corresponding to p, and p, respectively
may be expressed as:

wy=Mds+ Ndt
and
w, = Adt + Bo + C[Uw] + D (Uw)U,

where M, N are s«(2)-algebra valued functions and 4,B,C,D
scalar functions depending on the invariants s and ¢ only, U'is
an s«(2)-valued function on M defined in the standard anti
Hermitian representation’ by

U(x,e ¥} = (x —} Trx),

and w is the Maurer—Cartan form in the first factor under the
identification M ~SU(2) X U(1).
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The matrix elements of the translation operator with respect to a complete orthonormal basis set
of the Hilbert space L,(R?) are given in closed form as functions of the displacement vector. The
basis functions are composed of an exponential, a Laguerre polynomial, and a regular solid
spherical harmonic. With this formalism, a function which is defined with respect to a certain
origin, can be “shifted”, i.e., expressed in terms of given functions which are defined with respect
to another origin. In this paper we also demonstrate the feasibility of this method by applying it to
problems that are of special interest in the theory of the electronic structure of molecules and
solids. We present new one-center expansions for some exponential-type functions (ETF’s),and a
closed-form expression for a multicenter integral over ETF’s is given and numerically tested.

1. INTRODUCTION

The problem of how to perform spatial transforma-
tions, i.e. rotations and translations, of physical fields often
arises in various branches of theoretical physics. A useful
concept for the mathematical treatment of such transforma-
tions has been the introduction of operators which establish
amapping of a given function onto a new function: The oper-
ator maps the function which represents a given field onto
the function which represents the transformed physical
field. This concept is especially valuable if the functions,
which describe the physical field, are subject to the condition
of being elements of certain Hilbert spaces, because in this
case, the translation and rotation operators often cause uni-
tary transformations of the appropriate function spaces.

For rotational transformations this method has been
used successfully in connection with the theory of angular
momentum. The well-known results provide an easy possi-
bility to rotate a physical field if its angular dependence can
be represented by an element of the Hilbert space L,(f2 ).}
This function space contains all square-summable functions,
which are defined on the surface of a sphere in the three-
dimensional Euclidian space.

Translational transformations can be described by a
mapping of a function f; which represents the original field,
onto a function F, which represents the shifted field. The
mapping of fonto F can be formulated with the help of the
translation operator .7 y defined by 7 x: f>For

T oflt)=fr —R)=F(r). (1.1)

We consider the case when the function fis an element
of the Hilbert space L,(R>), which is of special importance in
quantum mechanics. If fis an element of L,(R?) the function
Fis also an element of this space, and the translation opera-
tor causes a unitary transformation of the space L,(R?)
which is closely connected to the Fourier~Plancherel trans-
formation.” This connection is usually utilized to represent
the translation operator by an integral-operator which pro-
vides the possibility to shift a physical field by applying two
successive Fourier transformations to the function which re-

*Author to whom correspondence should be directed.
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presents the original field. However, this method has severe
drawbacks. For instance, when applied to the difficult multi-
center integral problem which plays an important role in the
theory of the electronic structure of molecules and solids,” it
has led to rather impractical results, although the calcula-
tions have been performed in a very sophisticated manner.*
In this paper we want to present an alternative method
for the treatment of translational transformations of phys-
ical fields which are represented by functions of the space
L,(R?). Because the translation operator is unitary, it is pos-
sible to represent it completely by its matrix, if the matrix
elements are defined with respect to a complete and ortho-
normal basis set of the space L,(R>).” Since this Hilbert space
is separable, only a countable set of matrix elements is need-
ed for the representation. In practical calculations, a set of
matrix elements can usually be handled rather easily by
methods established in linear algebra. Therefore, a represen-
tation of an opertor in terms of matrix elements is often more
practical than the representation by means of an integral
operator, which can lead to serious analytical and numerical
difficulties. The method of transforming functions with the
help of a matrix representation of the translation operator
has the further advantage that the basis functions, which are
required, can be chosen properly according to the nature of
the problems under consideration. This is rather important
because the choice of the basis set will determine the rate of
convergence of the resulting series expansions. As a com-
plete and orthonormal basis set, we have chosen a set that
consists of functions which are the product of an exponen-
tial, a Laguerre polynomial, and a regular solid spherical
harmonic. The choice of spherical harmonics for the de-
scription of the angular part of the basis set functions offers
the possibility to perform at once, if necessary, a rotational
transformation of the field with the help of the well-known
rotation matrix,® before the translation is considered. Utiliz-
ing results for the convolution of exponential-type functions
which we derived recently,” we are able to find the complete
matrix representation of the translation operator with re-
spect to the chosen basis set in a rather compact analytical
form. Applying this method to the problem of finding one-
center expansions of given functions, we also derive new ad-
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dition theorems for “reduced Bessel-"’, Laguerre—, and
Slater-type functions which have some striking advantages
compared to results which have been given in the literature

so far.
2. REALIZATIONS OF THE TRANSLATION OPERATOR

A given scalar field in three-dimensional space may
mathematically be represented by a function f(r) which is
defined with respect to a certain coordinate system; the func-
tional form of f depends on the choice of this coordinate
system. If the field is subject to a translation (without rota-
tion) defined by a displacement vector R, then the field is
mathematically represented by a new function F (r} which is
defined with respect to the same coordinate system. Hence,
the “new function” F has the same value at the point defined
by the local vector r as the “old function” fhas at the point
defined by the local vector (r — R), i.e.,

f(xr —R)=F(r). (2.1a)
As this equality holds for any point in three-dimensional
space, the relationship Eq. (2.1a) is an identity among the
values of the functions, which is valid for each point. If the
new function fis described with the help of an operator 7 4,
where .7y changes finto F, the functional relationship be-
tween f and F, which corresponds to Eq. (2.1a), is given by

T f@ =F(@). (2.1b)

In Eq. (2.1b), the functions do not depend on the dis-
placement vector R any more, as they did in Eq. (2.1a): Now,
the dependence upon R is put into the 7 operator only. If f
can be expanded into a three-dimensional Taylor series the
translation operator .7 g can be represented by the differen-
tial operator.7 i = exp( — R+d /dr). For quantum mechani-
cal investigations, it is often sufficient to consider 7" as an
operator that operates on such functions f as are elements of
certain Hilbert spaces. Then, the relationships Eqgs. (2.1a,b),
whlch are pointwise valid, can be replaced by the equation

Trlf)=|F). 22
For a given Dirac—ket | /), theket |F) willdependonRasa
parameter. In order to analyze this dependence, the operator
. r has to be specified in a way which exhibits its R depen-
dence in explicit form. If this is done, it will be possible to
execute analytical calculations with the help of 7.

A well-known realization of the translation operator
7 r, which can be used for the shifting of functions that are
elements of the Hilbert space L,(V'), is the matrix representa-
tion of .7 5 with respect to a basis of plane wave functions
|k) = V-2 exp(iker), where k = 27(n,/a, n,/b, ny/c) and

= a+bec specifies a normalization volume:

Tu =3 I KT alk) (K]
_2 ke~ R (k|.

Here it is assumed that every function which is an element of
L,(V) is extended to a function defined in the whole three-
dimensional space R® by periodic continuation.

The situation becomes more complicated if one consid-
ers the translation operator acting on the space L,(R’), be-
cause then it is no longer possible to decompose the space
into a denumerable direct sum of invariant subspaces.® A
realization which is formally similar to Eq. (2.3) can be ob-
tained with the help of the Fourier-Plancherel transforma-

(2.3)
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tion given by
F®) =% f@x)=(Qm) ¥ 2fa’r exp( — iker)f (r), (2.4)

utilizing a Fourier integral operator % . Because % defines a
unitary transformation due to Plancherel,? it is possible to
obtain a representation of 7, from the unitary equivalent
operator .7  defined by 7  f(k) = F (k). Because .7 g

= exp{ — /k*R) it follows that

To=UT g% = (2#)_3Jdkexp(tk-r)

X exp{ — z'k-R)-Jdr' exp( — iker’). (2.5)

This realization of the translation operator via Fourier inte-
grals, however, often leads to serious integration problems if
the integrals are to be evaluated for practical purposes.

In this article we present a new analytical realization of
the translation operator in L,(R*) by means of its matrix
elements. The details of the results and the derivations will
be given in Sec. 4. Now we discuss some more general
aspects.

The translation operator J g Is unitary if it acts on the
space L,(R?). Therefore, .7 g is also a linear and bounded
operator, and the following realization of the operator must
be possible®:

=3 3 18.) (8., [T =ld.,) (4.1 (2.6)

As expansion basis {¢, }, any complete orthonormal set of
L,(R?) can be used. As the space L,(R?) cannot be decom-
posed into a direct sum of translationally invariant sub-
spaces, no basis set {¢, } exists which would reduce the ma-
trix to block-diagonal form. However, this disadvantage will
often be compensated by the possibility to use methods of
linear algebra when the representation as it is given by Eq.
(2.6) is applied. In Eq. (2.6) the R—dependence of .7  is ex-
pressed completely by a set of matrix elements

(va )n,,nl = <¢n, |7R l¢n, )' (273)

Each matrix element can be considered as a function S of R,
ie.,

S, (R). (2.7b)

The determination of these functions is essential for the ap-
plicability of Eq. (2.6).

A rather general method to obtain formal expressions
for these functions is provided by the Fourier transform con-
volutlon theorem, which states that the Fourier transforms
¢,, and ¢,, are related by

S (k) = 27) %4, (K)6,,, (K. (2.8)

This relationship converts the matrix elements given by Eq.
(2.7a), which are in fact two-centric convolution integrals,
into one-centric Fourier integrals

Sn,,n,(R) = (‘7_]! )n,,n,
= Jd ke**d, (k)D, (k). (2.9)

(j-R )n,,nz =

"l ny?

This equation can also be obtained if in Eq. (2.7a) the opera-
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tor .7 g is substituted according to Eq. (2.5).

Another rather general method is the procedure that
one tries to find the function S (R) as a series in terms of
functions of R which constitute an orthonormal set. If one
chooses the original functions #,,, one obtains the formal
expansion

Sn,,n, (R) = Zc:"nz¢v (R (2' 10)

Such an expansion is always possible if the product ¢,, ¢$,,z of
the Fourier transforms ¢,, and ¢,, is an element of LZ(R3)
Then, S as given by Eq. (2.8), and, therefore, also § must be
elements of this space. In this case, the series expansion as
given by Eq. (2.10) is at least convergent in the mean, and the
expansion coefficients are given by the integrals

e = (274, 16,18, )5
as can be seen with the help of Eq. (2.9).

From Planchere!l’s theorem it is clear that the expan-
sion coefficients (4, ]gﬁ_,,‘ |q;,,z) are integrals over three or-
thogonal functions. This sort of integral is often hard to
evaluate. Only a few special results are available even if the
functions ¢, consist of classical orthogonal polynomials
multiplied by appropriate weight functions.'® The same is
true for the kind of integrals given by Eq. (2.9). Therefore, it
will often only be possible to evaluate the matrix elements of
the translation operator with respect to a given basis set if
specific mathematical relationships are available which
make it possible to avoid the rather general but complex
integral representations given by Eqgs. (2.9) and (2.11).

An explicit matrix realization of the translation opera-
tor requires the choice of a basis set. Obviously, if the matrix
representation of the translation operator is used for the
translational transformation of a given function, the rate of
convergence of the resulting series expansion will depend on
the choice of the basis functions which are used. We will
consider the case when the functions of the complete and
orthonormal basis set consist of the product of an exponen-
tial, a Laguerre polynomial, and a regular solid spherical
harmonic. It is to be expected that the representation of the
translation operator with respect to this set of exponential-
type functions (ETF’s) will lead to rapidly convergent series,
if it is used for the shifting of fields which are described by
exponentially declining or similar “strongly localized” func-
tions, because then the main character of the original func-
tion is preserved by the basis functions. Therefore, the choice
of ETF’s as basis functions for the matrix representation of
the translation operator should be especially appropriate for
applications to problems in which ETF’s are to be trans-
formed, as it is the case in the context of various fields of
theoretical physics, as especially in atomic, molecular, and
solid-state theory.

3. ORTHOGONAL AND NONORTHOGONAL BASIS
SETS OF EXPONENTIALLY DECLINING FUNCTIONS

In this section, different orthogonal and nonorthogonal
exponentially declining basis functions will be defined for
later use. For the different classes of ETF’s studied here, new
relationships will be given which make it possible to trans-

(2.11)
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form a given type of ETF into another type of ETF. These
relationships enhance the applicability of ETF’s, and they
also make it possible to transform the formulas given in the
present paper into formulas which hold for those ETF’s
which are not used in this article.

As an exponential-type function (ETF) we denote a
function of the form

¢nl(r)‘e pn(r)@l (l'), (3 l)
wherep,, (r)is an arbitrary polynomial of order #. The regular
solid spherical harmonic % [(r) stands for the product
£Y (6, ), where for the surface spherical harmonic Y 7" the
definition of Condon and Shortley is used.! The function
sets considered in the following differ from each other only
by the choice of the polynomial part p,, (r); each choice of a
certain kind of polynomial p,, (r) leads to a certain set of
ETF’s. The various sets obtained in this way exhibit different
properties as far as orthogonality and completeness is
concerned.

Well-known ETF’s of the type defined by Eq. (3.1)
are the bound-state wave functions of the electron in the
hydrogen atom. These functions are orthogonal but do not
form a complete set of functions in L,(R?). A complete set
can be obtained only if the Coulomb functions which belong
to the continuous spectrum are included.’? However, these
functions are not of the form Eq. (3.1). Therefore, the solu-
tions of the one-center-one-electron Coulomb problem do
not form a countable exponential-type basis set and, there-
fore, the “‘basis” consisting of all hydrogen functions (includ-
ing the continuum) is not suitable for our purposes.

A well established exponential-type function set is
given by the system of (unnormalized) Slater-type functions
(STF’s) which are defined by

Yholar)=(an® e~ Y H102,) (3.2)

These functxons are a complete but not orthogonal basis
set for the space L,(R?)."® Slater-type functions (or Slater—
type orbitals, STO’s) are widely used in atomic, molecular,
and solid-state theory.

Investigating the integral and convolutional as well as
the transformational properties of Slater-type functions and
their applicablity in electronic structure calculations,”'* we
have recently introduced the so-called B functions'® which

have some remarkable advantages over other kinds of
ETF’s:

BY (ar)=ky_ (@ Mar)[(2N + 2L )] ), (3.3a)
Ién_x/z(’) =r-le”" 3 _____~__(2N-—p—l)! 2P Mpp
p=1(p— 1N —p)!
(2/1r)1/2’JV l/ZKN 1/2(’.) (3 3b)

Here, k, is the so-called reduced Bessel function”'4 (RBF),

which is closely related to the modified Bessel function of the
second kind X, .'® These B functions are closely connected

with Slater—type functions, and can like these be used for the
calculation of properties of small molecules.'” The set of all
B functions with different n,/,m is complete but not orthogo-
nal. The completeness follows from the fact that the basis set
of B functions can be obtained from the basis set of Slater—

type functlons by a linear transformation with a triangular
matrix.'
Another set of ETF’s which is a complete and also or-

thogonal basis set for L,(R?) is given by the Laguerre func-
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tions A %; which we define by the equation

mlar) = A (nl )L+ (2arie ¥ 7(2ar). (3.4a)
The normalization factor is given by
Nnd)=222[n -1 - )W/(n+1 + )]V (3.4b)
For the Laguerre polynomial we use the definition'®
a n m(n+a)xm
Letw) = 3 (-1 ((rax 0.3

Functions of this kind have also successfully been used in
electronic structure calculations.'® For our purposes the A
functions are especially useful because it is possible to ex-
press the unit operator in L,(R?) as

z [ANL) (ANl =1

N,L.M
The decomposition of the unit operator with respect to a
complete basis set that consists of functions which are not
orthogonal is usually much more complicated. This is the
reason why we used the set of A functions for the expansion
of the translation operator in Sec. 4. It is important, howev-
er, to be able to change from one basis set to another one.
Therefore, we are now going to derive the necessary trans-
formation formulas which relate the Slater-type, B, and A
functions to each other.

The formulas describing the transformation of Slater—
type functions into B functions and the inverse transforma-
tion read**

(3.6)

o S [N AT AN = LR AL 4 p) g
Hiie ) ',,=,§n:m(,,)[ (20 — N+ L)(2N — 2L — 2p)! Barlrl}
{3.7a)
. _ (N—L)/2 for N— L even
min(p) = {(N—L+ 12 for N—L odd’ 70

BY.Ir)= [(2N+2L)"]’1
(2N p— 1=~
Z )(N p)' Xp+LL

(r). (3.8)

The transformation of A functions into Slater—type
functions can be obtained directly by representing the La-
guerre polynomial in terms of powers of r according to Eq.
(3.5), leading to

ARl = /V(N,L)N‘f (= 2725(pY) "
N+L+1 Y ,
X _L_p__ 1)Xp+L+l,L(r)- (39)

Because any power of 7 can be expressed in terms of Laguerre
polynomials L *(r),*® we obtain immediately for the inverse
relationship

= W—L-12-* 3 (=17
p=0
N+L+1 ) B
X N + L +1,L
—L—_1—p (p )

X A :’+ L (@
(3.10)
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The expansion of B functions in terms of A functions
can be obtained by starting from the interesting relationship
I€n+1/2(r)=(-—2)‘"n!e*'L(,,‘2""‘(2r), (3.11)

which follows from a comparison of the definitions of the k
functions with the Laguerre functions. Then, with the help
of the relationship*®

L [:)(x) = i .(.‘_I_B_)_
. m=0 m

the k function can be expressed as a linear combination of

Laguerre polynomials with arbitrary upper index times an

exponential function according to

busial)=(~2-me= 3 (—ar(
m=0

X L82r). (3.13)

Setting 8 = 2L + 2 and multiplying Eq. (3.13) by a regular

L®  (x), (3.12)

2n+1+B)

n—m

solid spherical harmonic #¥, we find
N!
BY, )= ————— — 1”7
arelr)= (2N+2L+2),,>;< 1
2N+2L+3) .
x( N—p A~ Hp+L+1,L)

X A L), (3.14)

In order to express A by B functions, which results in
the inversion of the transformation Eq. (3.14), we start from
the relationship
x e *L '“(2x)

—2rn+a+t+1) ¢

= ( LA ) ki 1/2(%),

Eotln—t)Wa+2e+ 1)

(3.15)

which can be obtained as follows: In the Laguerre polynomi-
al Eq. (3.5) given in terms of powers of x, with the help of Eq.
(3.7) the various terms of the form x*e ~ *, which occur, are_
expressed by reduced Bessel functions K. If we collect the &
functions with equal index, we obtain a linear combination
of k functions, where the coefficients are given as finite sums.
These sums can be expressed in closed form by Vander-
monde’s theorem,?! yielding Eq. (3.15). Now, making use of
the recursion relation®

LT (x)=(@m+a+DLPE) -+ DL, ),
(3.16)
the factor x ~ ' in formula Eq. (3.15) can be eliminated, lead-

ing to?
e~ *L @ (2x) = (2n +a+1)
(— 2)’F(n+a+t+l)
ot n— )M (a +2t+2)

f+l/2( )

3.17)
For a = 21 +2 we finally obtain the relationship which en-
ables us to transform A functions into B functions:

N
A %L(r) = 2 b ?LLB{W- LL (),

t=L+1

(3.182)
with
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= (=1 "2 N+ )
X[ =L =DV —t M2 +DU]1 QN+ 1)
X N (N,L). (3.18b)

4. MATRIX ELEMENTS OF THE TRANSLATION
OPERATOR

The matrix representation of the translation operator
T g in terms of a general expansion basis { @, } was intro-
duced by Eq. {2.6). Now, as a specific expansion basis we
choose the A basis, which consists of all A 3/, functions as
given by Egs. (3.4a,b). Then, in Dirac’s notation the matrix
representation of .7 can be written as**

2 % i".'z.. ‘*7- IA N,L,> (A NL,|

NIM, NTM,
(4.1)

The applicability of this expansion to practical problems de-
pends strongly on the efficient calculation of the coefficients

(j—n)fv{,'irfv,l,, ={(AY¥ NL, | T w|A N N,L, (4.2)

that occur in the expansion. In this section we will show that
with the chosen basis it is possible to obtain very compact
analytical formulas for these matrix elements which are well
suited for practical applications. In Sec. 4A we will list the
main results. The derivation of these formulas will be given
in Sec. 4B.

T r=

A. Results

The matrix elements of the translation operator .7  are
three-dimensional convolution products, i.e., overlap inte-
grals, of the A functions according to

(T, = f dr A (T A Y (1)

= f dr Ay (AN, (r—R).

These matrix elements can be expressed as linear combina-
tions of functions A ), (R) which depend on the displacement
vector R. By doing so, the following simple analytical ex-
pression is obtained:

(4.3)

(7w )?v[.il,vffsz, = Z(\LzleLlMl‘lm>
7
max(n)
x SU paEsEg R (4.40)
n = min(n)
min{n) = max(/ + L|N, — N,| — 1),
max(n)=N,+ N, +1, m=M,—M, (4.4b)

The important conditions Eq. (4.4b) and Eq. (4.4¢) are
very similar to the triangular condition for the Gaunt coeffi-
cient®® (L,M,|L M ,|Im) which limits the / summation to
the range

1Ly — Ly|<I<L, + L,. (4.4d)
The range of the summation index n in Eq. (4.4a) is given by
max(n) — min(n). This range, i.e., the number of A 7, func-
tions that occur in the summation, is strictly limited. The

lower limit of n increases if the upper limit increases. In
many cases, therefore, the number of terms in the summa-
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tion will not increase considerably if the indices N,,L,,N,,L,
are raised. As can be seen from examples discussed in Sec.
5B, this fact improves considerably the practical applicabil-
ity of the formulas.

The coefficients 7' Ji+*+ in the expansion Eq. (4.4a)
fulfill the following useful symmetry relations:

T NIV — ()T MLl {4.5a)
T ML — TN;L;"I, (4.5b)
T = (= 1T (50

For the coefficients T 21“™:*+ we first give integral re-
presentations. The coefficients T'23“+"+*: can be represented
by a double convolution integral

(L, M,|L,M, ILW3>TNL ks

= [ar A%t dRANE RIA L0~ R

It is also possible to obtain the coefficients as a one-dimen-
sional integral over the product of three Jacobi polynomi-
als?® P{2P)(x):

N,L N, L, _
Ty =(—

(4.6)

1)25¢(N,,Ly)c(NobLo)e(N3,Ls)

)0 + 7/2P Slv.l + 3/2,Ll. + 1/2)(x)

xf dx (1 +x)°tV%1 —x
XPl+ 22T AP e X A x) (4.7a)
with
C(N,L ) — 2N—L— 172
XN +L+ 1N~ L —1)]"%/(2N — 1)1, (4.7b)
=(L,+L,+Ly)/2, AL, =(L,+L,—L,)/2. (4.7¢c)

The last integral can be transformed into a simple linear
combination of integrals over three Gegenbauer polynomi-
als?” C¥Y(x):

Tapt = 20 B L ILLI) — 125

1
X X VidNLL )y, (N,Lo)

ijk =0 .
X ¥ic(N3,Ls) dx (1—x?7+172
XCl fL”_.(x)C'L’“' AECR L kix),
(4.82)
with
(N+L+ WAL fori=1
(NL)= l . (4
HiNL) WN—LWWL) fori=o *30

These formulas are related to Eq. (2.11). For some special
values of the parameters, the formulas Egs. (4.7) and (4.8)
reduce to integrals for which closed form expressions can be
found in standard tables. For the general case, however,
these integrals seem to be unknown.

Secondly we have found explicit formulas which ex-
press the general coefficients 7" 2" that occur in the se-
ries expansion Eq. (4.4), as finite sums. An explicit formula
for the coefficients is the following finite triple sum:
TN = 4 — 13020 + 1M > bbb lap ok

51225
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- n
v (2t, +2t, +2t; — 20 + 1)..] , (4.9)

(2t + 21, + 2t, + 41
L, + 1<, <N, i=123. (4.9b)

This expression exhibits the symmetry properties as stated in
Eqgs. (4.5a)—4.5c). It may be applied to the numerical calcula-
tion of the coefficients if the “quantum numbers™ N, N,, N,
are not too high.

If the “quantum numbers” Ny, N,, N, are arranged ac-
cording to the condition

N;>N,N, (4.10a)

which is always possible with the help of Eqgs. (4.5a)-(4.5¢),
then it is possible to express the nonvanishing coefficients
T 3:5:""= by the following formula
Tx;ﬁ;NZLz — 7T( _ 1)L‘ + N, — 1‘/1/'— ](N3,L3)2 — Ny+3
AN, 3
x L3 oy,
7, =mmn{t,) L1, = min{s,)

(6, + Ny — L, — 1)1(2t, + 2N + 1) ]

(t, + 2N5 + 12!

max(p)

AL
X {F;n(m(— 1)"( ps)bgyzfg,vﬁmp},

X

{4.100)
where we have put
AN, =N, +N,+ N, + 1, (4.10c)
ALy=(L,+ L, L,)/2. (4.104)
The summation limits are given by
min(t,) = max(0, AN, — N, + L, + 1 — AL,)  (4.10¢)
min(t,) = max(0,L, + 1 + ¢, — N)), (4.10f)
min{ p) = max(0,AN, — N, + L, + 1 —1¢)), (4.10g)
max( p) = min(AL;,AN, — t,). (4.10h)

The coefficients b - are defined by Eq. (3.18b). The summa-
tions on the r.h.s. of Eq. (4.10b) contain only a very limited
number of terms due to the values of the upper and lower
limits. Therefore, this expression Eq. (4.10) is well suited for
numerical calculations.

B. Derivations
The formulas given above can be derived as follows. In
the first place, we consider the integral
IR ® = [deA L e "
Xpn,(Ir —RDZ (r — R), 4.11)

where p,, stands for an arbitrary polynomial of degree N,.
For the evaluation of this integral, we make use of the convo-
lution theorem of B functions which we have derived
recently?®:

fder,i_ ®BY¥, (r—R)
=4 3 (L,M,|L M, |Im)(— Dt
T
t A m
X Z(—l) (II)BN' + N+ L, +L37t~1+l.l(R)'
4.12)
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The B ¥, functions as defined by Eq. (3.3) consist of a
product of a polynomial of degree N —1, an exponential,
and a solid spherical harmonic. Therefore, it must be possi-
ble to express the integral Eq. (4.11) as a linear combination
of convolution products of B functions. Inspection of the
degree of the powers of R, which ciccur in the convolution
theorem Eq. (4.12), leads to the conclusion that the follow-
ing finite series expansion for the integral I 3 % (R) of Eq.
(4.11) must be valid:

IS5 R) = T (LM,|L,M,|Im)
Ji

max{1)

X 2 ENMENLA T (R), (4.13a)
v = min(y)
with
min(v)=1 + 1, max(v)=N, +N,+L,+ 2.

(4.13b)

Because the A functions form an orthonormal set, the coeffi-
cients £ in Eq. (4.13) are given by the integrals

(L.M,|L M, |Im) §§}L‘N’L’
= [arAzRIEL®)

=(- 1)szdr Ani (V% (r). (4.14)
IfI!% (r)in Eq. (4.14) is expressed according to Eq. (4.13), we
obtain

(L,M,|L\M,|im) & {Z'IL'NZL'

= ; (LoMo|Im|Ap) (— 1)

VPR v
Vi
X 2 Saa 0nn,OuL,

n=0
if we make use again of the orthogonality relation of the A
functions. It can be seen from the expression Eq. (4.15) that
the expansion coefficients have the following two interesting
properties: In the first place, £ """ must vanish for all v
which are smaller than

min(v) = max(/ + 1, N, — N, — L, — 2). (4.16)

Therefore, the lower limit of the summation index v in Eq.
(4.13a), originally assumed tobe! + 1asgivenby Eq.(4.13b),
is in fact given by min(v) as defined by Ex;. (4.16), which
reduces the number of terms in the series expansion signifi-
cantly. In the second place, the following symmetry relation
must be valid:

(4.15)

CII.L.N;Lz — ( — 1)’“2 § vNI‘AI’zle

(4.17)

The relationships derived above are correct for arbi-
trary polynomials p(r) as they are introduced in Eq. (4.11).
If we now choose polynomials to be appropriate Laguerre
polynomials,

Py, 1 ()= AN L)L 202 (2025, (4.18)
the integrals defined by Eq. (4.11) become idientical with the
matrix elements of the translation operator, i.e.,

(T RN, = I N5, 1,1 (R). (4.19)

Therefore, the results given by Eqs. (4.4)—(4.6) are special
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cases of the formulas derived in this Sec. 4B.

Having considered some general properties of the finite
series expansion Eq. (4.4}, we are now in the position to de-
rive explicit expressions for the summation coefficients T
which occur in Eq. (4.4). In this derivation, the integral over
A functions as given by Eq. (4.6), which represents the T’
coefficient, will be evaluated with the help of the convolution
theorem of B functions as given by Eq. (4.12). After express-
ing the A functions in terms of B functions by utilizing the
relationship Eq. (3.18) and performing the integration over r
with the help of the convolution theorem Eq. (4.12), we
obtain

(L,M,|LM,|L:M;) T Z;ﬁ;”’L’
= 47 2 bt’tlﬂb Zzbe 2’3‘-3

iyl

X(— 1) 2 (LMoL M\ |Im)

x;(—u'( ) [ari,, m
X BZ’+,2_1_,,,(R). (4.20)

The remaining integration over R can be performed with the
help of the formula

f dRBY%] RB%:. (R)

(2L + 1NN, + 2N, + 2L, — 1)t
(2N, + 2N, + 4L, + 2)!

— YL,L, M M,

(4.21)

which we have derived recently.?® If this value of the integral
over the product of the two B functions is inserted into Eq.
(4.20), it turns out that the summation over ¢ can be ex-
pressed by the hypergeometric function ,F, with unit argu-
ment which is given by Gauss’ formula3®:

Flabel)=Iielc—a—b)/[c—a) (c—b)).
(4.22)

For the T coefficients introduced in Eq. (4.4) we thus finally
obtain the following expression:

Tx;f;NZLz — 4( _ I)ALF [0, + 3/2]
X Z thlle ﬁVszb varLJ
L, +t,+1t+3)
with
L, + 1<t,<N,, i=1.23. (4.23b)

This expression is identical with Eq. (4.9b). The number of
terms in the summation is proportional to

(Ny —L; — 1)(N, — L, — 1)(Ny — L, — 1). Therefore, this
formula [Eq. (4.23) for the T coefficients] should preferably
be used numerically for relatively small numbers

v, —L; - 1).

The relationship Eq. {4.23) offers the possibility to de-
rive one-dimensional integral representations for the T coef-
ficient, because the gamma functions combine to a beta func-
tion*' which may be represented by the following integral:
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Tlo+32)T[t,+t,+t,—
i +t,+1t+3)

= Jldy y (_1;_'&)0 * l/2y’| + 1+ ':_
] y

If this expression is inserted into Eq. (4.23), under the inte-
gral sign the triple summation factorizes into the product of
three sums, representing polynomials of degree N,, N,, and
N, respectively:

1 —p\o+172
TRp = 4) dyy (l—y—}i) ( bty )
f
Az (o)
t, ty

By inspection of the coefficients b - as they are given by Eq.
(3.18b) it turns out that the polynomials can be written as
Jacobi polynomials according to

2-N-20QN — DIt Ty

o+ 3/2]

(4.24)

(4.25)

= [V + L+ DIV~ L~ D]
W PE AL (] ), (4.26)

If we substitute x = 1 —2y in Eq. (4.25) the integral repre-
sentation given by Eq. (4.7) is obtained. This integral repre-
sentation is closely connected to Eq. (2.11). The third inte-
gral representation as given by Eq. (4.8) can be derived at
once from the last result by utilizing the relationship®:

(1 __y)P(l+3/21+1/2)(y)

n—1—1

_ @Di@n — DY
i)
ad+h —_(_l)—- i
X [Cn—[ l( ) (n+l+1) n—l(y)]

4.27)

For the numerical calculation of the T coefficients it is
advantageous to use another explicit expression which we
are going to derive now. Again we start from Eq. (4.6). How-
ever, we do not express all A functions, which occur in the
integrand, by B functions as we did before, but we write only
A ., as alinear combination of B functions according to
Eq. (3.18), obtaining

(L,M,|L M,\|LM,) TN N5
< NL, M2
= Z b, dRA g, (R)JIN, (R),

t=L,+1
where J is given by the following convolution integral:

TR = [de B L @4 %, €~ R,

According to the discussion which led us to Eqgs. (4.13) and
(4.16), the integral J can be expressed as a linear combination
of A functions,

(4.28)

4.29)

Il —R)= z (L\M,|L,M,|Im)

max(v)

X a;i A Ty (R) (4.30a)
v = min{v)
with
min(v) = max(/ + 1, N, — t — 1), (4.30b)
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max(v) =N, +t + 1. (4.30c)

On the other hand, if in Eq. (4.29) the A function is expanded
in terms of B functions with the help of Eq. (3.18), the inte-
gral J can be written in terms of B functions as

T (= R) = dr{ — 1S (LM, | LM, |im)
1

< e (4)

P
XBY r1-1-p(R).
(4.31)

The unknown expansion coefficients a3***+ in Eq. (4.30a)

v,

can now be obtained as projections of the function J onto
A 7). The integral which represents the projection can be
evaluated analytically with the help of Eq. (4.31) and the
relationship

J5H(0) = jd RB™, , (RIAY% (R

=6, .M~ YN L2~ + (= [ Lit
X(t— Ly, — 12t + 1)
X(t~ Nt + N, + 117!
for t>N,, (4.32a)
whereas
J5E(0)=0 for t<N,. (4.32b)

This can be found from the transformation formula Eq.
(3.14). The explicit formula for the coefficients aX?*+*L then
reads

az,L,lL, — 417_( — l)L,AI+v— 1./1/‘* I(V,l)

A
X Z(_Z)P( ’)bi’“r"“
tp p
(t, +t — 1 — pl(2t, + 2t — 2p + 3!

t,+t—p+1—it,+t—p+v+2)
{4.33a)

with the summation limits
0<p<gdl, v+p—1t—1<t,<N,. (4.33b)

If now Eq. {4.30) is used for replacing J in Eq. (4.28), the
expression

N,
b tNlLlaNsztLl( . l)Ls
t=§+l N.Ly
is obtained. From Egs. (4.30a), (4.30b), and (4.30c) it follows
that only terms with £>|N; — N,| — 1 have to be taken into
account. Then, after a few manipulations, Eq. (4.34) becomes
identical with Eq. (4.9), Q.E.D.

N L,NLy .
Ty =

(4.34)

5. SOME APPLICATIONS: ONE-CENTER EXPANSIONS
AND MULTICENTER INTEGRALS

A. General aspects

The matrix representation of the translation operator
makes it possible to derive normconvergent series expansion
which represent new addition theorems—or one-center ex-
pansions—of three-dimensional functions f/(r). Such expan-
sions can be used, for instance, for the evaluation of multi-

2732 J. Math. Phys., Vol. 21, No. 12, December 1980

center integrals. These examples for applications of the
method presented in this article, which may be of general
interest, shall be discussed in this section. They make it also
possible to derive some useful relationships and to test the
results numerically.

A relationship
fCe—R)y= Y ¥c,..8, Ok, (R) (.1

is called an addition theorem, as with the help of this formu-
la, the two variables in the argument of the function fcan be
separated. If this formula, as usual, is understood as a rela-
tionship among functions which holds for any values of r and
R, respectively, the series expansion Eq. (5.1) is pointwise
convergent. General aspects and methods for the derivation
of such addition theorems for some special functions were
discussed in earlier papers.*® If the functions have certain
physical meanings, there are many possible applications of
such addition theorems in theoretical physics and chemistry,
like, for instance, in the theory of molecular interactions, in
thermodynamics,®* and in the theory of the electronic struc-
ture of molecules and solids.

Addition theorems are especially valuable for the evalu-
ation of generalized convolution integrals of the kind

®R,,.R,)
- fdr g0, — R Ar — R)-fur —R,).  (5.2)

Integrals of this kind and of related types necessarily occur
in electronic structure calculations which make use of vari-
ational principles in connection with the LCAO {linear com-
bination of atomic oribital) method. They are called molecu-
lar multicenter integrals. The separation of the integration
variable r with the help of an addition theorem of the type as
given by Eq. (5.1) makes it possible to represent the compli-
cated integral Eq. (5.2) by a series of simpler integrals. If
applied to integration purposes, however, it is often not even
necessary that the series expansion Eq. (5.1), which repre-
sents the addition theorem, is pointwise convergent. Rather
it is sufficient to have an equivalent expansion in a suitable
Hilbert space.

For any function f which is an element of L,(R?), the
unitary translation operator .7 y as defined by Eq. (2.1b)
causes the transformation .7 5| f) = |F) with
F(r) = f(r — R). Therefore, the expansion formula, which is
equivalent to Eq. (5.1), reads

yR‘f) = z zcn,nzhnz{R)\gn,>' {53)

By, ny
Again, we have used Dirac’s bra-ket notation in order to
indicate that the series on the right-hand side of Eq. (5.3)1is
convergent in the mean, i.e.,

fir—R) =SS, b (Rig,, )

ny My

for N,N,—> .

0

5.4)

If the translation operator as it is given by Eq. (4.1) is
applied to a function feL,(R?), one immediately obtains an
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expansion of the type given by Eq. (5.3) in terms of the com-
plete orthonormal system of A functions:

Trlfy=3 A7) 3 (T Rluimn ATl ). (5.5
ndim, nylm;,

As the matrix elements.(7 g )74, are already given in Sec.

4, we only need to evaluate the scalar products {4 7] /)

which are the expansion coefficients of the function fin

terms of the functions A 7; according to

£y = SIAD) (ATIf).

alm
Hence, if these expansion coefficients are evaluated, one im-
mediately has not only the series expansion Eq. (5.6) of the
function feL,(R*) in terms of A 7}, but also the addition theo-
rem Eq. (5.5) of the function fwhich is at least convergent in
the mean.
Because of the representation of the unit operator as

given by Eq. (3.6), the addition theorem Eq. (5.6) can also be
written in the form

(5.6)

Tl )= A7) (AT R 1) (5.7
nim
If in this expansion the convolution integrals
ATl = [dr Az ®rE-B 58)

can be evaluated directly, the expansion in Eq. (5.7) has a
simpler form than the expansion in Eq. (5.5). Of course, the
expansion Eq. (5.5) would also result from the addition theo-
rem Eq. (5.7) by expanding the functions f'in terms of func-
tions A.

B. Explicit one-center expansions for some
exponential-type functions

In the case that in Eq. (5.7) the (so far unspecified)
function f'stands for a A function or a B function we have
already obtained closed form expressions for the respective
convolution integrals Eq. (5.8) in Sec. 4.

For f=A }{,, the convolution integrals Eq. (5.8) are
just the matrix elements of the translation operator as given
by Eq. (4.4). Therefore, it follows immediately from Eq.
(4.1) that

TrlAN) = z (T RN A T (5.9
For f=B}/, the convolution integral defined by Eq.

(5.8) is the same as the integral given by Eq. (4.29). There-
fore, we have

leB%L> = IZJbI;L,n( -
nim
The last two identities, Eq. (5.9) and (5.10), are expansions
which are valid with respect to the metric of the space
L,(R?). The question arises what happens if the Dirac-kets

are formally substituted by the values of the functions. It is
clear that the resulting series are at least pointwise conver-
gent for all pointsr apart from a set of measure zero. We shall
show in the Appendix that the series expansions which are
obtained in this way are pointwise convergent for a// R,r and,

R)A ™). (5.10)
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therefore, also represent new addition theorems in the classi-
cal sense.
From Egs. (5.9) and (4.4) we thus obtain the formula

A r—R)= 2 Z (LM |Iym|lym,)

L, m,

X Y Thy A m (1A (R), (5.11a)

n,ny

with the summation limits

0<li<w, |[L—Li|gh<li+L, my=M—m,,
(5.11b)

I +1<n, < o, (5.11¢c)

max(l, + L|n, — N | — l)<n,<n, + N + 1. (5.11d)

Explicit expressions for the expansion coefficients 7 ;"
are given by Eqgs. (4.9) and (4.10).

From Egs. (5.10) and (4.30) the following expansion is
obtained:

By, r—R)= E Z (LM |Iym,|l,my)

L, my

X zanflfN+LLA ()A ( )

nyny

(5.12)

with the same summation limits as given in Eq. (5.11b). An
explicit expression for the coefficients a::*" is given by Eq.
(4.33).

The appropriate addition theorem for Slater-type func-
tions can be obtained from Eq. (5.11a) or (5.12) with the help
of the transformation formula Eq. (3.7) or (3.10),
respectively.

" It should be noted that the computation of the coeffi-
cients 7" or a:*"*, which occur in Egs. (5.11a) and
(5.12), respectlvely, is rather simple if Eq. (4.10) and Eq.
(4.33) are used. The number of terms in the summations over
[, and n, is completely determined by the fixed indices N and
L. 1tis givenby (2L + 1)(2N + 2) for arbitrary order /, and
n,, and, therefore, the number of terms in the series does not
increase with the order of the terms. The radial part of the A
functions can easily be calculated by upward recursion with
the help of well-known recurrence relations.'®

The new addition theorems as given in the present pa-
per differ from results given earlier in the literature as they
exhibit a completely different representation of the radial
functions in the series. Other authors who dealt with the
problem of obtaining explicit addition theorems for ETF’s
usually considered Slater functions only.>>” The series ex-
pansions given by these authors are very involved and com-
plicated in structure. This is partly due to the fact that most
of these formulas exhibit a two-range form in a similar way
as is well-known from the Laplace expansion of the Cou-
lomb potential.

We can discuss the main differences between the two
kinds of representation of addition theorems by comparing
the new addition theorem of B functions as given by Eq.
(5.12) with a pointwise convergent two-range formula which
we obtained earlier by another method.?® This latter addi-
tion theorem reads

B?v,o(r —R)= \/-4_-;( — OV [2N )] YRV V2
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x 33 S en —av 4 1)

I=00m n=lI

XTI, _n, 12 Ky _ N 120 )
X Y(R2)Y (€2%), (5.13a)

where
{5.13b)

The symbol = stands for summation in steps of 2. The
formula Eq. (5.13) also represents an orthogonal expansion
with respect to the angular variables. The radial dependence
for any fixed value of / is given as a linear combination of
products of modified Bessel functions 7, X,,, and shows the
characteristic two-range form. In this form, it is necessary to
distinguish between » _ and 7 . The explicit addition theo-
rems for Slater functions given so far in the literature®*> are
also complicated “two-range formulas”; in their structure,
they resemble Eq. (5.13). In contrast, the new type of addi-
tion theorems as given by Eqgs. (5.11) and (5.12) has the great
advantage that neither complicated special functions nor a
two-range behavior of the radial variables do occur, as is the
case in the two-range addition theorems.

r_ =min(r,R), r

= max(r,R ).

>

C. On the evaluation of multicenter integrals

Addition theorems are valuable tools for the evaluation
of (generalized) convolution integrals or multicenter inte-
grals, i.e., integrals which resemble those defined by Eq.
(5.2), because the addition theorems make it possible to sepa-
rate the variables in the integrands. However, the newly de-
rived addition theorems, which have a uniform mathemat-
ical representation over the whole range of variables, are
often of greater advantage for the the evaluation of integrals
than the addition theorems which exhibit a two-range form,
containing certain special functions of argument » _ and r_ .
If addition theorems of the two-range form are used to trans-
form the integrand, the integration range is to be divided into
different subregions due to the occurrence of 7 _ and 7 .
This finally requires the evaluation of certain indefinite inte-
grals over special functions. It is a fact, however, that only a
few indefinite integrals over special functions are known,
whereas a lot of integrals over the entire space, i.e., integrals
from 0 to oo, are available from standard integration tables.

In the addition theorem as given by Eqs. (5.10) and
(5.12) the radial dependence is given as an infinite series in
terms of rather simple functions. As this series expansion
holds for the whole region (between 0 and « ) of and R, one
has no longer to distinguish between r_ and r _ . Therefore,
if we use this expansion in order to express a (shifted) func-
tion in the integrand of a generalized convolution integral we
obtain an infinite series of integrals over the entire space.
Usually these integrals can be evaluated much more easily
than the integrals over subregions which occur if a two-
range addition theorem is used. Therefore, with this method
it will often be possible to evaluate generalized convolution
integrals as a series expansion even if the evaluation of these
integrals with the help of the first method (based upon a two-
range addition theorem) is too complicated.

As an example and as a test for the numerical applica-
bility of the new series expansions, we want to use the appro-
priate relationships for the evaluation of the following rather
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difficult multicenter integral:

4 R,Ry) = Jdr, jdr2 e e

X [ty —r| “leTIn Rilg IR (5.14)

In molecular physics integrals of this kind are called three-
center exchange integrals. They occur, for instance, in calcu-
lations of properties of molecules with three or more atoms,
Because of the identity

e~ =m'2A0,(1), (5.15)

it is possible to use Egs. (5.9) and (5.11) in order to represent
the two shifted exponential functions in that coordinate sys-
tem which is used for the integration. We thus get at once the
following series expansion for the integral

A(R,R)) = 2 Z c::'.li,(yn, 2'1',?1,0(‘7-11, nmj;(,)l,o: (5.16)
ndymy nylm,
with
il = Jdrl J-drz e e r -1y !
X A nm.lll (r)4 :,"2‘12(1'2)7. (5.17)

This one-center integral can be evaluated analytically with
the help of the Laplace expansion of the Coulomb operator.
The coefficients then read
Cf.',lf., = 8,27 " " ny 4+ ny = 2)!
X[ny+ny—(ny—n)* + (2, + 2)(21, +4)]
XUny+ 1+ Wy + L, + Wn, — 1, — 1)
X{n, — I, — 1)1] ~ 172, (5.18)
Having substituted the matrix elements of the translation
operator in Eq. (5.16), we obtain the three-center exchange
integral as a double infinite series of A functions and simple
coefficients.

A numerical analysis for the region O<R |,R, < 3hasled
us to the conclusion that an accuracy of 7-8 significant fig-
ures can be obtained if the series expansion Eq. (5.16) is
summed up to order n,,n, = 60. For comparison purposes,
tabulated results for the special case R, = R,, for which it is
possible to solve the integral by other methods,* have been
used. Because of the simple structure of the formulas for the
matrix elements of the translation operator it causes no diffi-
culty to include higher order terms to get even more precise
results if they are needed.

6. SUMMARY

In Eqgs. (4.1) and (4.4} of this article, we have given a
matrix representation of the translation operator which can
be used to describe the shifting of physical fields, if these
fields are mathematically represented by functions of the
Hilbert space L,(R>). All elements of the matrix representing
the translation operator are given analytically as a linear
combination of simple functions of the displacement vector
R. If the translation operator in the realization that is given
by Eqgs. (4.1) and (4.4) is applied to a function which describes
the original field, one immediately obtains the new function
which describes the transformed, i.e. shifted, field, in form of
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a series expansion with respect to the complete and orthon-
ormal system of A functions; cf. Eq. (5.5). All that remains to
do, is to expand the function describing the untransformed,
i.e. original, field, into a series of A functions, as stated in Eq.
(5.6). The A functions, whici1 are closely related to Laguerre
functions, are defined by Eq. (3.4).

Using the matrix representation of the translation oper-
ator, we have derived new addition theorems in Sec. 5B, and
presented a method for the evaluation of generalized convo-
lution integrals in Sec. 5C.

APPENDIX: POINTWISE CONVERGENCE OF THE
ADDITION THEOREMS

The expansion as given in Eq. (5.12), which is at least
convergent in the mean, can be written in the form

w© 1 -
B, c-R= Y Y ROY" ), (A1)
L =0m, = -,
with
R= 3 L2 @ne . (A2)
n,=1 +1

Here we consider B as a function of r; the vector R is an
arbitrary but fixed parameter which shall be suppressed in
the following equations. .

On the other hand, a pointwise convergent addition
theorem for the B function also does exist.*® It can be written
as

BY,c-R =S S R OYI@)

Lh=0m = —1I,
The radial function R, () is a continuous function for
0 <7 < o0 and has the asymptotic behavior

R, (n—r"*t7te " for r-»o0, (Ada)

R, (n—r" for r—0. (A4b)
These properties can be found in the: following manner. Mul-
tiply both sides of Eq. (5.13) with a regular solid spherical
harmonic % ¥(r — R) and use the addition theorem for this

function*! to separate the variables 1 and R. With the help of
the well-known relationship

(A3)

YP)YI(2)= Y (Aulim|LLM) Yi@2), (A5)
A

the products of spherical harmonics can be expressed as sin-

gle harmonics. Now use the asymptotic properties of the

modified Bessel functions*

K. (r)—r—'"%e" for r—ow, (A6a)
I (r—r" for r—0 (A6b)

to obtain Eqs. (A4a) and (A4b). Since the series on the r.h.s.
of Eq. (A1) is at least convergent in the mean, it follows that
the function R 1, (r) must be the formal I.aguerre expansion of
the function R, (), i.e.

R~ 3

=1+ 1
Now we can apply Szegd’s equiconvergence theorem*’
which states under which conditions a formal Laguerre se-
ries of a given function does also convergie point by point.

er LMD @rye 7", (A7)
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Due to Szego, the limit relation

lim [e"’ 2x — gl

N—w

xl/x +6 ,
f dt gt ) — e’ /2¢N(x”2—t)]

N X! 6
=0 (A8)
with
dn(y) = (my) ~ ' sin(2NV 7y) (A9)
holds for x > 0, if the following prepositions are fulfilled:
The partial sums g, (x) are defined by

N
gv=3 a,xe L O(),

n=20

(A10)

where the coefficients a,, are obtained by the orthogonality
relation of the Laguerre polynomials,

o [ren ()]

n

X f dx x* e L ®(x)g(x). (All)
(4]

Furthermore, the function g(x) must have the following inte-
gral properties: First,
(Al12)

is Lebesgue measurable for xe[0, «o ]. Second, the integrals

1 1
fdxxa—lex/zlg(x),’ fdxXa/Z—A—l/4lg(x)lex/2 (A13)
0 N (]

ex/lx — Ag(x)

exist. Third, the following asymptotic relationship is valid:

J.wdxx"/z“‘”‘(g(x)( =0(n~""}) for n—c.

(Al4)
We notice the validity of the distributional relationship
Tim ¢4(3) = 6(3), (A13)
if the function g(s) has the property that
f dx' g(x')8(x — x') = glx) (A16)
(4]

is well defined for all x > 0. Then it follows from Szegd’s
theorem Egs. (A 8)—{A14) that the sequence of the partial
sums g (x) does converge in a pointwise sense, which means
that

lim gy, (x) = g(x) (A7)

holds for any x > 0.

In order to apply Szegd’s considerations to our prob-
lem, we have to define the function g(x) and the parameters A
and a adequately. If we set

g =2"R(x/2), A=1 a=21+2, (A18)

and if we use Eqgs. (A6a) and (A6b), then it is easy to prove
that the conditions given in Eqs. (A8)—(A16) are fulfilled.
Therefore, it must be true that the expansion Eq. (A7) is
pointwise convergent for all >0 and arbitrary R. Taking
into account the symmetry of the series expansion as given in
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Eq. (5.12) with respect to an interchange of r and R, we are
led to the conclusion that the expansion is pointwise conver-
gent for the whole region of the argument vectors. Since the
Laguerre and Slater functions are given as simple linear
combinations of B functions according to Sec. 2, the appro-
priate new addition theorems for these functions must also
be pointwise convergent, Q.E.D.
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The infinities of polynomial conserved densities for several nonlinear evolution equations are
investigated using Noether’s theorem, and are identified as energy or momentum densities of
higher-order enveloping equations. A recursive operator formula is derived for the densities.

1. INTRODUCTION

In a recent paper,' the infinity of conserved densities for
the Korteweg~de Vries (KdV) equation was investigated us-
ing Noether’s theorem. In that paper, these densities were
identified via Noether’s theorem as energy densities, not of
the KdV equation but of higher-order enveloping KdV
equations. By “enveloping” it is meant that the solution set
of the KdV equation is contained by the solution set of each
higher order KdV equation.

This paper presents an extension of that result to the
modified KdV equations, the sine-Gordon equation, the
classical nonlinear shallow-water (CNSW) equations, and
the nonlinear Schrodinger (NLS) equations. For these equa-
tions (and the KdV equation) it has been found that the poly-
nomial conserved densities may be identified either as ca-
nonical energy densities or as canonical momentum densities
of the appropriate higher-order equations. This identifica-
tion has been made by using Noether’s theorem in both its
conventional and its generalized form.'

For each of these nonlinear equations, the higher-order
enveloping equations have taken the form of an integrodif-
ferential operator operating n times on the original equation.
They are integrodifferential, and are not known to be of any
physical significance or interest in themselves. Their main
property of interest in this paper is that their solution sets
contain that of the original nonlinear evolution equation be-
ing considered.

This work differs from other techniques which use in-
variance groups and symmetry groups” in the following
manner: These other techniques use an infinity of symme-
tries on the nonlinear evolution equation, whereas this work
uses one symmetry (time or space translation invariance) on
an infinity of nonlinear equations. The main advantage of
this approach is felt to be the ease of interpretation of the
results. The two approaches may well be parallel ones since,
for example, the integrodifferential operators used in this
paper to generate the infinity of nonlinear equations for the
sine-Gordon, the KdV, and the modified KdV equations are
the same operators as the “recursion operators” used by
Olver.*

The integrodifferential operators used are closely relat-
ed to the operator*

ZrJ r

d, —2r fq,

o —2qfq, ~dx+2qfr
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used by Ablowitz et al.®> The operator L * appears in their
derivation of a general set of nonlinear equations which are
solvable by the inverse scattering transform method,

(:'q')-i—ZAO(L 9) (;) -0, (1.2)

where A, is a ratio of entire functions. The results of this
paper will be extended to the general set of equations (1.2) in
a future paper.

One interesting and novel feature in all cases has been
the splitting of the problem into two parts. One is an integro-
differential part involving integrals over space of polynomi-
als in the field variables and their derivatives, and the other is
a partial differential part, involving polynomials in the field
variables and their spatial derivatives (in all of the cases con-
sidered, there is one space dimension, x).

The integrodifferential part is proved inductively by us-
ing the generalized Noether’s theorem,' and amounts to
proving a type of anticommutation principle for the appro-
priate operator. The partial differential part is proved by
deriving a Lagrangian density, using the work of Atherton
and Homsy® on the inverse problem of the calculus of vari-
ations. An inductive approach is used to prove the Lagran-
gian density exists in each case, and the conventional
Noether’s theorem completes the proof of this part. As a
bonus, this approach gives each of the infinite number of con-
served densities explicitly in terms of the integrodifferential
operator. With the exception of the KdV equation,’ the au-
thor is not aware that such a form for the conserved densities
has been previously derived.

Section 2 of this paper outlines the general method used
in all five cases. The steps involved in each case are quite
similar. Section 3 gives more details for each of the five equa-
tions mentioned above.

2. A GENERAL OUTLINE OF THE METHOD USED

It has been possible to identify the infinite sets of con-
served densities arising in certain nonlinear systems, as ener-
gy or momentum densities of higher-order enveloping non-
linear systems. Let the original nonlinear system have the
equation of motion

F=0, @.1

(where = means *““equals for solutions,” to be distinguished
from “‘equals for all values of the field variables,” the usual
= ), and the infinite number of conservation laws (we are

dealing with only one spatial dimension)
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d,T, +d X, =0, n=0,12,, Q2

where T, is a polynomial in the field variables and their
derivatives. Then the higher-order enveloping equations are
written

K"(F)=0, n=12, 2.3

where K is a nonlinear integrodifferential operator, and the
superscript n is a power.

The relationship which has been proved for five differ-
ent systems is that ’

¢, [K"F)l=d, T,,, +d.X,.,, n=01,-,(24)
where

dé
x = dx =—,
¢ ¢ o
where ¢ is the field variable, here written as a scalar for
simplicity.

For these systems it has also been found that
6 K" F)=d,T,+d X, , n=01,.,. 2.5)

By the generalized Noether’s theorem,’ Eq. (2.5) identifies
T, as a momentum density® for Eq. (2.3), and Eq. (2.4) iden-
tifies T, ., as an energy density for Eq. (2.3). Note that the
solution sets of Egs. (2.3) contain that of the original equa-
tion (2.1), hence solutions to the original equation (2.1) must
obey the momentum and energy conservation laws for Egs.
(2.3). With the exception of the sine-Gordon equation, all of
the nonlinear evolution equations considered can be written
in the form

F=¢,+K(@,,,)=0, a=0or 1, 2.6)
where
_d°¢
b ="

The field variable is here written as a scalar for simplicity;
the results for vector fields are quite analogous, as will be
seen in Sec. 3. Despite the fact that the sine-Gordon equation
cannot be written in the form (2.6), the proof of Eq. (2.4) for
the sine-Gordon equation is similar to the outline presented
here.

In the cases where @ = 1, the evolution equation has
been of the form

F= 2[4, + L1 =0. @7
dx

This property ensures that a polynomial conserved density
may be required to contain only x-derivatives of the field
variables, since all z-derivatives can be replaced by x-deriva-
tives within a trivially conserved density, using Eq. (2.7).

The proof of Eq. (2.4) will be outlined here, since the
proof of Eq. (2.5) follows in all cases considered. It is re-
quired to prove that

¢1Kn[¢az + K(¢a+) )] = dz Tn+} + dxXn +1 (28)
where
a=0orl,n=0,12,.

It is at this stage that the problem splits into two parts, the
integrodifferential part
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¢tK n(¢az )= dxXn +1 (29)
and the partial differential part

$K" " (Guy)=di T,y +dXosy X, 0).
(2.10)

This division is motivated by the fact that if the existence of a
polynomial conserved density T, depending only on x-de-
rivatives of ¢ is assumed, the lhs of Eq. (2.9) cannot contrib-
ute any terms to the density 7', . Note that the equality in Eq.
(2.8) must hold for general field variables ¢, not just for solu-
tions to the evolution equation.

If the operator X is integrodifferential in x, the ihs of
Eq. (2.9) must also be integrodifferential in x. The Ihs of Eq.
(2.10) has, in all cases considered, been partial differential
(i.e., polynomial in ¢ and its derivatives). As will be seen at
the end of this section, this feature is closely related to the
existence of an infinity of polynomial conserved densities.

Equation (2.9) is proved by deriving an anticommuta-
tion relation for the operator X,

fK"g,)= —gK"(f)+d.R@&.S), 2.11)
where fand g are test functions of ¢ and its derivatives. The
proof of Eq. (2.11) has in all cases been straightforward and
inductive. R (g, ) contains integral terms, which in each
case need to be shown to be acceprable flux terms when
g = f = ¢, . Integral terms are acceptable flux terms if they
are equal to polynomial terms within a trivial flux term.

Equation (2.10) is proved by deriving a Lagrangian
density for the equation

K{$,.,)=0, i=12,.. (2.12)
The first step in the derivation is to show that the lhs of Eq.
(2.12) is a polynomial in 4 and its x-derivatives. This is done
by induction, using the anticommutation relation (2.11).

The work of Atherton and Homsy® gives the Lagrangian
density for Eq. (2.12) as

i =¢J xAd)da, (2.13)
where ¢
Xi(¢)=Ki(¢a+l)’ (214)

and y, is a function, not an operator. This Lagrangian densi-
ty exists if and only if the Frechet derivative of the Ihs of Eq.
(2.12) is symmetric, i.e.,

W¥)s(0) = o(y)s @) + 4.V, (2.15)
for arbitrary test functions ¥, ¢, and ¢ of ¢, where the Fre-
chet differential in the direction ¢ is®

()a(0) = lim 1,6 +€0) —x, @) Ve

In each case, Eq. (2.15) is proved by induction. Note that V'
must contain only acceptable flux terms.

Once the Lagranian density (2.13) has been proved to
exist, the conventional Noether’s theorem' can be applied as
follows: Since ., has no explicit time dependence, energy is
conserved in the corresponding equation of motion (2.12),
and the energy density is given by

4.,
li= =g oo

(2.16)

@17
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that is,

T,=2,=¢ [ xis)ai.

Equation (2.10) follows immediately {it is simply Noether’s
relation, Eq. (2.5) in Ref. 1], with T as above. Equation
(2.18) gives each of the infinity of conserved densities explic-
itly in terms of the integrodifferential operator K, as men-
tioned at the end of Sec. 1. If

K'(@a 1) =x:48) (2.19)
is a polynomial, Eq. (2.18) implies that 7 is polynomial also.

(2.18)

3. PARTICULAR CASES
A. The KdV equation

For completeness, a brief outline of the results already
published for the KdV equation' is given here. The form of
the KdV equation used is

¢y +61:+8,=0, (3.1
where
3¢ _&¢ 3¢
¢1 Ix ¢2 = e s ¢, = at etc.

(A useful survey of recent work on the KdV equation has
been published by Miura®.) The integrodifferential operator
for Eq. (3.1)is

N=d? 11 + %mf dx. 3.2)

The lower limit of the integral is chosen such that ¢ and its
derivatives vanish there (e.g., — o). The limits on all inte-
grals in this paper, unless stated otherwise, will be as above.
Equation (3.1) may be written

¢, +H(4,)=0. 3.3)
The relation proved in a previous paper’ is

¢1H [¢lr +H(¢2)]“' +1 +d Xn+1,
n=0,1,2-, (3.4)

where the densities 7', are polynomials in ¢ and its x-deriva-
tives, that is, the density 7', ,, is an energy density of the
equation

H"[¢,, +H($,)]=0. (3.5)
Itis a straightforward corollary that 7, is a momentum den-
sity of Eq. (3.4) and is conserved, i.e.,

$H"[¢, +H($)]=4d, T, +d.X,, (3.6)
as follows: The integrodifferential part is

$H"(¢,)=d. R, —¢, H"$,, 3.7
where
R,
5 |(Jaw)(fare)
H¢ YH"~"'4,,)

)
- ([om) (o 0.) oo

(3.8)
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In Ref. 1 R, is proved to contain only acceptable flux terms.
The last term in Eq. (3.7) can be written'

-6, H"($)=d, T, +d.X,, (39
so that the integrodifferential part is
¢]Hn(¢ll ) = dt Tn + dx(Xn + Rn) . (310)

A similar approach to that of Eq. (3.7) gives the partial dif-
ferential part as

¢ H" ' ($)=d.Q,, (3.11)

where Q, is a polynomial in ¢ and its x-derivatives. This
result also follows from the recursion formula*®

Hd A, =d A Ay=4,, (3.12)

xtn 41
where A4, is a polynomial conserved density for the KdV
equation.

B. The modified KdV equation
The form of the modified KdV equation used is

$1 +61 6.+ 4,=0. (3.13)
The operator is

M=d2+ 141+ 16 [0, (3.14)
and Eq. (3.13) may be written

b, +Mp, =0. (3.15)
The proof of the integrodifferential part of Eq. (2.5),

¢M"$, =d X, , (3.16)

is accomplished by first proving the anticommutation
relation

fM'g,= —gM"f +d.R,(fg), (3.17)
where
o= 5([or) )
—or gy — 3 [oms)
X(fqﬁ,M""“g,)—ngM"f,] . (3.18)

The proof of Eq. (3.17) is omitted as it is quite straightfor-
ward. R, contains integral terms, which must be shown to be
acceptable flux terms for f = g = ¢, . Note that

M @)= —M"*'($) + M (4, +M$,), (3.19)

where the last term in Eq. (3.19) is a trivial flux term since it
is zero for solutions. Hence if

pM" ' (p)=d.P,,,, n=0,12,, 3.209)

where P, is a polynomial in ¢ and its derivatives, then the
integral

J-¢1Mn¢]1 , h= 0;1)2)'" ’

will be equivalent to the polynomial P, and will be an ac-
ceptable flux term. Also, since

M7, =dx(dx + §¢1J¢1)M"“‘¢1, ,

(3.21)

(3.22)

Mark J. McGuinness 2739



the term

JM"(b,, =(dx +§¢1f¢,)M"—‘¢l,, k=12,
(3.23)

will be an acceptable flux term.
Equation (3.20) may be proved by induction, using re-
sult (3.18). The proof is straightforward and is omitted.
The partial differential part of Eq. (2.4) is

$M" by =d T, +d.(X,,, —X,,,). (329

The lhs is a polynomial by virtue of Eq. (3.20). Existence of a
Lagrangian for the equation

M"$,=0 (3.25)
is assured by the symmetry of the Frechet derivative,®

UM "$,) 4 (0)~a(M "$,),(¥) , (3.26)
where ~ means ‘“‘equals within an acceptable x-derivative.”

Equation (3.26) is proved by induction, as outlined here.
Assume Eq. (3.26) holds for n = 1,2,...,k. Then

PM " ), (0) =9 M (M*“d,),(0) + M), ()M ’;¢2) )
3.27)

where
MYy(0) = 40, + %aszfal + %azjm (3.28)
Using the explicit form of M, Eq. (3.27) can be written
Y M 4,),(0)
~( [rw)orss,0+ 66 [ 8,9,

— } Wn( f 6 M k¢2) : (3.29)
The inductive assumption gives
([ru)orso,ormortsn( [mu). 60

and applying Eq. (3.29) to the rhs of Eq. (3.30) gives
Y (M gy)y(0)

g( f Mal) - ¢2);b( f Mwl) — 3 :ﬁlol( f 6. M "¢2)

+ g—(a,M"m)f:m Yot 3M ¢1)<Mk-‘¢z)f¢lol

+ oo [omt4,). (331)
The first term on the rhs of Eq. (3.31) is symmetric by the
inductive assumption, the second term is symmetric by in-
spection, and the remaining terms may be shown to be so
within an x-derivative by expanding them.

As explained in Sec. 2, the Lagrangian density for Eq.
(3.25)is

f,,ngj M, (Ad)dA, (3.32)
where
M (P)=M",. (3.33)

The Noether relation expressing conservation of energy for
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Eq. (3.25)is

¢$M"¢p,=d, T, +d (X, -X,), (3.34)
i.e., Eq. (3.24) is proved with

r,,.=%,,,, n=012,-. (3.35)

Notethat T, ., isapolynomial, and that Eq. (3.34) holds for
all ¢, not merely for solutions to Eq. (3.25).

The uniqueness of the infinity of polynomial conserved
densities for the KdV equation (Kruskal et a/l.'"), together
with the transformation due to Miura'? from solutions of the
modified KdV equation to solutions of the KdV equation,
implies that the infinity of polynomial conserved densities
for the modified KdV equation is also unique. Hence the set
of the energy densities 7, is equivalent to the set exhibited by
Miura et al.'?

The density 7, may be alternatively identified (within a
trivial sign) as the momentum density of the equation

M@, +Mp)=0, (3.36)
by proving the relation
¢1M"(¢ll +M¢2)=dt(_ Tn)+dxin’ n =O)1;29"' .
(3.37)

The partial differential part of Eq. (3.36) has been proved at
Eq. (3.20). The integrodifferential part is proved by applying
Eq. (3.17) with

f=¢, g=¢.,
to get

¢1M"¢1t = —¢1Mn¢2+den(¢]’¢t), (338)

where R, contains acceptable flux terms. Equation (3.24)
may be applied to the first term on the rhs of Eq. (3.38) to
complete the integrodifferential part,

¢M"p, =d,(=T,)+d.X, - X, +R,). (339

C. The sine-Gordon equation

The form of the sine-Gordon equation used is

i + sing=0. (3.40)
The operator is

S=di+i+é: |4, (3.4
and noting that

S(sing) = @,[cosg 1,_, =95, (3.42)

the higher-order sine-Gordon equations may be written

S, +5'6)=0, n>0. (3.43)
Since the only difference between the operator S and the
operator M for the modified KdV equation is a factor of 2 in
the nonlinear terms, and since the higher-order modified
KdV equations are

M7, +Mg;)=0, (3.44)
the proof of the energy relation
¢1 Sn(¢11 + S_l¢2) = dt Tn +1 + dxXn 41 = 0»1”"
(3.45)

is identical to that for the modified KdV equation, and is
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omitted here. The energy density of the nth higher-order
sine-Gordon equation is given by

1
T =4[ 2 ada, (3.46)
o]
where the function ¥, | is given by
S 1 @)=8"""¢,. (3.47)
Similarly, the proof of the momentum relation
¢S +S'$)=d, T, +d.X,, n=01.- (3.48)

is identical to that for the modified KdV equation.

The similarity between the operators S and M indicates
a similarity between the conserved densities of the sine-Gor-
don and the modified KdV equation.'* The transformation
¢ — + V'3 takes operator M to operator S, and takes the
infinite set of conserved densities for the modified KdV
equation to that for the sine-Gordon equation.

The first three densities 7, have been found to be equiv-
alent to the first three of the set of densities derived for the
sine-Gordon equation by Lamb,'® and Sanuki and Konno.'®

D. The classical nonlinear shallow-water equations

The CNSW equations govern the irrotational motion of
aninviscid homogenous fluid under gravity, in the long wave
approximation.'” They may be written in the form

g, +1gd.. =0,

where

&=().=()

%¢lx ’ ¢2x + %¢2xx J- »
[= (3.50)
1 4 %¢1x + %¢lxx f

(3.49)

and

0, 1 . .
g= (1 0) (a Pauli spin matrix),

and where /4 (x,t ) is the free surface height, u(x, ) is the hori-
zontal velocity component, and g is taken as 1. Note that the
numeral subscripts here refer to vector components and not
to x-derivatives.

The steps involved in proving the relation

éz'[Ln(géxf +I£¢i'tx)]=dl Tn+l +dxXn+l ’

n=12- (3.51)

(where “ - is the scalar product between vectors), are a

generalization of those for the modified KdV equation to the

vector case. Hence only a brief outline will be given here.
The relation analogous to relation (3.17) is

fL"eg. )= —g(L"¢f,)+d.R,(f8),
where

Rfo= "3 t[oa [1er. )] [@a)

i=0

(3.52)

o[ sowero] [ @a
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+ g f Lraf). (3.53)
The analogous result to Eq. (3.20) is
I=”Z¢_xx = den ’ n= 0’1125"' ’ (354)

where P, is a vector whose elements are polynomials in ¢
and its x-derivatives.

For the partial differential part, the equation analogous
to Eq. (3.31)is

/2-(1="t;<éxx)é(ré)z( f gfgex)'(l,."’zzén)é( J 214%)
+ DL 28,
+ w:);,i( f q,_ggx)a: 2g4,.). (359

The energy densities of the higher-order CNSW equations
are given by

1
T,,=¢_'f S, (Ad)dA. (3.56)
0
where .#, is a function defined by
S, (@) =L"gs,, - (3.57)

Benney!” has derived an infinite number of conserved densi-
ties for the case of nonzero vorticity. These reduce to an
infinite set for Eqgs. (3.49) if the motion is required to be
irrotational. The first four densities 7', in Eq. (3.56) have
been found to be equivalent to the first four derived from
Benney’s work.

In the same manner as for the modified KdV equation,
these densities may be alternatively identified as momentum
densities of the higher-order CNSW equations, i.e., it may be
proved that

¢ (L2t + Iop)]=d, T, +d.X,. (3.58)

E. The nonlinear Schrédinger equations

The nonlinear Schrédinger (NLS) equations may be
written in the form

—izg; + Nrs . -0, (3.59)
where
o-(2)ar- ()
= ((1)’ _01) (2 Pauli spin matrix),
and ,
N d.+o% 6 ot [4 o
I
Note that
Q’g=(dx;+<é*f<é'z)g- (.61)

The relation identifying an infinity of conserved densities as
energy densities of an infinity of higher-order NLS
equations,
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¢ IN(—ig; + Nep )] =d. T, +d.X,,,, (3.62)
is proved in the same way as that for the modified KdV
equation, generalized to the vector case.

In the integrodifferential part, the anticommutation re-
lation analogous to Eq. (3.17) is

LN"8Y) = —gW"Lf*)+4d.Y,(f.9),

where

Y, (fg) = _i; @N “ZHOEN " 10)

(3.63)

+ f @N'f*rd f(;zz""";g*)-g . (3.64)

The analogous result to Eq. (3.20) is

N'1$.=P,, n=0,1,-. (3.65)
In proving Eq. (3.65), it should be noted that
N'g=d (N*7g) +2 ¢ *[$(N* g)]
+@) [ eV 20— gt [ 40 o).
(3.66)

The second-last term in Eq. (3.66) will be a polynomial by
the inductive assumption, and the last term in that equation
may be dealt with using relation (3.63).

In the partial differential part, the equation analogous

to Eq. (3.31) is
PN "1 5),(p)
~(za. + o8 [or0 ) 0u(ct + 0 [ 470)

+ et [ @rar )
~ o) [ v
- 2'(£ Y +18* f@*‘ té) f ()»WN"*163)

b o [ 60 D et (oD
The energy densities of the higher-order NLS equations

N'(—irg, +N2) =0, n=12.- (3.68)
are
i
Tn=drf N, (Ag)dA, (3.69)
0
where the vector function 4", is defined by
N (B)=N"1$;, n=01.2,. (3.70)

The first five of these densities have been found to be equiv-
alent to the five densities presented by Zakharov and Sha-
bat, '® from the infinity of conserved densities they derive for
the NLS equations.

As in the previous cases, it is straightforward to show
that these polynomial conserved densities may be alternati-
vely identified as momentum densities of Eq. (3.68), i.e.,

¢ (N (—igg, +N$p)]=d. T, +d.X,. (37D
A further result for the NLS equation is that the densi-
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ties 7, may also be associated with an infinitesimal gauge
transformation of the first kind, by the relation

(g y[IN"(—imp. + Ng)]=d, T, ., +d.X,_, .

(3.72)
A gauge transformation of the first kind is given by
d—>pec, p* >pre ", (3.73)
so that for infinitesimal ¢,
Sp =lep, O*= —iep*, (3.74)
that is,
o¢ = ierd . (3.75)

The integrodifferential part of Eq. (3.72) is proved by noting
that

() [N (=it )]~ —¢,N"$*%, (3.76)
using Eq. (3.63), and that
Ng*=14, (3.77)

and by using the partial differential part of Eq. (3.62).

The partial differential part of equation (3.72) is proved
by using Eqgs. (3.65) and (3.61). Note that in the case of the
NLS equation, invariance (of the action integral) under the
gauges transformation (3.75) implies conservation of the
number of particles,

fl 6 * dx .
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Noether’s theorem is applied to the infinity of polynomial conserved densities possessed by a
general class of nonlinear evolution equations. The densities are identified on the solution sets of
higher-order enveloping equations as canonical energy or momentum densities, and a new

recursive formula is derived for these densities.

1. INTRODUCTION

An infinity of polynominal conserved densities
(p.c.d.’s) { T, } is derived for the class of nonlinear evolution

equations
Fy=01r, +24,(L)or =0,

where A, is entire in its argument,

—d, +2qf rdx, —ZqJ qgdx
=L U ~- . (1.2)
2 o f rdx, d. —2r f gdx

(o) =)

B 1,0) d
1.—(0’_1 ’ dx dx’

r,=dr/3t, r.=dr/dx,
and = means “equals for solutions”, and where the field
variable r and its derivatives are assumed to vanish on the
lower boundary [x = — o] of the integrals. The derivation
extends to the more general case that 4, is a ratio of entire
functions, under certain assumptions, discussed at the end of
Sec. 2.

The class of equations (1.1) was shown by Ablowitz et
al.! to be solvable by the inverse scattering transform, and is
already known to possess an infinity of p.c.d.’s'? However,
the derivation presented here uses the Lagrangian formalism
and Noether’s theorem, which has some advantages when
dealing with conservation laws. What is perhaps the main
point of this paper is interpretative: that each of the infinity
of p.c.d.’s T, is identified as a canonical energy or momen-
tum density of the higher-order enveloping equation

F,=L‘F,=0, (1.3)

where k = n —1 for a momentum density, and k <n —1 for
an energy density. The energy result is proved in Sec. 2, and
the momentum result follows in Sec. 3.

The solution sets of equations (1.3), for k> 0, contain
the solution set of equations (1.1), so that the T, are identi-
fied as energy or momentum densities on enveloping solution
sets. The enveloping equations (1.3) are integrodifferential,
and are of no known interest in themselves.

The other advantage of the Lagrangian approach used
here is the derivation of a recursion formula for the 7,

(1.1)
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which to the best of the author’s knowledge is original:

T, = r-fL,, Arydi, n=01,.-, 1.4
0

where

L(@=LL,_ (@),
and

Lo(r) = 24,(L)or (for energy densities) (1.5)
or

Lo(r) = or (for momentum densities) . (1.6)

Note that the integral over A merely introduces a different
constant factor for each term in the polynomial L,,. The for-
mula (1.4) differs from the algebraic formula of Konno et
al.,” which has no integral, and expresses T, in terms of all
previous T, i < n. They derive two sets of conserved densi-
ties ¢ §* and ¢ {? and for /<4 this author finds that ¢ ¢ is
equivalent to ¢ {, and is also equivalent to the T, obtained
from Eqs. (1.4) and (1.6). Hence, the two formulas are likely
to be equivalent.

The set of equations (1.1) contains the Korteweg—de
Vries, the modified Korteweg~de Vries, the Sine-Gordon,
and the nonlinear Schridinger equations. Hence, the results
of this paper contain many of the results of a previous paper,’
excluding the case of the classical nonlinear shallow-water
equations. Appendix A contains a short note relating the
operator L to the operators used in that paper. Appendix B
applies the analysis to linear equations, with the result that
any existing conservation law for the equation

F=0 (L7

gives rise to an infinity of conservation laws for that equa-
tion, each of the infinity being identified via Noether’s theo-
rem on the enveloping solution set of the equation

d¥(F)=0, (1.8)

in the same way as the original density is identified on the
original solution set {that of Eq. (1.7)].

Appendix C shows that if » = + ¢* in the nonlinear
equations (1.1), an infinite set of conserved densities corre-
sponding to gauge invariance of the first kind may also be
derived. This set coincides with the set of energy or momen-
tum densities (1.4), so that if r = + ¢* we have an alterna-
tive identification of that set. This leads to the speculation
that perhaps the same may be true for the nonlinear equa-
tions (1.1) as a proved in Appendix B for linear equations,

n=12,..
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that any existing conserved density leads to an infinite set of
conserved densities.

2. THE ENERGY DENSITIES OF THE ENVELOPING
EQUATIONS

An infinity of energy densities will be derived, one for
each of the enveloping equations

G,=L"[om, +L"or]=, n=0,1,.., 2.1

where m is some positive integer. This infinite set of energy
densities will then constitute an infinity of conserved densi-
ties for the equation G, = 0, since the solution set of that
equation is contained by the solution sets of the equations
G,=0,n>0.

The energy relation identifying T, as an energy density
of the nth equation (2.1) is

r,.G, =d,T, +d.X,, 2.2)
since this associates 7, with invariance of the action integral
(if it exists) under the infinitesimal time translation
5r = — er,, where € is an infinitesimal parameter (Ref. 5,
Sec. 2). Equation (2.2) will be proved to hold for all positive
integers m, n, and a recursive formula for T, will be obtained
from the Lagrangian formalism used in the proof.

The proof of Eq. (2.2) is attempted in two parts: the
partial differential part

r,L"*"or)=d,T, +d X, , 2.3)
and the integrodifferential part

r,(L"err)=d. (X, —X)). 2.4)
The following anticommutation relation will be useful in
both parts:

Lemma: For arbitrary vector functions f and g of r and
its derivatives,

f(L"rog) = — g(L*rof) + ‘;ix W, g), @.5)

where

W, (f, g)= g) {(orLlirof)-(rL" '~ 'rog)
+2 [ Ji mr-(rL"ﬂrof) dx]
X [ Ji ocr-(‘rL'l “i~lrog) dx“ . (2.6)

Proof: The proof is inductive, straightforward, and
omitted.

A. The partial differential part

Application of lemma (2.5) implies that the lhs of Eq.
(2.3) is a polynomial in r and its x derivatives (hence the
name “partial differential part”) as follows:

The operator L may be written

QL= —7d, +2(o-r)f rT 2.1.1)

when it operates on some vector. Hence, L*or is partial dif-
ferential if
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d

r-(tL*"'er) = —P, _,, (2.1.2)
dx

where P, | is partial differential.
Assume Eq. (2.1.2) holds for all positive k<#n. Then

r(tL"or) = — (rr)-[L"ro(t1)], 2.1.3)
= (tr)-[L"ro(sr)] —d, W, (5T, 1), (2.1.4)
using the properties
a-(tb) = (ra)b, a-(ob) = (ca)b,
oo = v =identity, or= —710. (2.1.5)
Hence,
" d
r-(tL"or) = — } — W (a1, 1), (2.1.6)
dx

where W, is a polynomial by the inductive assumption.
Since

r(rLor) = A (—r, 2.1.7)
dx
the induction is started and Eq. (2.1.6) is proved for all n > 0.
Note that if L*or is partial differential for some k <0,
then L"or is partial differential for all n>k.
Since there are no integral terms on the 1hs of Eq. (2.3),
a Lagrangian density will be derived for the equation

L*or =0, k=mm+1,.., (2.1.8)

and conventional Noether’s theorem will be applied to that
Lagrangian density to obtain Eq. (2.3).

According to Atherton and Homsy,’ a Lagrangian den-
sity exists for Eq. (2.1.8) if the Frechet derivative of the lhs is
symmetric, i.e., if for arbitrary vector functions ¥ and p,

V(L) (p)=p-(L, ) (), (2.1.9)
where

L, =LL, ,
and

L, =L"or, (2.1.10)

where ~ means equals within the x derivative of a function
of r and its derivatives. This function must vanish when eval-
uated on some boundary at which its arguments vanish. The
Frechet differential in the direction p of a vector function F
of the vector u is

(B, (p) = lim F@ TP —F Q) @1.11)
e—0 €
and if G is a polynomial in ¢ and its derivatives,
= 0G ( d )i d'¢
G' == —_— | — 5 = 2.112
) ,Z’o 9, \dx P o ( )

Equation (2.1.9) will be proved by induction, assuming
it holds for all positive k<#n. Then

Y(L, . )i (p) = $(L); (PXL,) + ¥ [LL. ) (p)], (2.1.13)
where
2L (p) = 20'pfr-‘r + 2mfp-r . (2.1.14)

With some manipulation and application of the inductive
assumption, Eq. (2.1.14) becomes
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YL, )i(p) =(orlrop)(L, _,) (orLrod) + [p-(o) + Y-(ap)] | r-(sL,)

~20:6L,) [$01) + 2p(sLrow) [r(eL, _) ~ AorLrop) L, ) [plom).

The first term on the rhs is symmetric by the inductive as-

sumption, the second term is clearly symmetric, and the re-

maining terms may be explicitly shown to be symmetric.
Since for m =0,

2ip-(L); (p)=it-(arp, ) + ip-(o7,) (2.1.16)
and
QYL (p)= — b, -(op,) —4gri-(op)
_2q2p( 1 >¢(l> —2Fp(2)1//(2) , (2117)
where

(2 !
p= (,ﬂ)’ b= (W’ ;
the induction is started and Eq. (2.1.9) is proved for all
k, m>0.

Hence a Lagrangian density exists for equation (2.1.8)
and is given by’

1
L= r-f L.(ir)d. (2.1.18)
0

Since the Lagrangian density has no explicit time depen-
dence, energy is conserved in Eq. (2.1.8), and the conven-
tional Noether’s theorem* gives the energy relation for that
equation as

r(L“*"or)=d,T, +d X,

where

k=0,1,... (2.1.19)

1
T, =%, = r-f L.(Ar) dA . (2.1.20)
(]

Note that Noether’s relation (2.1.19) holds for all values of
the field variable r, so that we are not restricted to solutions

of Eq. (2.1.8).

B. The integrodifferential part
The application of Lemma (2.5) to the lhs of Eq. (2.4)
gives (using v = — or)

l','(L"O’Tl',) = - % i Wn (l',, rl) s
X

2.2.1)
where

W@, r) =3 {@lror,) (el 'rar,)

i=0

+ Z[J}»(rL"‘rm',)] [fr-(rL"‘“‘rcr,)” .

(2.2.2)

Theintegral terms in }#, are not in general acceptable as flux
terms in a conservation equation, since they do not vanish

when evaluated on a boundary at which r and its derivatives
are assumed to vanish, e.g.,x = — oo. However, foralli >0,

fr-(rL’rar,)= ~fr-(1'G,-)+fr-(fL‘+'”ar), 223
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(2.1.15)

= — fr-(‘rG,-) — AW (T, 71), 2.2.4)

where W, (1, 1) is partial differential, using Eq. (2.1.6).
Hence, the integral terms in W, (r,, r,) are equal to polyno-
mial terms, within the integral of an expression which van-
ishes for solutions to the original equation G, = 0. However,
the integral does not necessarily vanish for all solutions to
the equation G, = 0, so that it will in general lead to noncon-
servation of the energy density for the equation G, = 0.

The sum of the results (2.3) and (2.4) gives the result
that the density

T, = r-rL,, Urydi, 2.2.5)
where ’

L (@=LL, (0 2.2.6)
and

L,(r) = L"or, .27
is an energy density for the equation

G,=L"(orr, + L"or)=0. (2.2.8)

The energy density T, is not in general conserved for all

n

solutions to Eq. (2.2.8). In fact,
d, f T, dx

- ;’ U_:(r-fc;,.) dx] Ui(r-fcn ) dx} .

(2.2.9)

The rhs of Eq. (2.2.9) is nonzero in general for solutions to
the equations G, = 0, k> n/2. However, for the subset of
the set of solutions to Eq. (2.2.8) which is the solution set of
G, = 0, the source/sink terms on the rhs of Eq. (2.2.9) van-
ish, and 7, is conserved. Since this is true for any m, 130,
the densities { 7,,; n =0, 1, ...} constitute an infinity of
p-c.d.’s for the equations G, = 0.

The derivation in this section clearly extends to the gen-
eral set of equations (1.1) if 4, is entire in its argument, If 4,
is the ratio of entire functions, then the derivation applies
provided that the original equations (1.1) are partial differ-
ential, and that a Lagrangian density exists for 4,(L)or and
for L4y (L)or. To see this, let

24,(L)or = -—&L——(n':P,

M b L*

where a,, b,, are (possibly zero) constants, b,, is nonzero,
and P is a polynomial in r and its x derivatives. Then

[ i by Lk] [244(L)or] = En:a,, L"er,

K=o
=Ya,Py,
n

(2.2.10)

(2.2.11)

(2.2.12)
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where P, is partial differential by the results of Sec. 2.A.
Hence, since L'is linearly independent of L for i #5, and
since Lv cannot be partial differential if v contains an integral
* _, L'[24,(L)or] is partial differential for all i<M. Fur-

—w?

ther, since for all >0,

M
LY b L [244(L)or] = >a,L"*er,

k=0

(2.2.13)

L'[24,(L)or] is partial differential for all ;.

Hence, the Frechet derivative of L[24,(L)or] exists,
and the analyses of Sec. 2.A and 2.B apply under the above
assumptions.

3. THE MOMENTUM DENSITIES OF THE ENVELOPING
EQUATIONS

The densities 7', derived in Sec. 2 may be alternatively
identified within a trivial sign as momentum densities of the
enveloping equations (1.3) by proving the momentum
relation

r.-[L(err, + L") =d,(— Ty, ) +4d.(X,.,), (3.1
since this is the Noether relation associating 7, , ; with the
field variation ér = — er,,i.e., with an infinitesimal x trans-

lation. The proof of Eq. (3.1) is straightforward, using the
results of Sec. 2 and noting that

2iLer = o7y, . 3.2)
The integrodifferential part is, using Lemma (2.5),

r,(L"err,) >~ — r,-(L"orr,), (3.3)

~—r-L,, o1, 34

which using Eq. (2.1.19) gives

r.-(L"orr,)~d (—-T,.,), 3.5
where

T,., = r--L]L,,+1 (Ar)dA, (3.6)
with

L,,,(r)=LL,( (3.7
and

L(r) = or. 3.9

Note that the momentum densities start with L, = o,
whereas the energy densities start with L, = 24,(D)or.

The partial differential part is

r(L"*"er) =r (L"* " " 'otr,), 3.9)
and application of lemma (2.5) to the rhs of this gives

r.(L"* "or)~0 . (3.10)

4. COROLLARIES

An immediate corollary to Sec. 3 is that the set of
equations

orr, + L'd(Lyor=0, n=0,1, .. “.1)
(where A, is polynomial in its argument) has the same infi-
nite set of p.c.d.’s { T', }. The set of equations (4.1) is soluble

by the same inverse scattering method, since it belongs to the
AKNS class.' In the particular case of the KdV equations
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[r=1/v6,9g =¢,/v'6, Ai(g) = ¢°] this set has become
known as the Lax set.

The results of Sec. 2 may be used to investigate the
p-c.d.’s of the equations

L"err, +or =0, m=12,... (4.2)

In particular, it may be shown that for the first m energy
densities T, of the enveloping equations, T} is not conserved
for Egs. (4.2), since for k < m,

m—1
dT, +d X, = — dx[ S r(tL'ror,)dx

i=kv —
Xf r(rL* "~ ~'rgr))dx|, 4.3)

where X, contains acceptable flux terms, but the terms on

the rhs are not acceptable flux terms for Eq. (4.2). Integra-
tion of Eq. (4.3) over x, assuming the field variables and their
derivatives vanish at x = + o0, gives

0 M — oo
d,(f dex)é =S eelivor,)dx

=k —

XJ (rrL "=~ txor)dx, (4.4)

i.e., the quantity f~ _ T, dx is not constant in time, since the
source/sink terms on the rhs of Eq. (4.4) do not vanish for
solutions to Eq. (4.2).

If k>m, T, is conserved for solutions to Egs. (4.2) so
that Egs. (4.2) have an infinite set of p.c.d.’s { T, k>m] that
diminishes with increasing m.
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APPENDIX A
The Korteweg—-de Vries equation

In previous papers>* the operator which generated
higher-order equations for the KdV equation

b +Sihr+ 8. =0 (AD
was given as
H:da@¢+w4 . (A2)

In this case’, r = 1/1/6 and ¢ = ¢, /16, so that

. —d. [ —u.]s. -

%fa dx + %J¢x

and
H’ %¢xx J¢x + f‘l;¢x J¢Xx
(21')2L2 = . (Ad)
07 di + %¢x - %f¢xx
Note that
Hvy
() = (5): A3
(02)) 0 0 (AS5)
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The modified Korteweg-de Vries equation

In a previous paper’, the operator generating higher—
order equations for the modified KdV equation

P +8162+04=0 (A6)
was given as

M=di+11+3.] 4. (A7)
In this case’, r = — ¢ =, /V/6, so that

—d -8~
2L = (A8)
Bifo,  d+wfe

and

QiPL = (a’ b) , (A9)

b, a

where

a=d2 +11 + ¥[8~ 19, .

b=it:[8+16, .. (A10)
Note that

@iyL? (") = C;”) . (Al1)

v v

The Sine-Gordon equation

The Sine~Gordon equation

., +sing =0 (A12)
“has the operator®

S=di+47+4[:. (A13)

Sincein this case' r = — ¢ = @, , and since operator S differs
from operator M only by a scale transformation in ¢, the
results are identical within that scale transformation to those
for operator M, and are omitted here.

The nonlinear Schrddinger equation

The higher-order equations for the nonlinear Schro-
dinger equation

ig, + .. +P°0* =0 and conjugate (Al14)
are generated by the operator?
d.+o*fs.  —gfor

N = . (A15)
sfo.  —a—¢[s*
The substitutions' g = — r* = ¢ /1/2 give
~d, —s[sr,  —s[s

2il = , (A16)

s*[es,  d +e+[s
= otNro, (Al17)
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where o are 7 are defined at Eq. (1.2).

APPENDIX B
Infinities of conserved densities for linear equations

Assume that the linear equation

F@w)=0 (B1)
has the conserved density T(u) associated with the infinites-
imal transformation Su via Noether’s relation

SuF (u) = d, Ty(u) + d Xou) . (B2)
Replace u by v, = d v, where n is a positive integer, in Eq.
(B2), to get

svnF(vn) = dt To(vn) + dxXO(vn) . (B3)
Since Fis linear,
F@,)=dF@), (B4)

and assuming that 8u is linear in u (i.e., T, is quadratic), Eq.
(B3) becomes

Svd¥F()=d,T, +d X,, (B5)
where

T,(v) = To(v,)
and

X,0) = Xoo,) = D7 Gz~ " F. (B6)

i=1

Hence, T, () is conserved for solutions to Eq. (B1), and is
associated via Noether’s theorem with the variation éu on
the higher-order enveloping equation

dVF(u)=0, (B7)

i.e,, T, isidentified on the enveloping solution set of Eq. (B6)
in the same way as T} is identified on the solution set of Eq.
(B1).

Hence, if energy is conserved in Eq. (B1), there is an
infinity of conserved densities for that equation, each identi-
fied as an energy density on the solution set of each Eq. (B6)
n=1,2..).

APPENDIX C

The densities T, derived in Sec. 2 may be alternatively
identified as being associated with an infinitesimal gauge
transformation of the first kind® if r = +- ¢*, by proving the
relation (which holds even if r# + g*)

(r)-[L"(zor, + L"01)] =d,T, +d X, . (c1).
The transformation 8r = rr is a gauge transformation of the
first kind if » = + g*. Equation (C1) is easily proved by us-
ing the results of Sec. 2. The integrodifferential part is, using
Lemma (2.5),

(rr)-(L"ror, )~r,(L"or) , (C2)
and result (2.1.19) may be applied to the rhs of Eq. (C2) to
get

(wr)-(L"ror,)~d, T, ,

where

(C3)
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T, = r-flL,1 Ar)da, (CH
(o]
L,=LL, ,,
and
Ly)=or. (C5)
The partial differential part is, using Lemma (2.5),
(rr)(LY *m"or)=~0 . (C6)

Note that infinitesimal gauge transformations of the first
kind may be associated where appropriate, with conserva-
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tion of the number of particles (e.g., in the nonlinear Schro-
dinger equation), of wave action, or of charge.®
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The nonabelian Toda lattice—Discrete analogue of the matrix Schrédinger
spectral problem
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We investigate the discrete analog of the matrix Schrédinger spectral problem and derive the
simplest nonlinear differential-difference equation associated to such problem solvable by the
inverse spectral transform. We also display the one and two soliton solution for this equation and

tersely discuss their main features.

1. INTRODUCTION

Within the class of nonlinear differential-difference
equations which so far have been integrated by the inverse
spectral transform (IST), the Toda lattice, historically the
first in this list,' is considered to be the most interesting
from the physical point of view. Actually, this system pro-
vides an integrable mode! of one-dimensional classical crys-
tals and moreover it is now established that its quantum ver-
sion is also solvable.” In the present paper we investigate the
nonabelian (matrix) generalization of this model, namely we
consider the following system of differential-difference
equations:

i[G.(n)G “n)]=G@m+1)G 'n)—GnG '(rn—1),
at i

where G (n) is an arbitrary (in general, complex valued) non-
degenerate NV X N matrix, depending on the integer variable ‘

.

I - 0 I B(n An) 1
0 0 I Bn+l) A@+1) Of
\< 0 0 0 I B(n+2) )
0 0 —A®m 0 0
M=].- 0 0 0 —A@n+1) 0
0 0 0 0

—A(n+2)

n and on the continuous real variable ¢, G (n) being its -
derivative. '
As a discrete version of the principal chiral field modet
a. . 4 _ 8 ., ,_ Og
at(gg )= o (&g ") (g —b;)
system (1.1) was first introduced by Poliakov,” who also dis-
covered for it an infinite sequence of conserved quantities.
It is easy to show that system (1.1) can be cast in the Lax
form:

L=[L,M].
Namely, introducing the new fields:
An)=G G+ 1; Bin=G '(nGn); (1.3)
Eq. (1.1) can be identically rewritten as:
An)=A(n)B(n+ 1)— B(n) (n),
Binj=A(n)—An—1). (1.4)

The Lax representation (1.2) is achieved with the help of the
two operators:

(1.2)

(1.5)

o o o -
.

*Permanent address: Landau Institute for theoretical Physics of the Acade-
my of Sciences, Moscow, USSR.
®Presently at Rockefeller University, New York 10021. The research re-

ported in this paper has been supported in part by C. N. R. grant n.
78.00919.02
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In the following section we shall study the direct and

inverse spectral problem:

Ly =4y (1.6)

for the operator L defined here above, in the general case,
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when G (n) belongs to GL(N, C). In Sec. 3 we give the time-
dependence of the spectral data of the operator L which cor-
responds to the dynamics given by Eq. (1.1). In Sec. 4 we first
display the one-soliton solution for our problem, and discuss
its behavior: we shall see that in the general complex case
such solution is not well behaved, since a bounded initial
datum can evolve in a solution diverging in a finite time; to
prevent singularities we are thus forced to require that G (n)
be real valued (G (n)eGL{N, R}). In the same section we also
discuss the two-soliton solution, which as in the abelian case,
exhibits the typical phase-shift phenomenon and, for special
choices of the spectral parameters, has the characteristic
“breather” features.

2. DIRECT AND INVERSE SPECTRAL PROBLEM

The spectral problem (1.6) will be ireated under the
most natural boundary conditions, i.e.:

Gm)—G,, G0 (n— + o), (2.1a)
and hence
A(ny—I, B(n)»0 (n— + o). (2.1b)

Due to such boundary conditions, we have a twice-degener-
ate continuous spectrum, which can be parametrized by set-
ting A =z + z'!, where z belongs to the unit circle in the
complex plane; consequently, Eq. (1.6) can be rewritten in
the form:

(n —1,2) + B(n)y¥(n, 2) + A (m)Y(n + 1, 2)
= @+ 2")W(n, 2), 2.2)
¥(n, z) being a fundamental matrix solution. We define the

Jost matrix solutions ¥, (n, 2), @ , (n, z) by the following
asymptotic behavior:

lim ¢, (n,2)z%¥" =1
n— + o«

(z] =1) (23)

lim ¢, (n,2)z%"=1

n— — oc

From Eqgs. (2.3) it obviously follows that

¢'(n’ Z) = ¢_(n, Z'l) _
@n,2) = @.(n,z7"). (jzh=1 2.9

A

The monodromy matrix M = (; §) for |z| = 1 can be intro-
duced in the standard way:

@_(n,z2)=19_(n,z)alz) + ¥, (n, 2)b(2), (2.5a)
¢’+(n’ Z) = 'l’—(n’ Z)C(Z) + ¢+(n’ Z)d (Z), (2~5b)

where, due to Eq. (2.4) the matrices a(z), b (2), ¢{z), d (z) are
related by:

c2)=b(z"");, diz=alz™". (2.5¢)

It is easy to show that ¢ (n, z), ¢ _(n, z) are analytic
inside the unit circle, and consequently ¥ _(n, z), @ . (n, 2) are
analytic outside the unit circle. Let us consider, for example,
¥ ... By introducing

xnzy=z""Y,(n2;, xinz) — I, (2.6a)

we get, from Eq. (2.2):
xin—1,2)+ (zB (n) — 2> — 1)y(n, 2)
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+ 224 (njy(n + 1) = 0. (2.6b)

Thus, as the solution exists for |z| = 1, it will exist a fortiori
and be bounded also for |z| < 1; moreover we have

lergx(n, =1, (2.6c)

G (n) = G(n)f;[z‘ ", 2) — 27" g —1,2) ], .
(2.7a)

In a similar way it can be shown that @_(n, z) has the same
analytical properties, and that

G '\(n)= [ling(p_(n, z)z"]G - (2.7b)

In order to prove that a(2) is also analytic inside the unit
circle, we shall first assume that the “potentials™ A (n) — I
and B (n) are on compact support. In this case, there exists an
integer N, such that

@(n,2)2" =a(@) +22"b () Vn>N, |z|=1. (2.8)

On the other hand, for potentials on compact support, it is
clear that both a(z) and b (z) can be analyticaily continued
inside the unit circle (actually, they depend polynomially on
2) so that Eq. (2.8) holds for |z| < 1 as well. But, if the poten-
tials A (n) — I and B (n) vanish rapidly enough as |n|— 0,
they can be uniformly approached by sequences of potentials
on compact support, and thus it still holds true, for such
potentials, that:

a@z) = lim @A(n,2)z" (2.9a)

A 4
which means that a(2) is analytic inside the unit circle. Fur-
thermore, from formulas (2.7b), and (2.9) it follows that

a(0)=G ;'G.. (2.9v)
In order to treat the bound states, we shall assume a(z)
to be a nonsingular matrix on the unit circle, so that, for
|z] < 1, its determinant can have at most a finite number of
zeros z;(j = 1,..., N) which will be taken to be simple.
Hence, in a convenient neighborhood of z;, we can
write:
alg) = G\l — B) + (z— 2)d'lz) + O [z — ]

(a1 = Lata)),

where C, is a nonsingular matrix and P, is some one-dimen-
sional projector, such that

(2.10)

Ple)=|¢), Pi=P, (2.11a)
where, of course

alz)|¢) =0. (2.11b)
From Eqgs. (2.10) and (2.11) it follows that

a”'(z) = lo) PCz—z) ' +0(1).

N {618 'a(z)|e;) !
(2.12)

Introducing the row vector (d;| = (c;|C; ', such that
(d;|a(z;) = 0, we can cast formula (2.12) in the simpler form:

a'@) = —pzle;) (dlz—2)'+0(), (2.13a)
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where
pr = —(d)lz,a'@)le))". (2.13b)

Finally, from formula (2.5a), taking into account (2.11b), it
follows that there exists some vector |¢; ), such that

@-(n, Z; lcj> = Yudn, zj)]cj>' 2.14
This formula, together with the asymptotic conditions (2.3),
show that the solutions of Eq. (2.11b) provide the bound
states of the operator L.

We now turn to the inverse problem, in order to reconstruct
the potentials from the spectral data. To this aim, we define
the matrix function
-1
O, 2) = [¢7_(n, 2a'(z), |z|< l]’
¥n, 2), |z >1
which is obviously analytic both outside and inside the unit
circle, and has on the unit circle the jump [see Eq. (2.5a)]
AD(n,z) =1, (n, 2)b(za” '(z). (2.16)

Moreover, it satisfies the “normalization” condition:

2.15)

lim & (n,z)z" =1

n-»+ oo

Hence, we can write for it the usual Cauchy formula

D,z =14 5 )

j=1Z — Zj
x§ o antaln 2ol
ol =1 zZ—z ’
where [see Eqs. (2.13} and (2.14]]
Rj(”) = —g@_|n, Zj)z,“+ ! j"})(djl
= —¢(m z)2 * pjle;)(d).
Taking into account (2.4) and (2.15), we can write

vimz)=3(1- 3 vamzg o)l /

'~z )) + (2m‘)—‘f e Yulm 2 E)a” )

’ —1
zZ —2z

(2.17)

+ (2mi)~!

(2.18)

(2.19)

G=1,..,N) (2.20)

which, together with formula (2.18), written in terms of ¢,,
defines uniquely ¥.(n, z) (|z| <1). Consequently, from (2.18),
we know @ (n, z) in the whole complex z-plane, and hence
@.(n, 2)a’'(2) inside the unit circle, according to definition
(2.15).

Therefore, we can assert that the spectral data

S={b@a'(2), |z| = 1;z, p;|c;){d}]|
(7] <1,j=1,.N)] @.21)

together with the boundary conditions (2.1), enable us to
reconstruct uniquely the potentials G (n), G (n), taking into
account formulas (2.7) and (2.9b).

To end this section, we notice that from the Cauchy
formula (2.18) it is straightforward to obtain the proper dis-
crete version of the Gel’fand-Levitan—-Marchenko equation.
Assuming that ¢,(n, z) admits the triangular representation:

¥.(n,2) = i K (n, m)z™,

m=n

(2.22a)
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where

K@m,n)=I lim K@m,my=46,,1

n— + oo
and inserting this representation in formula (2.18), written
in terms of ¢., we get the following “integral”” equation for
KMn)(>n)

KmD)+Fa+D+ 3

(2.22b)

K(n,m)F(m +n)=0,
! (2.23a)

where

dzz" 7 'b(2)a’\(2).
) (2.23b)

The potentials A (n), B (n) are easily obtained in terms of
K (n, m) by inserting formula (2.22a) into the eigenvalue
equation (2.2) and requiring compatibility for the lowest
powers of z. This yields

AW =I—K(n—-1L,n+D)+K@nn+2)
~K’(mn+ 1)+ K(n—1,nK(m,n+1),

(2.242)

Bn)=Kn,n+1)—K(@n—1,n) (2.24v)

of course, from A4 (n), B (n), once given the boundary condi-
tions (2.1a), one can recover uniquely G (n), G (n) according
to their definition (1.3).

F(n) = iz}'pj le){d; | + @mi)! |
j=1 il

3. TIME EVOLUTION OF THE SPECTRAL DATA

The Lax equation (1.2) implies the following time evolu-
tion for the eigenfunctions ¢(n, A )

(L — AI)[§(n, A )+ My(n, A)] =0, (3.1)
so that we can assert that
Pn, A )+ Myin, A) = ald Win, 1), (3.2)

the function a being determined by the boundary conditions.
In particular, it follows that the Jost solutions ¢  (n, z),
@, (n, z) obey the evolution equations

¥, m2[g, (n2)]+ M+ /AL, (n2)
Xlg, (n2)]=0. (3.3)
Performing the time derivative of Eq. (2.5a) and inserting

there formula (3.3), we get the following evolution equations
for the elements of the monodromy matrix a(z), b (2)

dfz,1) =0, (3.4a)
biz,t)=(z—z bz, 1). (3.4b)

Hence, the reflection coefficient R (z, 1) = bz, t) a(z, 1)~
evolves in time according to the formula:

Rz, t)=R(z, O)exp[(z —z~ ')t]. (3.5)

As for the bound-state spectral data, their time evolu-

tion obtains by the requirement that for the bound state
eigenvector

[¥in.2)) = @_n, 2)|¢;) = ¥..(n, 2) | ;) (3.6
the function a be zero. Thus we get:

le;(2)) = [c;(0)explz 't), (3.7a)

Bruschi et al, 2751



e;{1)) = |¢;(0))explz;¢). (3.7b)

Recalling now formula (2.13a) and Eq. (3.4a), from (3.7a) we
obtain

p,6)4d;(¢)| = p,(0)(d (0) exp( — 2 '1) (3.8)
whence it follows that
p;(t)|e; (e ) 4d;(t)] = p;(0)le;(0)) {d;(0)|exp[(z; —z ') .
(3.9)

The above formula can be cast in a more convenient
form through the following definitions

_lepal Y =p.o, 3.10

i e o; ={d;l¢;); v, =p;0; (3.10)
which yield

Pt)=P,0), (3.11a)

v,(t) =v,(Olexp[(z; —z7 ")t ]. (3.11b)

4. ONE AND TWO SOLITON SOLUTIONS

As in the abelian case, the N-soliton solution can be
evaluated by a purely algebraic procedure, starting from the
Cauchy formula (2.18) and setting there b (z) = 0. Then Eq.
(2.20) gives rise to a system of linear algebraic equations for
the N unknown matrices ¥ (1, z;). In particular, the one-
soliton solution reads:

G(n)=G_{I — sinhfexp( — &)
X {1 —tanh[¢(n — 1 —€)11P,}, (4.1)
G (n) = G sinh*Cexp( — {sech®[£ (n —} — £)1P,,  (4.2)

where we have set
V1 ] (4.3)

zy=exp(—§); &= (Zgrlln[Zsinhg

We notice that, due to Egs. (3.12), the projector P, is
constant in time, as it is, of course, z,, while the parameter £
evolves according to the formula

£@)=60)—(sinh §/5) 4.4)
which means that the (complex) position of the soliton
moves with the (complex) speed v, = — sinh § /4. In terms

of the more familiar fields 4 (n), B (1) the one-soliton solution
reads:

A (n) = I 4 sinh®¢sech’[&(n+ 1 — £)1P,, (4.5a)

B (n) = sinh’¢sech[{ (n — 1 — &)]sech[{ (n + 1 — £) 1P,
(4.5b)

It is necessary to remark here that, if z, is not real, there
exists always (i.e., for any initial condition) a finite time for
which the one-soliton solution is unbounded around a cer-
tain point of the lattice. This is a characteristic feature of
complex solutions; to prevent such singularities it is suffi-
cient to restrict consideration to real valued matrices G (n).

We now turn to describe very briefly the main features
of the two-soliton solution, which can be obtained by the
procedure outlined at the beginning of the present section.
We give just the explicit expression of [G ()], which is the
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easiest quantity to evaluate and, on the other hand, provides
all relevant informations. It reads

e B sinhgsinh{, -
[G(n)] G+—I+(‘ 74sinh2[(§1+§z)/2])

x| exple sinbi 17,2, + [explGalsinn)raPy (46
_ 5+ §2\ sinh{ sinh¢,
[CXP( 2 Jasmbiie, + &2y | AP+ BR } ’
where
—1 v .
Z; =exP(—§j); §j =(2;j) 1n[2sinh§j] =12
(4.7a)
P\P,P, =yP,; P,PP,=yP, (4.7b)
7, =1—tanh[{;(n—1 —§)] (j=1,2) (4.7¢c)

the parameters £; evolving linearly in time according to the
formula
sinh{;
§E)=£0 ——1¢ (4.8)

5

It is perhaps worthwhile to remark incidentally the
striking similarity between solution (4.6) and the two-soliton
solution associated to the matrix Schrodinger spectral
problem.®

In order to prevent singularities, we have to require, as
we did for the one-soliton solution, that the matrix G (n) be
real. But now, this “reality” requirement can be fulfilled in
two different ways: either by assuming both the discrete ei-
genvalues and the corresponding polarizations to be real, or
by letting them to be mutually complex conjugate.

In the first case (all parameters real) the situation is
quite analogous to the abelian case. In particular, the two
solitons are asymptotically separated, and moreover it can
be shown that their interaction is such that, after the colli-
sion, the two solitons preserve the shape and the polarization
they had before, just exhibiting a shift in their relative posi-
tion. The easiest way to see this phenomenon is to choose a
reference frame moving with one of the two solitons (for
instance, the soliton 1) and to look at the asymptotic behav-
ior of the solution in this frame, where we have of course,

=1
7, =1 —tanh[{5(&, — £))]
= 1 - tanh [§2(§re] (0) - vrel t)] (49)

Era = £:(0) — £,0); v,y = v, — 1))
Assuming, with no restriction, v, >0, it follows:
[GM]™'G, ~ I+ exp(—& )sinhd\Py+axB,Q,
o (4.10a)

. B B sinh{,sinh¢, -!
(GG, ’+(1 72sinh2[(§1+§z)/2]>

> — oo

X leXP( — &y)sinhg Py + 2exp( — &)sinh{,P,
— 2expl(5, + §2)/2]
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sinh{ sinhg,
sinh[(&, + 55)/2]

(PP, + PzPl)} +a %80,
(4.10b)

where a = 2exp( — 26,£,,(0)), x = exp( — 2v, |t |), B, are
numerical coefficients defined by:

B_ = sinh{,[exp({,) — ysinhd,];

_ ____sinhgsinh{, 2 411
B ﬂ‘/(l 2sinh?[£, + ;z)/z]) 11
and Q is the following projection matrix:
_p-1fexp(— &) 14 sinh’¢ sing, p

0= [Tt Lonic) e,

_ sinh{;sinh¢),

exp[(&y + &2)/2] 2sinh[(£, + £,)/2]
X (PP, + P2P,)]. {4.11b)

Formulas (4.10) clearly show that, but for an inessential
constant matrix, the solution has the same structure both in
the remote past and in the far future, the only difference
consisting in the phase shift

6=ln(z—+)= —2lnll—

sinhg;sinh{,
2sinh?[(¢, + &)/2] |
(4.12)
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In the second case (complex conjugate parameters) the
solution exhibits the typical breather behavior, since it is a
matrix oscillating with the frequency

o = (2p)~ " | Yeosysinhp + pcoshpsing |
S =Py (4.13)

in the reference frame of the center of mass of the two soli-
tons, defined, of course,

§=1(6:61 + &)/ (61 + 62)s (4.14)

which moves with the constant speed v = — sinhpcosy/p.

5. CONCLUSIONS

We want just to remark that the results contained in the
present paper can be useful for the study of the principal
chiral field with zero moment at infinity (i.e. such that g,

&' —0, |[x]->o0), where the standard Riemann problem tech-
nique’ is not applicable.
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An addition theorem for vector Helmholtz harmonics ?
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An addition theorem for the vector solutions of Helmholtz equations under translation of the
coordinate axes is proposed and its results compared with those of a previous addition theorem for
Hansen’s M and N vectors. The resulting comparisons are also separated into their radial and

transverse components.

In a problem of interaction of electromagnetic radiation
with molecules we met the need of relating to each other the
characteristic vector solutions of Helmholtz equations in
two mutually translated systems of spherical coordinates.
These vector functions, hereafter referred to as Vector
Helmholtz Harmonics (VHH), can be written as

AL () = fL(kNTI(®), ¢y

where f; is a spherical Bessel or Hankel function and

Tp® =Y COLLS —ppM+ )Yy, ®F_,
u

is an irreducible spherical tensor of rank-J.! The set of
VHH’s defined in Egs. (1) and (2) is complete and orthogo-
nal and diagonalizes simultaneously the operators J 2, J,, L *
and S 2 for vector fields.’

Our starting point is the addition theorem for Scalar
Helmholtz Harmonics which we rewrite here in a form
slightly different from that reported by Nozawa*:

SLk)Y L (®) = 2 Grovm(—ROgL (kXYY (), (3)
L'M’'
where the quantities
Gomm(—R)=473 LALLM LM)
A

X (kR)Y * ;0 0 (R), @
withr = R 4 r', are the matrix elements in the angular mo-
mentum representation of the free space propagator for
spherical waves.* In Egs. (3) and (4), where f; =j,, ¥; =/,
andg,. =j, ., butwhenf, =#,,

Yi=hy, 8 =Jr r'<R,

Y,=Ji, 8 =h,. 7'>R,

and the quantities
LAMEIM) = [ Yo ViV dD

= [L + 1)L + 1)/4m(2L" +1) 1'*
CLAL"00)CLAL MM —M) (5)

are the well-known Gaunt integrals.’ Substitution of Eq. (2)
into Eq. (1) and application of Eq. (3) yields

“Based on work supported by the U.S. Army European Research Office
through Grant DAERO 78-G-A06.
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AJL(r)_EC(lLJ — M + ) z Grm-imsn(—R)

XgL (kr)Yp p- (£ )§_,‘
which can be written as

A= ZC(I»L,J; — M + ) ;”GL’M",LM+#( —BR)

X Z C(LL"J .M ")g - (kr' )T~ ()
through the use of the inverse to Eq. (2). Now, putting
M =M"—p,
G =Y CLLT; —pu,M' +p)
# R)IC(LLJ, — M + ),

XGL'M’+;4,LM+;4( -
we get

A%(r)_zngL "o 8o (kr' YT (F), (6)

which is the required addition theorem.

Unlike the previous addition theorem of Stein® and
Cruzan’ for M and N vectors, the applicability of Eq. (6) is
not restricted to solenoidal fields. Of course we could add an
addition theorem for L simply by taking the gradient of both
sides of Eq. (3) but the lack of orthogonality of L and N may
be cumbersome. Anyway since

My () = fL(kDX y (®) = — [ (kr )T (@), (7a)
Noalt) =2 VX My,

L+1 172
[(2L+ ) fL—lTIL”L—l

~(5) e T ] (7o)

the theorem of Cruzan can be easily related to our Eq. (6).
Indeed for M, ,, we have

M (r)= — z {gr2 L 8L kr' )T (F)

+ 91. ‘L'~ LLL gL'—l(kr')T}It"lL’—l
+ 91 +1,.L 8L +1(k"')Tf'L'+1(f'l)}» (8)

where on account of the divergenceless characters of M, ,,,
the recursions relation follows
L ' 172 MM
gL 'L’ —1,LL

L'+1)1/2 MM (
gMM
(2L'+1 crenee T\

=0, €)]

© 1980 American Institute of Physics 2754



which can also be proved by direct calculation making use of
the Clebsch~Gordan coefficients. With the help of Eq. (9),
Eq. (8) can be put into the form by

M@= Y {A@L'MLMM, .. (F)
LM’
+B(L'M'LM)N, ., ®)},

where we put

AL'M"LM) = zll},”LL H

4 2

pamsim) =~ gy
and M and N are identical to M and N but for the substitu-
tion of g, tof; . The 4 and B coefficients as defined here
differ from those of Cruzan because of the different normal-
ization chosen for M and N. However, the properties of Cru-
zan’s coefficients are a direct consequence of those of &
which in turn follow from the symmetry and recursion prop-
erties of the G matrix elements® and of the Clebsch-Gordan
coefficients.’>*

The last point we want to stress is that the right-hand
side of Eq. (6) can be easily separated into radial and trans-
verse components with respect to r' through the
equations'®!!
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L
T =(
LL+1 2L+1
TfL=XLM’
L1yz, L\,
™ =( ) —NExX +( )rY .
LL 1 2L +1 (=9 LM 2L +1 M

The resulting equations can be very useful e.g. to impose
boundary conditions on a spherical surface centered at R.

172 12
) (= DEXX,,, _(L“ ) ¢

tY ;. .
2L +1 H
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Particle trajectories in 1/r fields
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The trajectory of a particle subjected to an attractive 1/r force is discussed. The general
mathematical solution is given. Various analytical results are derived including the

representations for the trajectory function.

I. INTRODUCTION

The trajectory of a particle subjected to an attractive
central force varying as 1/r, where 7 is the radial displace-
ment is usually avoided in books on classical dynamics.' Al-
though this force appears at first glance to be unnatural, it
has been well approximated in devices such as electrostatic
cylindrical spectrometers.” The general analysis of this prob-
lem is the subject of this paper with special attention given to
the mathematical properties of the trajectory function.

il. THE DYNAMICAL PROBLEM

Assume that a particle of mass m experiences a force F,
where

F= —A4/r, 4]

and where 4 is the force constant. Then the total energy £ of
the particle is given by

E = imv* + A In(r) + const, 2)

where v is the particle’s velocity. For a particle with nonzero
angular momentum and finite E, » must be bounded. Let the
maximum and minimum radial displacements be r,,,, and
7. TESpEctively.

Consider a particle approaching r,,, ; let its radial dis-
placement be 7, and velocity be v,. After the particle passes
through ..., and arrives again at the displacement r,, its
velocity must be v, because of energy and angular momen-
tum conservation. The trajectory is therefore symmetric
about 7,,,,. A similarly constructed argument for a particle
passing through 7, results in showing that the trajectory is
symmetric about 7, .

The angular displacement between consecutive ..,
and r_;, must remain constant due to symmetry and angular
momentum conservation. The particle must therefore have a
trajectory periodic in the angular displacement variable &,
ie.,

8 +2P)=nr@), 3)
where 2P is the period and Pis the angular distance between
Fax @nd 705 see Fig. 1.

iil. THE MATHEMATICAL PROBLEM

The differential equation for the trajectory is given by’

d*u/d0* +u=c*/u, 4
where u = ry/r,r =r,at 8 =0and
2 =mAdri/I?, (&)
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where / is the angular momentum. The boundary conditions
are r =ryand du/dfg = —tan(¢ ) at 8 =0, where ¢ is the
angle between the tangent to the trajectory and the perpen-
dicular to the displacement r,; refer to Fig. 1.

Equation (4) has the trivial solution # = ¢; this is the
circular orbit solution which is only valid for ¢ = 1. It is
convenient to label the kinetic energy of the circularly orbit-
ing particle K, where

K, =1A. ©
Equation (6) follows from Newton’s Second Law and the
condition for a circular orbit.

The solution of Eq. (4) is simplified if r, is chosen to be
an extremum; e.8., ¥, = r,,,,. Thenr=r_,, and du/df =0
at 8 = 0. The above arguments imply that 4 has the follow-
ing properties:

Property 1. u;, <u<l, whereu ,, =r_./r

Property 11: u(6 +2P) = u(6).

Property 1I: w(P) = u .-

The parameter ¢* is now ¢}, where

Cz :KC/K(), (7)

min

max*

and where K, is the kinetic energy of the particle at 6 = 0.
Since K,>K ., c2;. <1.
Equation (4) may be integrated to obtain

du/dé = — 1 + Anw?) — u?]*= — flu)'’?, (8)

FIG. 1. The trajectory of a particle subjected to a force varying as 1/7. The
radial displacement is 7; the angular displacement is 6. The trajectory’s
maximum and minimum are 7, ,, and r,,, , respectively. The half period Pis
the angular distance between 7,,,, and ., . The displacement r, is the radial
displacement when 6 = 0, and ¢ is the angle between the tangent at 8 =0
and the perpendicular to 7,.
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for 0<6<P. The function f'(u) has roots at ¥ = 1 and
u = u,,. The half-period P is obtained by integrating Eq.
(8);ie.,

P= — f ™ re) . ©)
1
The value of Pin the limit ¢ — 1is found by first noting
that for ¢> = 1 — ¢, where <1,
u=1—e,— €y, — -, (10)

where y,, ,,..., are functions of & and of order unity. When
Eq. (10) is substituted into Eq. (8) and the terms of order €
and higher are discarded, f (1) is approximated by

f(3) =26y, —265]. (1)
Using Eq. (11) to find an expression for u,,,;, results in
Upin =1 — €, (12)

and the integral in Eq. (9) can be transformed into

1 —2¢
P= —f [1—1¢2]" 44t 13)
Finally,
lim P=7n/V2 (14)

1

Determining P when ¢ — 0 is more involved if rigor is
required. The solution requires the facts that the integral in
Eq. (9) is convergent and that u,,, — 0. The latter follows
from r_,,, — o when K, — oo. Careful attention to the
limiting process produces

lim P =

=0

[1—-¢2]"4dt,

= 517 (15)
The period is therefore bounded in the interval
T < 2P (V' 2)m.

IV. THE ANALYTICAL PROPERTIES OF v

To facilitate the analysis the behavior of u in the com-
plex plane will be found useful. Borrowing a technique from
elliptic function theory,*s let

y=u(2); (16)
then
z=u"'(y). an

The generalized u is defined through its inverse by the
relation

z= —fyf(t)—idt, (18)

with the parameter ¢ defined to be real. Clearly Eqs. (4) and
(8) follow from Eq. (18).
Let z, be the point where u is infinite. Then

2= — fwf(t)*idt. (19)

The latter integral diverges for all ¢; therefore,  has no infin-
ities on the finite complex plane.
Let zy be the location of the nearest zero from the origin.
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Then
—ff(t)—5dt. (20)

The latter integral is finite for all c. The existence of a zero
implies that # has a branch point at z,.

Noting that u is symmetric about 8 = 0, the power se-
ries representation for # on the real axis is given by

u=1+ S a,6™ Q1)

n=1
The radius of convergence R for the above series is the dis-
tance to the closest nonanalytical point in the complex plane,

or
= |2- 22
Using arguments similar to those given for evaluating P, it
can be shown that R> P for c<1 with R — Pasc — 0.
The recursion relation for the coefficients a,, in Eq. (21)
is found by substituting the series in Eq. (21) into Eq. (4); the
result being

a, = [(=1)/2n)](1 — )@, (c?), (23)
where
o, =1
and,
Q.1 =140, + (1 — c?)(2n)!
n—1 1
X i n—i*
2 s 21), ——— (0, — 0,,,)0
(24)
Some of the Q,, polynomials have been computed and listed
in the Appendix.

It is possible to sum the series in Eq. (21) when
= 1 — ¢, e<1. Thelatter condition reduces Q, in Eq. (24)to

Q. =2"""+0() (25)
Then Eq. (21) sums to
u=1—€+ecos(v20)+ 0(é) (26)

Equation (26} is a form of the solution of electron trajectories
in electrostatic cylindrical spectrometers first given by
Hughes and Rojansky in 1929.%

Had the analysis been chosen tohave r = r_,, at 8 = 0,
nearly identical results would have been obtained. The dif-
ferences being that now ¢? = ¢%,,, and the radius of conver-
gence R for the series in Eq. (21} is changed to R>Pfor a
small range of ¢ near unity, with R — 0 as ¢ — «. The pa-
rameters ¢,,,,, and ¢,,,;,, are related through the constraints of
energy and angular momentum conservation; the relation
being

max + ln(cmax) - cmm + ln(cmm) (27)
The definition of u gives
u(oicmax) = u(e + P’cmin )/umin ‘ (28)

V. THE FOURIER SERIES REPRESENTATION

The function »(@ ) is periodic and an even function of 6.
A Fourier cosine series representation is therefore permit-
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ted; 1.e.,
u=1bo+ 3 bncos(l;g), (29)
n=1
where,
2 (F nm6
b, = —f u(@ cos(——) do. 30
? ) @) P (30)

The power series for #(6) may be used to evaluate the inte-
gral in Eq. (30), provided that the convergence criteria are
met, but this leads to slowly converging infinite series for
each b,. An exceptional case occurs for ¢? ~ 1; the series for
the b,’s can be put into a rapidly converging form by use of a
perturbation expansion.

Vi. APERTURBATION SOLUTION FOR c2~ 1
Consider the case where the trajectory is nearly circu-
lar, then ¢ may be expressed as ¢ = 1 — ¢, where |€|<1. Let
u(@) = c(l + w(@)), 31

where |w(9)| < 1. Then Eq. (4) can be expanded and written
as

d%w/d6? + 2w =w? — w® + w* — -, (32)
with

wO)=€++6€+ -, (33)
and

dw/df |,_, =0. (34

Using the method of Lindstedt-Poincaré,”® the variable B is
defined to be

B = wb, (35)
where
0 =1+ €0, + €0, + Ew;+ . (36)

The parameters ,, @,, - are to be determined. Now let w be
expanded parametrically as

w=ew, + €w, + Ew,y + -, (37)

where w,, w,,... are also to be determined. Rewriting Eq. (32)
in terms of the variable £ gives

d*w
w2d32 +2w=w?—w+w— . (38)
Substituting Egs. (36) and (37) into Eq. (38) gives
2
(l + €w, + "')2( ddﬁz + 2)(€w1 + flwz -+ "')
= (W, + €w, + )} — . (39)

When Eq. (39) is expanded and terms of like order in € are
equated the following sequence of equations is produced:

0 (€):d *w,/d B? + 2w, = O; (40)
O (€)d*w,/d B? + 2w, = w? — 2w,(d w,/d BY; (41)
O (€):d w,/d B + 2w,

= — 2w,(d*w,/d B?) — 2w,w, — wy; (42)

etc. The sequence may be extended as far as patience per-
mits. The Egs. (40), (41), (42), etc. are solved sequentially,

2758 J. Math. Phys., Vol. 21, No. 12, December 1980

and the parameters o,, w,,- are chosen to make resonant
terms in the solution vanish; e.g., the solutions of Eqs. (40)
and (41) result in

¥y =cos(v'2B), (43)
and

Y2 =4+ icos(vV'2 B) — feos2v'2 B), (44)
with the requirement that @, = 0. Thus, to the second order
in ¢, Eq. (4) is given by

=l-€e+ie + (1)
Xcos(v/20) + L€ecos(2y/20). (45)

The agreement between Eqs. (45) and (26) is obvious. The

above method when extended to the higher order terms in €
produces the results listed in the Appendix.

VII. THE REPRESENTATIONS FOR (%)

The power series representation for (6 ) is readily found
from Eq. (4) since

r/ro = (1/¢*)(d *u/d0? + u), (46)
implying that
T 0= & (="
o * & ,,;‘ (2n)!
X(Q.(?) ~ @, 1 (NO". “7

The radius of convergence of the latter series is the same as

that for the series in Eq. (21) with a corresponding parameter
2

¢

If the Fourier series for n(f) is given by

HO)=1la,+ 3 a,cosinmd/P), (48)
where
2 P
a, = FJ; r{@ )cos(nmwt /P) db. {49)

The coefficients a,, can be related to the coefficients b, in Eq.
{29) by an integration by parts. The relation is

b, =(1/¢¥(1 — n*7*/P%a,,. (50)

Vill. REMARKS

In working through the mathematics of this problem,
one is struck by the similarities (6 ) has to the Jacobi elliptic
functions. For example, if Eq. (32) were approximated by
using terms to the third order and neglecting higher orders, a
solution in closed form in terms of elliptic functions is possi-
ble.® Yet the similarities are not close enough to permit sim-
plification of the representations for (8 ). For instance, there
is no apparent algebraic addition formula which will express
u(@, + 6,)in terms of u(d,), u(6,), and their derivatives. Also,
contour integrations to find a closed form for the Fourier
coefficients do not appear promising.

Finally, the particle trajectories have the interesting
property that depending on the parameter ¢ the orbits may
be open or closed. This property is a consequence of the
period being a continuous function of ¢. When the periodis a
rational multiple of 7 the orbit is closed; when the period is
an irrational multiple of 7 the orbit is open.
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APPENDIX

The first seven Q, (c?) polynomials computed from Eq.
{24} are:

o =1

0, =1+ %

Qy=1—4c* +7c*,

Q, =1 + 87¢* — 207¢* + 127¢5,

Qs =1 — 2138¢% 4+ 8070c* — 10286¢° + 4369¢%;

Qs = 1 + 79883c? — 432308¢* + 863404c®
— 754597¢® + 243649¢%;

and

0, = 1 — 5266677c* + 30997509¢* — 85021777
+ 116205843¢® — 76951818¢'° -+ 20036983¢'2.

When the perturbation method in Sec. V1is taken tothe
fourth order in €, where € = ¢ —1 for ¢ = 1, the Fourier coef-
ficients in Eq. (29) are:

1bo=1—€+ (1/8)e + (1/6)€ + (11/64)¢*;
b, =€ — (1/6)€* — (19/144)€® — (607/4320)¢*;
b, = — (1/12)e® — (1/18)e® — (1/18)e%;
5 = (1/48)€® + (1/32)€%;
and
b, = — (61/8640)¢*;

With the aid of Eq. (46), the Fourier coefficients in Eq.
(48) are found to be:
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oy =1+€+ (5/4)€ + (5/3)€ + (433/192)¢*;
a,= —e—(11/6)€ — (413/144)e® — (18413/4320)€*;
a, = (1/12)€* + (14/9)€® + (109/36)¢*;
a, = — (17/48)e> — (79/96)¢*;
and
a, = (1891/8640)¢,.

The expansion parameter o is given by

I

o=7/(V2)P
=1+ (1/12)€ + (5/36)€ + (111/576)¢*.
Then the half period P is

P=(7/v2)(1 — (1/12)€ — (5/36)¢* — (107/576)€*).
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A concise and accurate solution for Poiseuille flow in a plane channel
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The recently developed F method of solving problems in particle transport theory is used to
establish a concise and accurate solution for the flow of a rarefied gas between two parallel plates.
The Bhatnagar, Gross, and Krook model is used, and numerical results are given for a wide range

of the Knudsen number.

1. INTRODUCTION

In two basic papers in the field of rarefied gas dynamics,
Cercignani and Daneri,' and Cercignani® reported on two
different methods of studying the flow of a rarefied gas be-
tween two parallel plates. In both papers'? the BGK> model
was used to describe the physical problem. Cercignani and
Daneri' used the integral form of the particle transport equa-
tion and finite difference techniques to develop numerical
results applicable to a wide range of the Knudsen number,
and Cercignani® used the method of elementary solutions* to
reduce the problem to one of solving a Fredholm equation
for the required expansion coefficient. Additional numerical
results have been obtained more recently by Boffi, De Socio,
Gaffuri, and Pescatore,” and Loyalka, Petrellis, and Stor-
vick.® Here we wish to describe the F,, method’ of solving
the same problem. The method utilizes aspects of the exact
elementary solutions to establish an approximate solution
that is particularly concise and very economical to use from
the point of view of computer-time requirements.

As discussed by Cercignani,” the linearized BGK mod-
el for flow in the z direction between plates a distance d apart
can be written as

xc, + ¢, (8/9x) h(x,¢) = Lh(x,c), 1)

where ¢ is the molecular velocity, 4 (x,c) is the perturbation
of the particle distribution function from the Maxwellian
and « is proportional to the pressure gradient that causes the
flow. For the BGK model, Cercignani’ uses the appropriate
form of the collision operator L, and considers

Z(x,.c,) = lf f e~ S+ Ve h(xe)de, dc,
” -— Q0 -
2

to be the basic unknown, and thus reduces the problem to
one of solving

w6 + Oc,(3/0x) Z (x,c,) + Z (x,¢,)
= 172 e Z(xe,)dc, €)]

subject to the boundary conditions
Z[—-(d/2)sgnc, ,c,]=0. @
In Eq. (3) the mean-free-time is denoted by 6. In the next

*Permanent address: Instituto de Pesquisas Energeticas e Nucleares,
Cidade Universitaria, Sao Paulo, Brasil
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section we use the £ method to deal with Eqs. (3) and (4)
and thus to establish a concise result for the flow rate Q.

Il. ANALYSIS

In regard to Eqs. (3) and (4}, we prefertoletu =c,,
T=x/6, 8 = d /@ and thus to consider

0 + u(d/01) Z (ryu) + Z (1,)

=r [T e Ziraydy, (5
and

Z[—(8/2)sgnup] =0, pe(— oo,00). (6)
If we substitute

Z(ryp) = 0 [7* — 21 + 20” — (87/4) = 2Y (r )],
7
into Egs. (5) and (6) then we see at once that Y (r,u) is the
solution of

pO/37) Y (ryr) + ¥ (rps) = v—'“f =¥ Yiru)du, (8)
subject to

Y(—au)=Y(@ —p)=p"+au, p>0, ©9)
where 2a = 8. In order to simplify the calculation of the flow

rate Q, we first wish to note several useful relationships con-
cerning some moments of ¥ (r,u). If we let

Y,(r) = 1r~“2f =¥ Y(ru)pdu, (10)

then we can multiply Eq. (8) by exp( — u?) and integrate
over allu to deduce that ¥ ,(7) is a constant, say Y,(a). Multi-
plying Eq. (8) by u exp( — %) and integrating over all 2, we
find

(d7dr) Yy(r) + Y,(@) =0, an

which, after we multiply by 7 and integrate over 7 from —a
to a, yields

’ Yy(r)dr =2aY,(a). (12)

If we multiply Eq. (8) by 1 exp( — #?) and integrate over g,
we find

(d 7dr) Yy(v) + Yo(r) = 1Y(7), (13)
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which we can integrate over 7 to find, after using Eq. (12),

‘F Y (r)dr =4Y,(a) +4aY,(a). (14)
Now since the flow rate is
1
Q@@= — — g(r) dr, (15)
xda J_.
where the macroscopic velocity is
a=m7 " ewzawan, (16)

we can use Eqgs. (7) and (15) to express the flow rate simply in
terms of surface quantities, i.e.,

0@=2- 2+ Liv@+at@. (a7
3 2a a

If we use

Yy(a) = 77“”1) pre # Y(ap)du + 3+ n“’z-;—.
(18a)

and

Ys(a) = 17-"’2J; wWe ¥ Yap)dy —3a—m"2,
(18b)

in Eq. (17) we can write

a 1 _1/2( 2) —12 2
= - — — 1 - = T _—
Qla) 3 2a tr a? + a’

Xj;w,uze“”z Y(au)u +a)du, (19)

sothat Q (a) finally is expressed in terms only of ¥ (@,u), 4 > 0.

We now wish to consider the boundary-value problem
defined by Egs. (8) and (9). The desired symmetrical solution,
Y (ru) = Y(— 7, — u), can be expressed in terms of the ele-
mentary solutions® as

Y(ryu)

=Ar~ V%4 fw AWgvu)e "+ d(—vu)e”]dv,
{20),

where

$to) =7 vPo (=) 47772 o) ly — o).

(21)

v—p
Here
py)=='"? (e"z — 2vJ- e dx ), (22)
Q

and the expansion coefficients 4 and 4 (v} are to be deter-
mined by the boundary condition, Eq. (9). To proceed with
the method of elementary solutions we would substitute Eq.
(20) into Eq. (%) and regularize the resulting singular integral
equation to obtain ultimately a Fredholm-type integral
equation for A4 (v). Since we have expressed the desired flow
rate Q (a} in terms of Y (a,u), [see Eq. (19)] we do not need
Y (7,u) for all 7, and thus we do not pursue the method of
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elementary solutions further. Instead, we pay special atten-
tion to establishing ¥ (a,u). Since the functions ¢ (v,u) are
orthogonal, in the sense that

Jw e W) dVpudu =0, v#v, (233
and
Jm e W p(vp)pudu=0,

we can multiply Eq.(20), evaluated at r = + a, by
1 exp( — 4?) ¢ ( — v,12) and integrate over all u to find

f e ¢(—vp) Y(Fau)udu

=AWV)N(—v)eT*, (24)

where N ( — v) is a normalization factor that can be eliminat-
ed between the two forms of Eq. (24) to yield

f e=F ¢ (—vat) Y — ap)p ds

(23b)

=e—2a/vfj e—n’¢(_v,y) Yau)udu, (25)

or, after we use Eq. (9),
f e M dlvp) Yiau)pdu +e 2
0

xf e $(—vs) Yiags)pdu =K.
(26)

Here the known function X (v) is given by
KW =J e H G (— vu)(u* +ap) p du + e~
(4]

x f T F gt apde.  (27)

In a similar manner, we can multiply Eq. (20), evaluated at
7 = a, by u exp( — p*), and integrate over all g to find

f e # Y(ap)pdu = f e (p+au)pdu.
0 0

(28)
Equations (26) and (28) constitute a singular integral equa-
tion and a constraint to be solved to establish ¥ (a,u). It is
clear that the methods of Muskhelishvili® could be used to
convert Egs. (26) and (28) to a Fredholm-like integral equa-
tion for Y (a,u). However, we prefer here to introduce the F,
method’ and thus to substitute the approximation

Y(ap) =l p + a) 0 (a) e 27
+ ﬁ‘. a, [1—(=170@e **]u*, 1>0, (29

a=0
where the constants a,, are to be determined, into Egs. (26)
and (28) to obtain

$ .| B - 0@ 1r D

+ e 2[4, () — Oa)— 1)* C,(v))] ] =R (v), (30)
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and

$ a, (K. —6a)—1F T, ,(2a)]
a=0
=K, +aK, — 0(a)[ T5(2a) + aT,(24)], (31)
where a known function is
R (v) = A4,(v) + ad,(v) — 6 (a)[D,(v) + aD\(v)]
+ e~ *"{B,(v) + aB,(v)
— 0@ [Cv) +aC (V)] . {32)
Here we have used the definitions

VAa(’V):Trl/ZJ e H d(—vu)putt'du, (33a)
o
vBa(V)=1r'/2f e  glvp) et du,
0
(33b)
VCa(V)=171/2f e—p’¢(_v’#)lua+le—2a/,udlu’
0
(33¢c)

VD, (v) = 7'/2 f e ¥ Glvu)pctl e~ dy, (33d)
Q

K, = f e et dy (34)
0

and
T, (x) = f e e My dy . (35)
0

In order to establish a solution that is accurate for all values
of a, we include in Eq. (29) a term multiplied by the step
function

0lay=1, O<a<a,, (36a)
0(a)=0, a>a,, (36b)

where a,, is to be selected, as discussed in the next section. It
is apparent that

n!

K, = 7’, n=0,12, .., (37a)
and

Kyir = #"’—143'5'2%(3—";1&. (37b)
We note that

By = A= | e—“‘n#"fr‘v , 38)

and that the remaining B, (v) and 4, {v) can be readily gener-
ated from

B,(W=vB, (V) —K,_,, (39)
and
A, W)=—v4,_V+K, .. (40)
In addition
Gy = [ e emrmut, )
0 g+

Dyv)=e~ 2% By(v)
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© , ~2a/p __ o —2a/v
pu— f #e_'“ [e_._....._._._.e___] dﬂy
o n—v

(42)
C,v= —vC,_ )+ T,(24), (43)

and
D, W =vD, () —T,(2a). (44)

If we now choose NV values of v€(0, ), say v, then clearly we
can solve the system of algebraic equations

S a, [Ba(v,,) —6a) — 11D, (v,) +e

a=0

—2a/vg

X [ {vs) = 0la) — 1° Colo)]|

=R(vg), B=123,--.N, (45a)
and
S a,[K. —0(@) - 11" T, , 0]

=K, +aK, — 0(a)[T,(2a) + aT>(2a)] (45b)

to find the required constants { @, }. One of the more attrac-
tive features of the F, method is that the known coefficients
in Eqs. (45) are very simply expressed. Note, for exampie,
that the half-width a is not required in 4, (v) and B, (v) and
that the functions 4, (v) and B, (v} are simple combinations
of polynomials and the function By(v). For a>a,, itis thus
evident that very little computer time will be required to
compute the coefficients {a, }. For a <a, the coefficients in
Eqgs. (45) involve also the functions C, (v), D, (v) and T, (24) ;
however as can be seen in the next section only a low value of
N is required for a <a, to establish accurate results. »
We note that the idea of using the Placzek Lemma'®and
approximating unknown surface distributions by polynomi-
als has been used in the fields of kinetic theory'!!? and neu-
tron transport theory.'® The F, method, with 9 (a) =0,
clearly is related to this earlier work though it differs sub-
stantially in the way the required constants are determined.

1l. NUMERICAL RESULTS

Of course to solve the system of equations given by Eq.
(45) we first must select N values of v3€(0, ). To have a
simple and effective scheme we take the vz, 8 = 1,2,3,.-- , N,
to be the N positive zeros of the Hermite polynomial H, (£ ).
If we substitute Eq. (29) into Eq. (19) we find that our solu-
tion, by the F,, approximation, is

QW)= & + 77 {1+ 2000 TyRa)l + =77

x| S @ [Kays =0l =17 T, .5(20)]

— 4 20(a)T4(20)] + %w-”z

x| $ 0 [Kavs = Blal =1 T, 20)]
1460 T52a)|. (46)
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TABLE I. The flow rate Q (a).

Q@)
2a 6 (a)
Fy F, F, F Fy Fy “Present
work” Ref. § Ref. 6
0.001 1 4.2736 4.2736 4.2736
0.01 1 3.0495 3.0496 3.0496 3.0497
0.1 1 2.0314 2.0327 2.0327 2.0327 2.0327
0.5 1 1.5952 1.6018 1.6019 1.6019 1.6019 1.6018
1.0 1 1.5264 1.5385 1.5387 1.5387 1.5387 1.5386
2.0 1 1.5761 1.5944 1.5948 1.5948 1.5948 1.5948
3.0 1 1.6893 1.7099 1.7104 1.7105 1.7105 1.7105 1.7105
5.0 0 1.9504 1.9881 1.9905 1.9906 1.9906 1.9907 1.9907 1.9907 1.9907
7.0 0 2.2708 2.2932 2.2947 2.2948 2.2948 2.2949 2.2949 2.2948 2.2949
8.0 0 2.4304 2.4498 2.4510 2.4511 2.4511 2.4512 2.4512 2.4510
9.0 0 2.5906 2.6081 2.6090 2.6091 2.6092 2.6092 2.6090 2.6092
10.0 0 2.7514 2.7677 2.7685 2.7685 2.7686 2.7686 2.7684 2.7686
20.0 0 4.3850 4.3969 4.3973 4.3974 4.3974 4.3974 4.3971 .
30.0 0 6.0381 6.0489 6.0492 6.0492 6.0493 6.0493 6.0479
40.0 0 7.6976 7.7077 7.7080 7.7081 7.7081
100.0 0 17.684 17.693 17.693

In Table I we show, in addition to the results of Boffi et al.,®

and Loyalka et al.,® the values obtained by using the solu-

tions of Eq. (45) in Eq. (46). In addition to the results for

various orders of the F), approximation we list as “present

work” the stable results we believe to be correct to within
+ 1 in the fifth significant figure.

We have found that the approximation given by Eq. (29)
with 6 (@) = 1 works well for all values of 2a listed in the
table. However for 2a 5.0 we were able to obtain Q (a) accu-
rate to five significant figures with & (@) = 0 and thus with a
greatly reduced requirement for computation time. If the
desired accuracy in Q (a) is reduced to four significant figures
then 6 (@) = O can be used for all 243> 1.0. Finally we note that
the F), solution developed here is especially simple with
6 (a) = Osince only B,(v) and the recursive formulas, Egs. (39)
and (40), are required to define the matrix elements in Eqs.
(45).
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The random medium is represented by the operator, constructed from the characteristic
functional of the medium, and this representation is shown to considerably facilitate the
formulation of various equations of waves in random media, as well as obtaining the physical
insight into the equations. A specific application is made to waves in the medium of random
particles, and the equations obeyed by the characteristic functional of wave are derived with the
aid of the effective medium method. Here, the optical condition is exhibited by the condition of an
operator in space and time. Independent of this operator method, the general theory is extended,
in an unperturbative way, for the equations of the second-order coherence functions, being given
ina form of the Bethe—Salpeter equation, and the coherent potential equations are formulated for

the basic matrices of two kinds appeared in the equations. The explicit expressions of these
matrices are obtained, on utilizing the coherent potential approximation, and are shown to be
exactly the same as those obtained by the effective medium method, in both cases of weak-
scattering limit and of random particles. Finally, on employing the appropriate Fourier
representations in space and time, the theory is presented in a few different forms, one being
particularly suited to derive the equations of multifrequency coherence functions.

1. INTRODUCTION AND PRELIMINARIES

The statistical theory of waves in random media has
been extensively developed in terms of the mutual coherence
function of wave for the typical random media of both turbu-
lent air where the scattering of wave is weak and made most-
ly in the forward direction, and random particles where the
scattering by each particle is usually strong and described in
terms of the scattering matrix. In either case, the mutual
coherence function of wave has been shown to obey the equa-
tion of a form of the Bethe-Salpeter equation,'~> and further
to obey the ordinary transport equation which can be de-
rived from the former equation to a good approximation.®

In case of turbulent air, the higher order coherence
functions of wave also have been investigated in connection
with the saturation of irradiance scintillation, the probabil-
ity distribution of irradiance, etc., and the governing equa-
tions have been systematically derived with the exact solu-
tions of all orders in the special case when the medium
structure function can be given in the parabolic form.” In
case of random particles, on the other hand, no higher order
coherence functions have been investigated nor any system-
atic way of deriving their governing equations.

Since the complete statistical informations of a wave in
random media can be obtained through the characteristic
functional of wave, the basic problem is reduced to finding
the equations satisfied by this functional, provided the char-
acteristic functional of the medium is on the other side. Here,
to find those equations, the medium has been represented by
the operator, constructed from the characteristic functional
of the medium, which particularly facilitates obtaining the
expectation value for any functional of the medium.” Here,
in the case of the media obeying the Gaussian statistics, this
operator representation of the medium leads to the previous
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formula, which has been extensively used ta derive the equa-
tions of the coherence functions of wave.>® Also for the me-
dium of random particles, the corresponding representation
has been found in the time-independent case® and employed
to derive the equation for the mutual coherence function of a
wave.

With the replacement of the medium and also wave-
functions by the corresponding operators, the equations for
the characteristic functional of a wave are found to preserve
the same forms as the original wave equations. This is a con-
sequence of the more general correspondence principle es-
tablished between any equations which hold when the medi-
um is deterministic and the corresponding equations when
the medium is probablistic; this is the case, e.g., of the equa-
tion of continuity of a wave, the equations of energy-momen-
tum conservation, constructed according to the Lagrangian
principle, etc.’

In this paper, the random medium is first represented
by the operator in terms of the characteristic functional of
the medium, which is described on the same footing in space
and time, and its explicit expressions are derived for both
cases of weak-scattering limit and of random particles (Sec.
2). The basic equations obeyed by the characteristic func-
tional of a wave are then derived together with the corre-
spondence principle (Sec. 3). In Sec. 4, the specific applica-
tion is made to obtain the explicit equations satisfied by the
first and second order statistical Green’s functions in the
medium of random particles, where exclusive use is made of
the operator techniques together with the effective medium
method. In Sec. 5, entirely independent of the above opera-
tor method, the general theory is extended for the same
Green’s functions, where two basic matrices are introduced
and explicitly defined in an unperturbative manner; these
matrices are shown to satisfy the optical condition in the
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generalized sense. In Sec. 6, the coherent potential equations
are formulated to find the two basic matrices according to
the definitions in Sec. 5 and their explicit expressions are
obtained, on utilizing the coherent potential approximation
which has been used successfully for the impurity problems
in solid physics, to show their exact equivalence to those by
the effective medium method introduced in Sec. 4. Finally in
Sec. 7, the equations satisfied by the characteristic functional
of a wave are derived for the medium of random particles,
based again on the effective medium method, and the optical
condition is shown to be exhibited by the condition imposed
on a space-time operator.

We employ the following notations: The space coordi-
nate vector is denoted x = (x,, x5, X;), the time by ¢, and
x = (x, t) represents the space-time coordinate vector. The
space-time element of volume is defined by dx = dx dt with
dx = dx,dx,dx,. The wave function is designated by ¢(x)
and is assumed to satisfy an equation of the form

[L (i0/3x) - q(x)]¢ix) = jix),
(1.1)
[L *( — id/3x) — q(x)]*(x) = j*(x).
Here, the asterisk stands for the complex conjugate, and
q(x) = g*(x) designates the medium, including the random

part; j(x) is the external source of a wave and, in the case of
the scalar wave,

L(id/3x) = L *( — id/3x) = (i 3)2 _ (i)z, (12)
c dt ox
where ¢ is the wave velocity.

In the case when N particles are enclosed in a finite
space of volume ¥, and g, (x) is the contribution from one
particle characterized by the symbol a, then, ¢(x) in Eq. (1.1)
is given by

ax)= 3 . ) (1.3

ji=1
where a; is the particular value of a, specifying the jth parti-
cle involved. For example, when the particles have time-
independent structures and are all moving with a constant
velocity v, then, g, (x) is given in the form

4.(x)=g(x —a), a=vi+a, (1.4)

where a is the space coordinates of the center of the particle,
and the other parameters, necessary to specify various parti-
cle structures and properties, have been suppressed.

2. OPERATOR REPRESENTATION OF RANDOM
MEDIUM

It is known that the complete statistical information of
any random medium ¢(x) can be obtained, if the medium is
stationary in space and time, from the characteristic func-
tional, defined by

2,01 = (| [axpaw)), Z101=1, @)
where (---) stands for the statistical averaging of the quantity
referred to over all possible values of the medium ¢(x), and

p(x) is an arbitrary function. Whence
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5 n
< ={g"(x)), n=1273,-, (2.2
[52s]2:t01| =@, n @2
and, for any functional f[q] of g(x),
f18/8p1Z,[p1|, -0 = {flq]), (2.3)

giving the average value ( f[g]) in terms of Z_[ p].

Although the expression (2.3) provides us with a conve-
nient means of evaluating the statistical average value of f[q]
when it is explicitly given, this is not the case when f[q] is
implicitly given, e.g., through its governing equation. To ob-
tain an alternative expression convenient particularly in the
latter case, we first note the following relation, valid for an
arbitrary function c(x):

Z,[6/6c] fle] = <exp[de q(x)%(x)]f[c]>

(53] e

n—= On!
= (fle+4l). 2-4)
Here, in terms of the operator q(x) defined by
ax) =Z,[8/85clc(x)Z ;' [6/6¢], Q2.5

when Z, = Z (6 /6¢],
Z,N)Z,; " =(Z,c)Z ;' NZ,e(0)Z [ ') = ¢(x),
2.6)
ZcWZ, ' =q"(x), n=1,23,,
and therefore also
Z,[6/6c] flclZ ' [8/6c) =f[Z,cZ ;'] =fla],
Q.7
which enable us to exhibit the result (2.4) by”-"!
(fle+4q1) =f1d]Z,[8/6¢c} =flq], (2.8)

since, in the last derivation, there is nothing for Z_ [6 /6c] to
operate on.

From Eq. (2.8), we learn that the statistical average of
any functional f[g] of g(x) can be found simply by replacing
g(x) by the operator q(x), and therefore also that

([elx) +glx)] flc + q1) = qx)f [q] = q(x){ f[c + q1),
(2.9)

which is particularly convenient in finding (g(x)f[q]) for giv-
en (flg]).

Here, obtaining the explicit expression of q{x) is facili-
tated by introducing the cumulant of Z_[ p], defined by

6 [p] =In{Z, [p1}, (2.10)
and hence, in terms of the conventional notation for the
cummutator [4, B] = AB — B4, Eq. (2.5) gives

q(x) = exp{6 [6/8c] }e(x)exp{ — 0 [6/5¢]}

=clx) + [6, clx)] + (1/2)[6,[6, c(x)]] + «-.(2.11)
Here,

[8 [8/5¢], e(x)] = q(x, 6/6c¢),
with

q(x, p)=(8/5p(x))0 [p] = (6/8p(x)InZ, [p],

(2.12)

(2.13)
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and therefore it follows that, on the right-hand side of Eq.
(2.11), the nonvanishing terms are only the first two terms,
yielding

q(x) = c(x) + g(x, 6/6c¢). (2.14)

Here, the operators q(x) at all points in space and time are
commutable with each other, i.e.,

[a(x).q(x")] = Z,[8/6c] clx)e(x’) — clx')e(x)]
XZ ;7 '[6/6c] =0, (2.15)

as follows directly from the definition (2.5), exhibited by the
similarity transformation of ¢(x).

A. Gaussian medium
With the definition (2.10), we obtain, when (g(x)) =0,

0lp=4 f dx, dx, {glx,)q(e,)plx,lplxs)

+ 4, ey v, (g

Xp(x)p(x2)plxs) + -,
which gives, according to the definition (2.13),

q(x, p) = del {glx)glx,))plx,)

(2.16)

+4 s, dxa(atwlateatea)plepli + . (217

Therefore, when the contributions of the second- and high-
er-order terms on the right-hand side of Eq. (2.17) are negli-
gible, we find, according to Eq. (2.14),

q(x) ~c(x) + de’D (x — x’%,

(x")
D (x — x) = {g(x)g(x")), (2.18)
which describes the medium obeying the Gaussian statistics,

as may be seen directly by applying the formula (2.8) to
evaluate Z, [ p] according to the definition (2.1). Whence,

Z,(p1 = exp| [dx poraco)

= exp[fdx p(x) [c(x) + de' D(x— x')ﬁ] ]’

2.19)
which, as ¢—0, tends to

Z,p]l = exp[ijdx dx' D{(x — x’)p(x)p(x')], 2.20)

with the aid of the formula
exp(4 + B) = exp(4 )exp(B )exp(A[B, 4 1), .21

valid for arbitrary operators A and B when the commutator
[B, 4] is commutable with both 4 and B, being the present
case of 4 =

fdx p(x)c(x) and B= fdx dx’' p(x)D (x — x")6/8c(x’).

Here, the formula (2.9) with the expansion (2.17) for
the term g(x, 8/8c¢) in q(x), suggests that the assumption that
the Gaussian statistics are obeyed will give a good approxi-
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mation to the real random medium when the magnitude of ¢
is small enough so that the accumulated effect of g(x) over
the range of its correlation distance is negligibly small for

( flg]). The relation (2.9) with q(x) given by Eq. (2.18) is
equivalent to that previously obtained.*®

B. Multi-component random medium

When the medium is composed of two independent ran-
dom components, as given by

q(x) = g,(x} + g,(x), (2.22)
then, by Eq. (2.1)
Z,(p) = (exp{fdxp(anl(x) +a|) =21z,
(2.23)

Z;[p),j =1, 2, being the characteristic functional for g;
alone, and hence

qlx, p) = In{Z,[p1Z,ip]} = q,(x, p) + g.(x, p),

oplx)

g% Pl =—2—InZ [p], j=1,2, (2.24)
op(x)

q{x) = cfx) + g,(x, 6/6¢) + q,(x, 6/5¢), (2.25)

which shows that the contributions from the independent
components of random medium are simply added up to con-
struct g{x, 6/8¢) in q(x).

C. Medium of random particles

We suppose that N particles are randomly distributed
in a space of volume ¥ without any correlation to each other,
allowing, strictly speaking, even overlapping of particles,
and also that, as in Eq. (1.3), the contribution from each
particle to the total ¢(x) is made through the function ¢, {x).
Here, the symbol a represents the set of parameters charac-
terizing the structure of one particle and therefore includes
the space coordinates of particle’s center, say, a at a particu-
lar time, besides other parameters specifying, e.g., its size,
shape, orientation, trajectory in space and time, etc. There-
fore, the characteristic functional Z_[ p], defined by Eq. (2.1)
with g{x) given by Eq. (1.3), is found, in the manner similar to
Eq. (2.23), to be

Z,[p] = ﬁ y-! Vdaj <exp[fdx p(x)qaj(x)]>’

j=1

= [ V- ‘Lda <eprdx PXM, (x)m "

where the bracket (---)' means the averaging over all possible
properties of the involved particles, excluding that over the
center coordinates a.

Here, as V—« and N— oo, keeping a constant density
of particles n = N /¥, Eq. (2.26) tends to

Z,[pl= CXp[n f da [<eprdx p(x)qa(x)]>' — 1”

(2.27)

(2.26)

Thus, according to Eq. (2.13),
7

ot o) =n [da (gutwtenp| [ax g, )]}, (228
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and hence, by Eq. (2.14), q(x) is found to be given by
q(x) = c(x) + g(x, 6/5¢),

(2.29)
, ~ O
q(x, 5/5(:) = <qa (x)epr.dx qa (x )m])a;
in terms of the notation
(), =n f da ()", (2.30)

The expression (2.29) will be exclusively used in Secs. 4
and 7 to find various statistical equations of a wave in the
medium of random particles.'?

3. EQUATIONS SATISFIED BY THE CHARACTERISTIC
FUNCTIONAL OF A WAVE

In exactly the same way as for random media, the com-
plete statistical description of the wave function y{x) and of
the complex conjugate wave function ¥*(x) in a random me-
dium can be derived from the characteristic functional of a
wave, defined by'’

Z (771 = {oxp{ [ Uiniote) + Feteigeto R

To find the equations obeyed by Z [7*,/1, we assume the
wave equations of the form (1.1), i.e.,

[L (i8/9x) — elx) — qix)19(x) = jix) 32)

and the corresponding complex conjugate wave equation,
where c(x) is an infinitesimal function and is to vanish in the
final results. Here, it is straightforward, on employing

S
i 4 *,
50 G* 7l

= {pestenp{ [ Grgt) + Feernl}), 63
and also the wave equation (3.2), to find

{{[L (i8/6x) — clx) — q(x)18/8]x) — jix)}

xexp| [ax Giocix) + il =0 (3
where, from the formula (2.9),
([clx) + glx)lexp{ }) = q(x)Z [*, /1. (3.5)

The above result can be expressed in a compact form by
introducing the operators, defined by

_5 o b
P(x) 6(),¢() pm

with the commutation relations

[¥x), jix')] = [*x), /*x)] = blx — x'),

[¥ix), /*(x)] = [$*x), jix')] = [b*(x), bix)] = 0.(3.7)
Whence

(3.6)

{[L (i0/3x) ~ q(x)1d{x) — jx)}Z [*,/j]1 =0 (3.8)
and, in the same way,
{[L *(— id/3x) ~ q(x)]p*(x) —*(x)}Z [j* j1 =0,

(3.9)
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which, together with Eq. (3.8), constitutes the basic equa-
tions of Z [j*, /]. The time-independent version of Egs. (3.8)
and (3.9) are exactly the same as previously obtained by an
entirely different method.’

Comparing Eqgs. (3.8) and (3.9) with the original wave
equations in Eq. (1.1), we immediately find the obvious one-
to-one correspondence; more generally, it is not difficult to
show that, if the relation Q [¢/, ¥*, ] = O holds among ¢, ¥*,
and ¢ when the medium is deterministic, then

2 [, ¥* q)Z [*,j] =0, (3.10)
when the medium is probabilistically given, and Eq. (3.8) is
regarded as the particular case of when '

Q = (L — q)¢ — j = 0. For another example, the equation of
continuity of the scalar wave, satisfying Eq. (1.1) with (1.2), is
given in the form

3 ;’ Fy + 0% — ) =0,

j=0

(3.11)

where x, = ct, c = wave velocity, 3 /dx' =
3/0x;, — d/dx,) and

i d a
F=—|y*—vy—yv—y¢*|, j=0,1,23 (312
! 2['!' ax"¢ 6x"¢’] / 512

Therefore, Z [j*, /] also satisfies the equation corresponding

to Eq. (3.11):
L_o D+ L du*)]z 7] =

Here, F
and q.
In the same way, we could construct the energy-stress
tensor of a wave according to the Lagrangian principle and
find the related conservation equations also for Z [*, j]. In
this case, however, the equations contain the first-order de-
rivatives of q(x) in space and time, in constrast with the equa-
tion of continuity (3.13), showing that neither energy nor
momentum is conserved when the medium fluctuates in
space and time, as is generally the case of moving media.
In the power series expansion of Z [*,/] with respect to

(8/9x,, 3/0x,,

(3.13)

;18 the same function of ¥, V*, and q as F; is of ¢/, y*,

f*(x) andf(y), ie.,

ZDT*»_;] dx, dx,- dx dy, dy,-dy,
,uv 0

X_muv({l’ “_’ X, >_yls' ) yv)’ (xl)/‘(xz)
~J* 0o J ), (3.14)
the expansion coefficients are directly related to the mo-
ments of wave functions as:
muv('xl’ Xy +*% xp; Y1 Yoy vy yv)
= (PHx)P* ()9 * (W )90, ) (3.15)

Here, since Eqs. (3.8) and (3.9) for Z [j*, /] contain the
undesirable operator § /8¢c(x) through q(x), the next task is to
find such an operator k,, (x|x’) which is free from & /8¢(x) but
a functional of j, j*, 1, and ¥* instead, defined by [Cf. Eqgs.
(7.9) and (B11)]

AEHNIZ | o = [ kool W2 .1,
by invoking an appropriate approximation. This enables us
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to eliminate § /8¢(x) from Eqs. (3.8) and (3.9) and further to
derive the equations for the moments m,,, upon substitution
of the expansion (3.14).

On the other hand, a formal solution of Egs. (3.8) and
(3.9) is obtained by introducing the symbolic Green’s func-
tion G, and G, defined according to the equations

(L (i9/3x) — q(x)] G, (x|x) = 8{x — x'),
(3.16)
[L *(— id/3x) — q(x)1Gy (x|x') = &(x — x'),
with the given boundary condition. Here, the solutions are
functionals of the operator q(x) and therefore these Green’s

functions are also operators involving & /8¢(x); G, and G¥
can be defined alternatively by the integral equation

G, (x|x') = Gylx|x') + jdX" Golx|x")qlx")G, (x"|x'),
(3.17)

where Gy(x|x') is the ordinary Green’s function, obeying

L (id/3x)Gx|x") = 8(x — x'), (3.18)
with the given boundary condition. Here, it will be noted
that, in virture of the mutual commutability of the operators
g(x) at all points in space and time, as exhibited by Eq. (2.15),
G, and G} are also mutually commutable and therefore can
be treated in exactly the same way as the ordinary Green’s
functions.

Thus, in terms of the symbolic Green’s functions satis-
fying Eq. (3.16), Eqgs. (3.8) and (3.9) can be exhibited by
2=z [.]1 = a6, ix )2 )
jlx)
and its complex conjugate equation, whose formal solution is
obviously

Z[* A= exp[fdx dx'[j(x)G, (x|x"}i(x')

(3.19)

+ PGl ] 2o (3.:20)

where

Zo=Z [Pl |poje0 =1 (3.21)
Here, gix) is given by Eq. (2.29) in the medium of random
particles and by Eq. (2.18) in media obeying the Gaussian
statistics. The expression (3.20) could be derived more di-
rectly from Eq. (3.1) with G, and G } replaced by G, and G7,
respectively, according to the rule (2.8).

The moments of wave functions of various order are
obtained from Egq. {3.20), in the form

(W) = f dx’ G (x|x'}ix)
(W) = fdx'G X))
(3.22)
('p‘(xl)'l’(xz))
- f ds ) Gl a1 23 063 i), et
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where
G (x|x) = G,(x|x)Z, G *(x|x") = G¥x|x")Z,,
(3.23)
Gy (xy; X5 |x7; x5) = Gq*(xllx;)cq(xz'xﬁ)zo» etc.,

and the auxiliary function ¢(x) is to vanish in the final results.

4. STATISTICAL GREEN’S FUNCTIONS OF THE FIRST
AND SECOND ORDERS IN MEDIA OF RANDOM
PARTICLES

The first order statistical Green’s function G (x|x’), de-
fined by Eq. (3.23), obeys the equation

[L (id/0x) — q(x)]1G (x|x") = 6(x — x"), “.n
as directly follows from Eq. (3.16). Here, on the left-hand
side, g(x) is given by Eq. (2.29) and therefore the contribu-
tion from the term of ¢(x, 6/5¢)G (x|x') is expressed, by vir-
tue of the term c(x) contained in g¢(x) and in terms of the
notation

Gq +a EGq I (x)—q(x) + g (x)? (4-2)
as:
q(x, 8/6¢)G (x|x") = q(x, 6/6¢)G, (x|x)Z,
= (g G, o x[x))aZo,  (4.3)

with the aid of the Taylor expansion similar to that in Eq.
2.4).

Here, the right-hand side of Eq. (4.3) can be exhibited in
a compact form in terms of the conventional scattering ma-
trix, defined as follows: Let G,  ,(x|x") be the Green’s func-
tionina mediuma + b, and also G, , be the matrix defined
by its matrix elements G, , , (x|x") with respect to the coordi-
nates x and x’, then the equation of G, , , is expressed, in
matrix form, by

(L—a—-b)G,, ,=1, “4.4)
and the solution can be given in the form
G..»,=G,[1+T:G,] 4.5)

Here, the scattering matrix T'2 expresses the effect caused by
the scatterer a existing in the medium b, and there are several
relations connecting a, b, and T'? as:

aG,,,=T:G,, G,,,a=G,T?, (4.6)

T’ =a(l — G,a)' =(1 —aG,)'a 4.7
=a+ aG,a + aG,aG,a + -,

a=(1+TG)'T: =T:(1+G,TE)". 4.8)

Thus, applying Lemma 4.6 to the right-hand side of
Eq. (4.3), the result can be exhibited, in terms of the notation

To(xlx") = Tox|x") g, b=a> 4.9
by
glx, 8/8¢)G (x|x') = de" (T2 (x|x")G, (x" X))o Zo
= jdx" (T (x|x")), G (x"|x"). (4.10)
Here, we introduce the matrix M, having the matrix
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elements M (x|x'), defined by
ax)G (x|x)[ .~ o = qlx, 6/56¢)G (x|x")] . ~ o

= fdx" M (x|x")G (x"|x), (4.11)
or qG = MG, ¢ = 0, in matrix form. Here, on comparing Eq.
(4.11) with (4.10), we find that, if the T? matrix is negligibly
correlated with the incident wave, the explicit expression of
M may be given by

M (x|x") = (T%(x|x"))o ~ (T ¥x|x"))q
= nfda (THx|x")Y,

which has been obtained simply upon substitution of the
matrix M for the operator q(x) in T . Here the above ap-
proximation will be valid when the dimensions of the parti-
cles are sufficiently small in comparison with the coherence
distance of the wave, allowing G; ~G},,n=1,2,3, ..., in-
side the particle g, (x), and also when the correlation between
its scattering matrix and the incident wave is negligibly
small; the latter is possible since the effect of medium fluctu-
ation on the scattering properties of the particles is only
through those parts of the medium in the immediate neigh-
borhood of each particle, while the fluctuation of the inci-
dent wave is due to the accumulated effect of medium fluctu-
ation along the wave path.

The substitution of Eq. (4.11) in Eq. (4.1) yields

L {id/3x)G (x|x') — fdx" M (x|x")G {x"|x") = 6(x — x'),
(4.13)

(4.12)

or, in matrix form,
L—-M)G=1, (L*-M*G*=1. {4.14)

Here, the latter equation is the complex conjugate of the
former and, following the notations introduced in Eqs. (4.4)-
4.8), G=G,,.

Equation (4.12) provides us a means of finding M for a
given g, (x), being one particle’s contribution to the whole
medium ¢(x). Another means of finding M will be shown in
Sec. VI in connection with the coherent potential
approximation.

We can employ the same method also to find the equa-
tion satisfied by the second order Green’s function and thus,
if G|, introduced in Eq. (3.23) is expressed, in matrix form,
by

Gu(1;2) = G¥(1)G, (2)Z,, (4.15)
the multiplication of both sides of Eq. (4.15) to the left with
L *(1) — q*(1) and the subsequent use of Eq. (3.16) on the
right-hand side, yields

[L*(1) — q(D]G\,(1; 2) = 8(1)G, (2)Z, = 5(1)G (2),

' (4.16)
where § (1) denotes the unit matrix with respect to the co-
ordinates x,, having the number 1, and similarly G (2) the
matrix with respect to x,.

To evaluate the second term on the left-hand side of Eq.
(4.16), we can employ the same procedure as used in Eq.
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(4.3) and hence
q(1, 8/8¢)G(1; 2) = (4. (1)GY. . ()G, 4 « (D))o Zo-
4.17)

Here, by formulas (4.5) and (4.6),
9. ()G}, . (1) = TE*(1)GZF(D),
(4.18)
G,..(d = [1+G,TL(]G,(2),
which, upon substitution into the right-hand side of Eq.
(4.17), yields
(T*(O[1 + G, @ATLD)]). G (NG, (D Zo

= [(T&*(1)). + G,Q{TH*(DTL(2)). 1Gii(1; 2),
(4.19)

where use has been made of the commutability of the matri-
ces having different numbers of coordinates.

Here, the consideration similar to that taken in deriving
Eq. (4.12) can be applied to the right-hand side of Eq. (4.19),
to obtain the approximate expression

q(1, 6/8c)G,(1; 2)
= [(T¥*(1)). + G, (T ¥*()T¥(2)). 1G,,(1; 2),
(4.20)

where the operator g has simply been replaced by the definite
matrix M on the right-hand side.
Thus, in terms of the notation

M,(152) = (THOT ), = n [da (THOT XD,
@21)

Eq. (4.16) becomes, on using Eq. (4.12) after putting

c(x) =0,

[L(1)—M*1) - G2M,(1;2)]G,,(1;2) =5(1)G (2),
(4.22)

which, with the aid of Eq. (4.14), can be given also in a sym-
metrical form as

G(1;2) =G*(NG Q)[1 + M,,(1; 2)G,,(1; 2)],(4.23)

being given in a form of the Bethe-Salpeter equation.
In the same way, we obtain the equations of the other
Green’s functions of the second order as

Gox(1,2) = G(1)G ([ 1 + My (1, 2)Go(1, 2)],
4.24)
G(1, 2) = G*(1)G *(2)[1 + M,(1, 2)G,((1, 2)),
where
Mox(1,2) = M 3%(1, 2) = (T DT ¥(2))... 4.25)

The Green’s functions of various orders hold the trans-
lational invariance after setting ¢(x) = 0.

5. GENERAL THEORY OF THE MUTUAL COHERENCE
FUNCTION OF A WAVE

In Sec. 4, the equations obeyed by the first and second
order statistical Green’s functions have been found to be giv-
en completely in terms of the matrices M, M,,, and
My, = M,,*, where M is defined by Eq. (4.11) and is approxi-
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mated, based on the operator method, by Eq. (4.12) while the
others are approximated by Egs. {4.21) and (4.25). In this
section, the general theory is extended, independently of the
previous operator methods, to see how these matrices are
strictly defined in the unperturbative sense, and also the rela-
tion inherent between the matrices.

According to the definition (4.11), the matrix M is de-

fined, in view of formula (2.9), by

{g()G, (x|x")) = fdx” Mx|x"){(G,(x"|x))  (5.1)

in terms of the ordinary Green’s function G, (x|x’), satisfying
Eq. (3.16) with q replaced by g, and therefore, in matrix
form, by

(qu>=M<Gq>’ (qG:)=M*<G:>’ (5.2)
the latter being the complex conjugate of the former. Hence,
in terms of the new quantities

Ag=q—-M, Agq*=q—M?*, (5.3)
the equation for G, is rewritten by

L—-M—A49)G,=1, {(44G,)=0, 5.4)
whose solution can be given in the form

G,=G+4G,, G=G,=(L-M)", (5.5

4G, = G44G,, (4G,)=0, (5.6)

where G and 4G, give the coherent and incoherent parts of
the Green’s function, respectively.

Here, on employing the expression (5.5) with (5.6) for
G,(2) and the complex conjugate expression for G (1), we
immediately find the equation obeyed by G,,(1; 2)

= (G ¥(1)G,(2)) strictly in the form (4.23), with M,(1; 2)
redefined by

(4¢*(1)49(2)G ¥(1)G,(2)) = M,,(1; 2)(G }(1)G, (D)),

(5.7)
and hence also

@HOID) = P D) P +GHDE D)

XM (15 2)(*(1D¥(2))- (5-8)

Here, the matrices M and M, ,(1; 2) are not entirely
independent and, to see this relation, we observe, on using
the expression (5.5) for G,(2) together with Egs. (5.6) and
(5.7), that

(4g*(DG (DG, 2)) = (4g* (DG 3(DAG,(2))

=G (M,,(1; 2){G X(1)G,(2)),
5.9
or, on using Eq. (5.3) in the left-hand side,

{gMG (DG, (D)) = [M*() + GM,,(1; 2)]Gn(lé 2)1, |
5.10

and, in the same way, that

@G r()G,(2)) = [M(2) + G*(HM,,(1; 2)1611(15(52)1-1)

Thus, on letting the coordinates x, of (1) and x, of (2)
coincide in Egs. (5.10) and (5.11), we find the relation

M*()-M©Q) - [G*1) - GQIM(1; D}, _., =0,
(5.12)
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in order that the two expressions become identical.

Here, it is straightforward to show that the above rela-
tion guarantees the equation of continuity (3.11), as may be
shown first by exhibiting Eq. (5.8) in two ways, one being
[L (1) — M * DI (1)92)

=*D{H2)) + GM,(1; 2){¥*(D2)),
and the other the complex conjugate equation with the co-
ordinates (1) and (2) interchanged, and then by deriving their

difference with the aid of the relation (5.12). The relation
(5.12) gives the optical condition in the sense that the ab-
sorbed waves due to the imaginary part of M are perfectly

compensated by the same amount of the scattered waves due
to the term of M, ,.

6. COHERENT POTENTIAL EQUATIONS
FOR M AND M,,

The basic matrices M and M, in the equations of the
first and second order Green’s functions, are explicitly de-
fined according to Eqgs. (5.2) and (5.7) or (5.10), while, inde-
pendently of these definitions, they have been found to be
given approximately by Egs. (4.12) and (4.21) in the case of
random particles. Here, it will be noticed that the latter ap-
proximate expressions can be obtained on the more general
basis according to the former definitions, by utilizing the
coherent potential equations as described in the following.

The Green’s function G, obtained as the solution of
Eq. (5.4), can be exhibited in terms of the scattering matrix
T}, for Aq, defined by Eq. (4.6) and (4.7), by

AgG, =T%,Gy, TN =(1—A4qG,) '4q, (6.1)

and hence Eq. (5.6) is rewritten as

4G, = GTﬁ’qG, G =Gy, (6.2)
with the condition
(T j’q ) =0. (6.3)

Here, G = G,, is defined by Eq. (4.14) in terms of the un-
known M, and therefore the condition (6.3) provides us with
an equation for determining the matrix M.
To find the corresponding equation for determining
M, weemploy, on both sides of Eq. (5.7), the expression (6.1)
with the condition (6.3) and hence
(TLr1)T%2)G*1)G(2)
= M,,(1; 2)[1 + G*1)G (T IHNT 5 (2))]
X G *1)G(2), (6.4)
which gives the explicit expression of M,,, given by
M1 2) = (TEXOT 5(2))
X[1+GHNGATEHUTE )] (6.5)
Thus, the matrices M and M, could be found according
to Egs. (6.3) and (6.5), by utilizing the approximation similar
to that used in Sec. 4; this sort of approximation has been

called the coherent potential approximation in solid physics
and been successfully used to treat the impurity problems. '

A. Simple example: Weak-scattering limit
From Eq. (6.2), the scattering matrix T4, can be given
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by

T =441+ Gy T4y), {6.6)
where the second term in the parenthesis means the effect of
Aq itself to give the effective incident wave on 4¢. Hence,
averaging both sides of Eq. (6.6) and using the condition
(6.3),

M= (849G, T4), (g)=0. ©6.7)
Therefore, in the weak-scattering limit where ¢ is small
enough to retain only the first nonvanishing term on the
right-hand side of Eq. (6.7), we obtain

M~{qGq). (6.8)

To obtain the matrix M, ,(1; 2) according to Eq. (6.5),
we again employ the expression (6.6) for both T'*(1) and
T X, (2) to obtain
(T OT @) = (4g*(DAg(2)

xX[1+635MTEMIN + 6,QTED]), (6.9
which becomes, on neglecting the correlation between dq
and the effective incident wave,
(TE(HT5,(2)) = (4g*(1)44(2))

X[14+ GG, (T EFDT X 2))],
in virtue of the condition (6.3).

Thus, according to the definition (6.5), we find the sim-
ple expression

M, (1;2) = (4¢*(1)49(2)) ~ (g(1)¢(2)), (6.11)
to the lowest order of g, independently of the statistics

obeyed by g(x). Here, it will be noted that, on the right-hand
side of Eq. (6.10), the last factor [ ] cannot be replaced b)"

(6.10)

unity since the second term in this factor means that part of
the incident waves on ¢(1) and ¢(2), contributed from the
incoherent part of waves scattered within the range of the
coherence distance of wave,i.e., the range in which G ¥,(1)
and G,,(2) are appreciable. The expression (6.11) has been
known as the ladder approximation.

B. Coherent potential approximation for A and My, in
case of random particles

It can be shown that the matrices M and M, given by
the coherent potential equations (6.3) and (6.5) are equivalent
to those given by Egs. (4.12) and(4.21) according to the effec-
tive medium method, as far as the incoherency is assumed
between the incident and scattered waves by the random
medium, as it is also the case of Sec. 4. The proof is given in
Appendix A.

7. EQUATIONS FOR HIGHER-ORDER COHERENCE
FUNCTIONS OF A WAVE IN MEDIA OF RANDOM
PARTICLES

The equations obeyed by the coherence functions of
wave higher than the second order, can also be derived fol-
lowing the procedure similar to that used in Sec. 4 for the
first and second order functions. However, it turns out to be
more simple to first find the equations obeyed by the charac-
teristic funcitonal of wave, Z [*, /], and then, upon substitu-
tion of the moment expansion (3.14), to derive the coherence
equations of various orders.

We begin with the basic equation (3.8) and hence, on
using the expressions (2.29) for q(x) and (3.20) for Z [j*, ], we
obtain

[a(x) — c(x)]X)Z [*, )] = qlx, 6/6c)fdx' G, (x|x")ix')Z [, 1, (7.1)

which becomes, in the same manner as in Eq. (4.3),

( [ax quiwi, .. <xtx')f<x')exp[ Jaxian, (G, b bt + 74063 b, lxzv*(xz)}]>azo. (12)

Here, in terms of the notation (4.9),

241G, xl¥) = [ 5" T2ixl"1G, 7 ), (7.3)
G, . o(x|x5) = G, (x,]x;) + fdx' dx” G, (x,|x')T% (x'[x")G, (x" (%), (7.4)

by virtue of the formulas (4.5) and (4.6). Hence, Eq. (7.2) further becomes

<fdx’ dx"TE (x|x'}G, (x'|x")i(x" )exp [jdx1 dx, dx,dx, [f(x,)Gq (1 ]%2) T (x5 x5)G, (3| x4)(x4) +_]T"'(x1)G;‘(xl |%4)
XTir{e e Gateabel (e} ) Z 0.0 73
Here, from Eqs. (3.6) and (3.20‘;, it follows that

(Z 011 = | [G, wlaioc)| Z 0% 71, m=1,2.3, 7.6

and hence Eq. (7.5) can be exhibited by

N <epr‘dx1 dx,dx, [ﬁxl)Gq (21 [x2)T2 (5|2 1ib(x5) +f*(x,)G;‘(x1Ixz)Tg*(x2|x3)1b*(x3)] ]fdx' T¢ (x!x'))a (1.7)
XW(x')Z [7*,7]-
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Here, the symbol ./ stands for the ordering of the referred function of j, 7*, ¥, and ¥* in such a manner that, in its power
expansion, j and j* are always to the left of the operators ¥ and {*.

Thus, on replacing the operator q by the definite matrix M, as has been done in the previous equations {4.12} and (4.20) or
(4.21), we finally obtain Eq. (7.1) with (7.7), expressed in the form

ANZ 7)o = @ kel 2 (3,71 &

0
where

o) = {exp [ oG T S + e 3t e oot | T20cc) - 09

Thus, when c¢{x) = 0, Eq. (3.8)is exhibited by

[ /axhuin)  [axotolorvio) —io|2 67,71 =, (7.10
and, in the same way, Eq. (3.9) by

[L *( — i9/Fxph*(x) — JdX'Km(XIX’)IP*(x') —J'*(x)]l *.jl =0, (7.11)
where k,o(x|x’) is the same as ko, (x|x’) with the factor T"¥(x|x’) replaced by T }*(x|x').

r

Equations (7.10) and (7.11) are the basic equations where all the unconcerned coordinates have been
obeyed by the characteristic functional of wave. Here, one of suppressed.
the methods of solving those equations is obviously to substi- Here, in matrix form, Eq. (7.14) is expressed by

tute the moment expansion (3.14) and derive the equations _

for m,,, of various orders, but the equations rapidly become [¥(2), Kpun | = G (2,0 1 1 (2)0(2),

complicated with the increase of their orders in the present (7.15)

case, although they can be given in a compact form in the [$*(1), K, ] = G*(1),, 4 1 (L*(1),

case when the medium can be assumed to follow the Gaus- and Eqs. (7.10) and (7.11) by

sian statistics (Appendix B). Equation {4.13) for the first or- o )

der Green’s function is derived from Eq. (7.10) simply by {[L 2) — k,{2)1(2) —j2}Z =0, (7.16)

putting j* =7 =0. {IL *(1) — ko D]¥(1) — 1} Z =0, (7.17)
As far as the irradiance and its moments are concerned,

only the symmetrical moments m,,, with the same order for

¥* and ¥ become necessary, while Eqgs. (7.10) and (7.11) are

not given in a form quite convenient for their derivation and

therefore are expected to be unified to an equation symmetri-

cal with respect to ¥* and ¥. This process will be facilitated . *

by introducli)re:g an (;bperator‘b similarp t0 K, defined by {IL *(1) — x4o(1) ~ G iy (1; 2)19*(12)

which still keep the original form of the wave equation (1.1)
in terms of the operators.

Here, on multiplying Eq. (7.17) to the left with {(2) and
subsequently using the commutation relation (7.15), we find

—*(12)}Z =0, (7.18)
£ JV<CXP[I dxy dx dx; Li(xl)GM o) T ooea s i) and, in the same way, from Eq. (7.16)
T — —G* . *
L PRIGY (x,lxz)Ti’*(lexa)w*(xg)]]) , 1.12) L@ =% = G*Dxu(l; DIH*(DHQ)
. S —JjOW*(D}Z =0. (7.19)
and also the associated operators, defined, in matrix form, by Here, Eq. (4.22) for Gy (1; 2) s directly derived from Eq
» * " 1S .
Kn(1, 250 13 1,2, .00 1) (7.18) by putting /* = = 0.
=N (TM*(1)T¥*(2)-..T ¥*(m) : Thus, the subtraction of Eq. (7.19) from Eq. (7.18)

X THT M2 T Mmexpl 1) 7.13) yields an equation of the form

e nlex s .
@l )7 e P | (L (1,2) + V(1 DI DHR) + I(1; 2}Z2 =0,
where exp[ ]is the same as for k in Eq. (7.12). Here, with (1.20)
the aid of the commutation relation (3.7), it is straightfor-

ward to obtain the following commutation relations: where
L(1;2)=(/2)[L*(1)—-LQ2)]. (7.21)
[bix), &,y | = del dx, G (x| X,)K,,, , 1 (x| X2)0(x2), V(1; 2) = (i/2){key(2) — K1o(1) + [G*(1) — G (2)]
(7.14) X «;;(1; 2)}, (1.22)
I(1; 2) = (/D LP*(Y) —j* (D)) (7.23)

*(x), Knn =J-dx dx, G*(x|x)k,, . 1. (%1 |x 0% (x,),
(4% ] 1 %2 G Pl ey o) Here it is noticed that, when the coordinates x, of (1)
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and x, of (2) coincide in Eq. (7.20), the equation should be
reduced to Eq. (3.13), representing the equation of continu-
ity of wave. This implies that, if V(x,; x,|x;; x;) designates
the matrix element of V(1; 2), the relation

V(x; %,|x15%3) | =, =0, (7.24)

should hold independently of x,’ and x,'.

Here, according to Eqs. (7.22) and (7.15), V(1; 2) can be
derived from «, defined by Eq. (7.12), which is composed of
the single-particle scattering matrix 7', the first order
Green’s function G,,, and their complex conjugates, and, in
Appendix C, the proof of the relation (7.24) is given in terms
of the relation existing among those quantities, i.e., the opti-
cal condition of T, M *+ M, in the generalized sense,
equivalent to Eq. (5.12). This becomes more explicit by put-
tingj/* = j = 0, in which case, k,o{1) = M *(1), x,,(2) = M (2),
and x,,(1; 2) = M,,(1; 2) by Egs. (4.12) and (4.21), reducing
the condition (7.24) with Eq. (7.22) to the condition {5.12) in
terms of those in the effective medium approximation intro-
duced in Sec. 4

To derive the higher order moment equations for m.,,,
v>2, we first need to evaluate the commutator of the form

[W*E1b(4), V(15 2)] = V'(1;2(3; 4pb*(3)4).  (7.29)
Here, from the expression (7.22) for V(1; 2), it is found to be
V'(1;2]3; 4) = G*(3)V (15 2{3) + G (4)Vpy(1; 2[4)

+ G*(3)G (4)V,,(1; 2|3; 4)
#V'(3;4]1;2), (7.26)
with the new operator V,,,, defined, in terms of the notation
K,., in Eq. (7.13), by
an(l; 2|3) R 4’ "') = éi[Km,n+ 1(2) - Km+ l,n(l)

+1G 1) = G, 1 1041 (1 2)], (7.27)
where the total numbers of the coordinates 3, ..., and 4, ...,
are m for the complex conjugate wave functions and » for the
original wave functions, and these coordinates have been
suppressed on the right-hand side of Eq. (7.27).

Here, by virtue of the condition (7.24) for V(1; 2), the
conditions exhibited by

Vo 5213, .54, ) |5 =, =0, (7.28)

V(1;2(3;4)|,, -, =0, (7.29)
also hold in the same sense.

Thus, on multiplying Eq. (7.20) to the left by *(3)(4)
and using the commutation relation (7.25), we find
{IL (1 2) + V(12) + V'(1; 2[3; 4) [ b*(1)*(3)b(2hb(4)

+ J(1; 20p*(3)9(4)}Z = 0, (7.30)
while, from Eq. (3.14), the moments of the wave functions
are given by
m,(1,3,..,2u—1;2,4, .., 2

= WH1*(3)* (2 — 1h(21p(4)--b(2v)

XZ %7 55 =o- (7.31)
To investigate the pronounced features of Eq. (7.20) in

the case j = j* = 0, it is convenient to first introduce the
relative coordinates r, = (r, #,) and p, = (p,, 7,), defined by
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Py =X, — Xy P1=£(x2+xl)’ (7.32)
yielding
aJ d 1 d 4
L(1;2)= [——-———————, 7.33
=t 5 2~ 2 3, or, (7:33)

and also the matrix elements V (x,; x,|x]; x;) of the matrix
V(1;2)=V(1; 2) for j = j* = 0, of the form ¥ (r,|p, — p} |71),
as is required by the translational invariance of V' (1; 2); fur-
ther, the condition (7.24) is exhibited by

V(rloy —pilFi) a0 =00 J=j*=0. (7.3

Here, when the space-time change of the wave func-
tions are mostly due to their phases, with a sufficiently slow
change of their amplitudes, then, it follows that the change
of (1*(x,)¥¥(x,)) with respect to the coordinates p, is negligi-
ble, as compared with the change with respect to r, and
therefore also that V' (1; 2) [to be substituted for V(1; 2)in Eq.
(7.20)] can be approximated by a new matrix, defined by the
matrix elements

V(rllr;)=f do} Virylps —pi 1),

being a matrix with respect to only the coordinates 7, and r{.
In view of that, in the present case of random particles,
V(ryp, — p;|ri) is a very short range function, different
from zero only within the range where |p, — p] | and

|7y — 71| are of the order of the particle diameters and the
propagation time of wave through the particles, respectively,
or smaller. Thus, Eq. (7.20) becomes expressed, when

.7 =.7 *=0,by

(7.35)

i E'Tm—?a—tlgr—,]m”(r"pl)

+ fdr; Virlr malri pn) + T rop = 0. (7.36)

Here, in the particular case where ¥ (r|7;) dependson ¢,
and ¢ ] only through the difference ¢, — ¢, then, the fre-
quency of the wave function with the periodic time factor e
is not changed by the scattering and, in terms of the
notations

T,=i2.2
ar, dp,

Virle) = fdt Vi expliolt ; — 1)],

Eq. (7.36) is further simplified, on replacing — id/dt,—w, to
the form
a
[‘ai—“ +T+ Vl]mn("'l) +J(ry) =0,
or,

(7.37)

= (7.38)

where the matrix V| is defined by the matrix elements in Eq.
{7.37), being a matrix with respect to only the spatial coordi-
natesr; and rj.

Equation (7.30) also can be simplified by the same pro-
cedure, on first introducing the additional coordinates

Ty =Xy — X3 Pr=4xs + X3),
Pi2=p1— P> P=}p+ph (7.39)

with the time components ¢,, 7,, 7,,, and 7, respectively,
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which are all (except p) translationally invariant and there-
fore permit the elements of the matrix V', whenj = j* = 0, to
be given in the form

Viiri ra pralp — p'Ir1s 120 P2 )
then, this is replaced, on integrating with respect to o’ as in
Eq. (7.35), say, by V'{ry, 15, p12|71, 75, P12} and, in case of the
same situation as in Eq. (7.37), further by a matrix with re-
spect to only the spatial coordinates, given by the matrix
elements

Vialry, vy pialry, 15, pla) = delz fdt dt;

xXexplio(t; + 15 —t, — ) 1V'(ry, 12 pral?is 15, pia),
(7.40)
which, in view of the condition (7.29), tends to zero as r;,—0
(although not for r,—0). Thus, from Eq. (7.30), we finally
find an equation, corresponding to Eq. (3.38), in the form
o a4
[c ar, —+ T, +V, + sz]mzz(fn ) +J i, 1) =
(7.41)

Here, the matrix elements of V' |, are given by Eq. (7.40) with
the condition V, = V,,/(#V,,') = 0 for r, = 0, and the co-
ordinatesr,, r,, p,, p, have been suppressed; J ;, provides the
source term.

Also with respect to the time coordinate 7,, we obtain
the equation similar to Eq. {7.41) and therefore, letting
T, = 7, = 7, the equation with respect to r is found (since the
two equationsarelinearind /dr, and @ /dr,, respectively), to

[—— +h+T,+Vi+V,+ sz]mzz("') +Jplr) =
(7.42)
with
Vo=V + Vi =V, mylr)=mylr, 7)) I‘r, =7
In order to derive the next order moment equation from
Eq. (7.30), we need to evaluate the commutator of
V'(1; 2|3; 4) and {*(5)¢(6), which gives rise to a higher
order correction of ¥}, due to the interaction with {*(5)(6)
and involves the additional factors T ¥*(5) and 7"%(6) in the
(-}, average, besides those of V'. Therefore, when the con-

tribution from this commutator is neglected, all the higher
order moment equations are systematically obtained in the

[ +2T+V+2 Vi |muwlr) =

j=1 i>j=1

0, (7.43)

over the region of vanishing wave source. Here, all the spa-
tial coordinates r, p;,j = 1, 2, ..., v, have been suppressed,
and T}, ¥, and V; are the same as those in Eq. (7.42), being
functxons ofa very short range of the order of the particle
diameters. It is noted that, in order that the symmetries of
Eq. (7.43) with respect to the original coordinates x; of the
even numbersj = 2, 4, ..., 2v and those of the odd numbers 3,
5, ..., 2v — 1, are respectively secured without violating the
condition (7.29), all the terms of V'(1; 2|3; 4) in Eq. (7.26) are
inevitably necessary and consequently given to the fourth
order of T and TX*.
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8. SUMMARY AND DISCUSSION

The random medium g(x) in the wave equation (1.1)
can be represented by the operator q(x), as given by Eq.
(2.14) with (2.13) in terms of the characteristic functional Z,
[p] of the medium, and this representation particularly facili-
tates obtaining the expectation value of any functional f [g] of
g(x) in space and time; the latter is simply obtained accord-
ing to Eq. (2.8), and the associated relation (2.9) is especially
convenient in finding (g(x)f[g]) when (f[g]) is given. Here,
the operator q(x) at different points in space and time are
mutually commutable and therefore can be treated in entire-
Iy the same way as the ordinary functions. The explicit ex-
pression of q(x) is given by Eq. (2.18) in the weak-scattering
limit and by Eq. (2.29) in the medium of random particles,
while, when the medium is composed of several independent
components, g(x) is obtained according to Eq. (2.25).

On the other hand, when the random medium is pre-
scribed by the characteristic functional Z_[p], the equations
obeyed by the characteristic functional of wave, Z [*, /], are
given by Eqs. (3.8) and (3.9) which are exhibited in terms of
the medium operator g(x) and also the wave operators ¥(x)
and P*(x), defined by Eq. (3.6). Here, these equations pre-
serve the forms of the original wave equations (1.1) with the
replacement of i, ¥*, and ¢ by ¥, ¥*, and q, respectively.
This is a consequence of the more general correspondence
principle (3.10), and the latter could be applied also, e.g., to
the equation of continuity (3.11), the equations of conserva-
tion for the energy and momentum of a wave, constructed
according to the Lagrangian principle, etc. In this connec-
tion, it should be noted that the energy and/or momentum of
a wave are generally not conserved in media fluctuating in
time and/or space, whereas the equation of continuity (3.11)
always holds independently of the medium fluctuation.

The equations for Z [j*,] thus obtained contain the un-
desirable operator 8 /8¢(x) through q{x) and therefore the
next task is to introduce the new operators k,(x} and k,(x],
as defined by Eq_ (7.8), which are free of § /6c(x) but are
functionals of /, /*, ¥, and ¥* instead. To this end, the basic
assumption has been made that, as generaily accepted in the
random media, the correlation between the incident wave
and the scattered wave is negligible, and this enables k,, tobe
given by Eq. (7.9} in case of the random particles while by Eq.
(B11) in the case of the weak-scattering limit.

Thus, it follows that the resulting equations for Z [*, /]
still preserve the forms of the original wave equations with
the replacement of the variables by the corresponding opera-
tors, as exhibited by Eqgs. (7.10) and (7.11), and this corre-
spondence principle facilitates getting the physical insight
into the equations, leading, e.g., to Eq. (7.20), which is given
in a form symmetrical with respect to the operators 1 and
¥*, and which tends to the equation of continuity (3.13) in
the special situation of when the two coordinates of (1) and
(2) coincide; the latter restriction requires the operator
V(1; 2) to satisfy the condition (7.24), as proved strictly in
Appendix C, and turns out to be equivalent to the optical
condition (5.12) in the generalized sense. When j =j* =0,
Eq. (7.20) is reduced to Eq. (5.8) for the mutual coherence
function of a wave.
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Independently of the operator methods, the general
theory is extended specifically for the equation satisfied by
the mutual coherence function of a wave in Sec. 5, and the
basic matrices M and M, are strictly defined according to
Egs. (5.2) and (5.7) in an unperturbative manner. The matri-
ces thus defined satisfy the optical condition (5.12) rigorous-
ly, and the resulting equation for the coherence function nec-
essarily has a form of the Bethe—Salpeter equation. In Sec. 6,
the coherent potential equations are constructed to evaluate
the matrices M and M, according to the definition in Sec. V,
and their explicit expressions are obtained, where use has
been made of the usual multiple scattering theory for a
many-particle system, together with the coherent potential
approximation which has been successfully used in solid
physics to treat the impurity problems."? It turns out that
their expressions are precisely the same as those obtained by
the effective medium method introduced in Sec. 4.

So far the various equations have been treated on the
same footing in space and time, but they could have been
exhibited in terms of those in the wave number space, by
means of the Fourier transformation for all the functions
involved, according to

flk)= f dx explik-x1f(x), k= (k, o),

(8.1)

k =tk ky k3), kx =kx —wt.

The only alteration necessary for this case is the replacement
of the function f(x) or matrix m(x, |x,) by f (k ) or Aii(k, |«,), and
dx by dk = (2m)~*d kdw in all the equations, giving rise to
convolution integrals in case of space-time diagonal matri-
ces. For example, in the weak-scattering limit, Eq. (B9) with
(B5) would be replaced, on using the specific forms

M (x|x') = M (x — x') and G (x|x') = G (x — x'), by

(L () — 82 6 118 ) — k)

— e Bk @k e — i Nzimi=o 62
with
6(k)=fdk' G(— k)G kol +k)+ 74— k')
XG*k Wk’ + k)], (8.3)
and the commutation relations
[0k ), j{ — k)] = (2m)*8(k — k),
[bik), $*(k")]1 =0, etc. (8.4)

It is also possible to utilize the wave number representa-
tion with respect to the time only, and this is particularly
convenient in the case when the medium is dispersive in time
while its temporal fluctuation is slow enough to be negligible
within the wave period. In this case, the medium can be well
represented by the Fourier transform ¢{x, o) with respect to
the time, and, with the replacement of f(x}—f(x, @) and
dx—(2m)” 'dxdw, various equations preserve their original
forms of the equations, described on the same footing in
space and time.
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In the special case in which (1) L (id/dx) in the wave
equation is linear with respect to id/dt, as in the Schrédinger
equation, or, when it is time-independent, with respect to the
particular component of id/Jx in the direction of wave prop-
agation, as in the forward-scattering approximation, and
also (2) the coherence distance of wave in time or space is
long engough compared with the corresponding correlation
distance of the medium, then, the equation satisfied by
Z [j*, /] can be given in a form of the Fokker-Planck equa-
tion,'* showing that the wave is effectively described by the
Markov process.** _

The equation for Z [/*, /] may be solved in terms of the
moment equations of wave of all orders, in view of the expan-
sion (3.14), but obtaining their solutions for all the orders is
practically impossible even in the weak-scattering limit and
with the definite frequency of wave, except the special case
when the medium structure function ¢an be given in the
parabolic form. In the latter case, the exact solutions have
been obtained for all the orders, with the resulting irradiance
distribution given by the Rice-Nakagami distribution with
respect to the logarithm of irradiance.”!%!” But, the assumed
model of the medium merely gives rise to the wandering of
the wave beam without any deformation of the wave beam
cross-section, and therefore the model’s major interst is
mathematical rather than physical.'®!®

On the other hand, as the medium fluctuation becomes
sufficiently large, the moments of irradiance tend to be given
by asymptotic expressions, and the latter have been investi-
gated as a function of the order of moment by different meth-
ods,?*?!?? based on the Kolmogorov spectrum of turbu-
lence. However, in order that the obtained expression be
valid, it turns out that the larger the order becomes, the larg-
er the medium fluctuation becomes; in fact, in comparison
with the experimental values so far obtained, the expression
is applicable only up to the third order moment, at most,?'
and, ignoring this fact, it leads to the exponential distribu-
tion of the irradiance. Experimentally, however, the irradi-
ance distribution observed in the optical propagation
through turbulent air, has been known to be very close to the
log-normal distribution, and the theoretical basis for this dis-
tribution has been found to be the applicability of the cluster
approximation to the solutions of the moment equations,
particularly when the essential part of the medium is de-
scribed by the Kolmogorov spectrum of turbulence.?® This
approximation enables us to exhibit the high order moments
of irradiance in terms of the lower order moments in an effec-
tive way, and the theory shows a very good agreement with
the experimental values so far obtained.?*

The analytical study for the second order moment of
irradiance in turbulent air also has been tried to obtain the
expression applicable to the entire range of medium fluctu-
ation, particularly in connection with the saturation phe-
nomenon of irradiance scintillation, but seems to have been
unsuccessful. So far the numerical method has been used to
obtain the result for two-dimensional space® and recently
the Monte Carlo method for three-dimensional space.?¢

The equation for the mutual coherence function of a
wave is practically most important, and satisfies the equa-
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tion of a form of the Bethe—Salpeter equation, independently
of the statistics obeyed by the medium (Sec. 5). Consequent-
ly, the equation is still difficult to solve in its original form,
but, to a good approximation, the ordinary transport equa-
tion is known to be derived from this B-§ equation under the
condition that the scattering cross-section of medium under-
goes a negligibly small change for the change of wave fre-
quency of the order of the coherence frequency of the wave
(or the extinction coefficient times wave velocity) and also of
the frequency of space-time change of the wave intensity.
Here, since this condition is fulfilled in most cases of interest,
obtaining the average intensity of wave can be effected by
solving the space-time transport equation. It is furthermore
known that, in the particular case when the forward-scatter-
ing approximation is possible, the equation of the mutual
coherence function of wave and the transport equation are
precisely equivalent,?’ and this is also the case of space-time
problems, e.g., of pulse wave propagation.?®

APPENDIX A: DERIVATION OF M AND M,, FROM THE
COHERENT POTENTIAL EQUATIONS (6.3) AND (6.5)

According to Egs. (5.3) and (6.3),
Ag=3q.-M, (TH)=0,

where 2, means the summation over all the particles in-
volved. Here, on referring to the multiple-scattering the-
ory,'’ we may put the scattering matrix T'% for Ag in the
form

T% =30, +0Q_u.

Here, Q,, represents the effective scattering matrix due to the
particle ¢, and, similarly, Q _,, that due to the part — M,
obeying respectively the equations

(A1)

(A2)

0. =71+ GM(B;QQB +0u)] A3
Q_M=T‘1M[1+GM2a:Qa], (Ad)

where T is the scattering matrix for ¢ alone in the definite
medium M, as defined by Eq. (4.7). Equations (A2), (A3), and
(A4) are interpreted as follows: The total wave scattered by
4gq is a sum of contributions coming from each particle and
from the part — M. Each particle contribution Q, is given
by the particle T ¥ matrix applied to an effective wave. This
effective wave consists of the incident wave and of the contri-
butions from all the other particles and also from — M. The
contribution from — M is also given formally by the matrix
T™ ,, applied to an effective wave which consists of the inci-
dent wave and of the contributions from all the particles.
Here, averaging both sides of Eq. (A2),

(TZ>=§<Q,,)+<Q_M)=0,

and, to evaluate the right-hand side according to Egs. (A3)
and {A4), we make the basic assumption that the correlations
between T and @, B #a, are negligible, as made in Sec. 4
when deriving Eq. (4.12) as well as in the usual coherent
potential approximation for disordered alloys.'* Hence, the

(AS5)
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averaging of Eq. (A3) and the subsequent use of Eq. (A5)
yields

(Q.) = (T = Gu (@)1, (A6)
which gives
(Q.) = [1+ (TNGy ' (TE)—(T¥), (A7)

as the volume ¥ of the entire space tends to the infinite, since
(T ¥) contains the averaging over the particle’s center a and
is givenby ¥ -'fda (T’ ), asin Eq. (2.26), tending to zero as
Vo,

In the same way, from Eq. (A4), we obtain

(Q—M)=T¥-M[1_GM<Q~M>]’ (AB)
which gives

(Q_u)= [1+TgMGM]_ngM= — M. (A9)

Thus, from Egs. (A5), (A7), and (A9), we find

M=Z(T§‘)=NV"fda (T¥y, (A10)

which is exactly the same as given by Eq. (4.12).

To obtain the matrix M,(1; 2), we first employ the ex-
pression (A 3) with Eq. (A2) to find, with the aid of the condi-
tion (AS5) and the incoherency between the incident and scat-
tered waves,

(Q2(1)Q. (D)) = (TX*(1)T¥(2))
X [1 = GH()(Q@2(D)) — GX(2){0.(2))
+ GG, Q{T¥(1) - 22(1)}

x{T%@2) - 2.@N] (All)
which, as ¥— o0, tends to
(Q2(1NQ, (D)) = (TH*OWTH2))F(1;2),  (Al2)

where, since Q,, is negligible as compared with 7%, in view
of Eq. (A2),
F(,2) =1+ GG, QTH*()TH (2)). (A13)
In the same way,
(Q2(1Q D) = (TI*MNTHF@IF(1;2), a#B.
(Al14)
On the other hand, expressing the right-hand side of Eq.
(A4)intermsof T4, andQ _ ,, by use of Eq. (A2),Q _,, can
be exhibited, in virtue of the relation (A9), by

Q. u=—-M[1+G,TH). (A15)
Hence
(@* (D2 _ 5 (D)) =M*OM ()G %(1)
X Gp (2)F (1; 2). (Al6)

With exactly the same procedure, we find from Egs. (A3)
and (A 15) that

(Q2(DQ_4Q) = — (TX*(DIM(F(1;2). (A17)
Thus, from Eq. (A2),
(TH*(1)T% (2))
=([ze:m+Q*..M(I)][}B;thzwra_u(z)]), (A18)
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where the right-hand side becomes, on employing Egs.
(A12), (A14), (A16), and (A17),

([zraem- M*(l)] ST - M(z)])F(l; 2),
¢ ? (A19)
which, in virtue of Eq. (A 10), further becomes

SUTH*WOTXQ2) — (T ONTX@)IF (15 2).
) (A20)

Here the terms (T"%*(1)){T ¥(2)) become negligible as
V— . Thus, according to Eq. (6.5), Eq. (A18) [with the
right-hand side given by Eqs. (A20) and (A13)] provides us
with

M (2= Y(TI*(DTLQ), V=,

which becomes the same as Eq. (4.21) with the replacement
3, () —nfdal-) .

Thus, the effective medium method introduced in Sec. 4
is found to be equivalent to the coherent potential approxi-
mation, but the former is more simple and straightforward
than the latter, in the present case at least, in both the meth-
od and the physical interpretation.

APPENDIX B: EQUATIONS FOR Z[/* /1IN MEDIA
OBEYING GAUSSIAN STATISTICS

So far we have considered only the case of random par-
ticles. Also in the other typical case of the media obeying the
Gaussian statistics, the various equations can be formulated
in entirely the same way, even much more simply than in the
former case. In Appendix B are summarized the equations
necessary to derive the equation for Z [*, ], together with the
equations of coherence functions of wave derived from.

When the medium fluctuation can be assumed to obey
the Gaussian statistics, the medium operator g(x) is given by
Eq. (2.18) and therefore, to eliminate the operator & /8¢(x)
from Eq. (3.8) for Z [j*, ], the only term it is necessary to
evaluate becomes, on using Eq. (3.20),

(A21)

Z (.71 = [arax [J(x)[——G e i)

6(5") Selx”
g ,,xlx)}:* )]Z[m] (B1)
Here, from Eq. (3.16),

o)
o G = G, x1x"1G, o ), (B2)

and hence, with the aid of the relation (3.19) and the nota-
tions (3.6}, the right-hand side of Eq. (B1) can be written as

f dx [f)G, (x|x" pbix")

+ 7 XIGHx|x" W*(x") 1 Z [* 71

Here, to the same approximation as used when deriving Eq.
(7.8)from Eq. (7.7), G, and G} in Eq. (B3) may be replaced by
the definite Green’s functions G,, and G ¥,, respectively,
yielding Egs. (B1) with (B3) in the form

(B3)
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5—;5—,,)2 (.71 = Q")Z [ 71, (B4)
where ¢(x) =0 and

Qlx) = JdX' )G (x| x)dlx) +7*x )G *(x'|xJd*(x)]  (BS)

obeys the commutation relations
[W(x), Qx')] = G (x[x"(x'),
[h*(x), Q(x')] = G *(x[x"J*(x'). (B6)
Thus, when ¢(x) = 0, use of Eq. (2.18) with Eqgs. (B4)-
(B6) leads to the result

gxhx)Z = dixjglx)Z = de' D(x — x'hx)Qx)Z

- j dx' [M(x]x'W(x) + D (x — ¥)QWix)1Z, (B)

where
M (x|x'} = D (x — x)G (x|x),
M *x|x') = D (x — x')G *{x|x). (BS)

Hence, Eq. (3.8) is finally exhibited by

[L (i3/6x)b(x) — J dx’ M(xlx’)tb(x')]Z 7

= oo+ [ax Dix - Q|2 %71, (B9)

and Eq. (3.9) by the complex conjugate equation.

Here, the substitution of the moment expansion (3.14)
in Eq. (B9) yields the equation for the moments of wave func-
tions, m,,,, with respect to one of the coordinates of the origi-
nal wave functions, say y,, as

L (l'a/ayl)MMy(xl’ AdH] -x;;;yl’ b

- fdy; MY (K1 o X Vi Vs o 1)

V)

fdx Dy, — x])G*(x;|x])

j=1

XMy (X gy ey X[y oy X5 V15 o V)
— > | Dy —¥))

Jj#1
XG(yj |y;)myv(xlr eeey

X3 V15 s Vs v Vo)

=ﬂyl)m,,,,,¢1(x1, v X3 ¥V2, V3 "'9yv)' (BIO)

The corresponding equation with respect to any one of
the coordinates of the complex conjugate wave functions,
say x,, is also obtained in the same form from the complex
conjugate to Eq. (B9).

Finally, Eq. (B9) and its complex conjugate equation
can be combined into the form of Eq. (7.20) with i 4(1),
Ko1(2), and ky,(1; 2) replaced, in matrix elements, by

Kyy(x; Xo|x1; x3) =D (x; — x)8(x, — x1)8(x; — x3),

o) = M *(x 1) + fde (x, — x)QUIBx, — x7),
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Koa(xa ) = M (xlx3) + f dx D (x; — x)QE)5(; — x3),

(B11)

which, in view of Eq. (B8), explicitly satisfies the condition
(7.24).

APPENDIX C: PROOF OF THE CONDITIONS (5.12) AND
(7.24) IN THE EFFECTIVE MEDIUM APPROXIMATION

In view of the definition (7.22) with Eq. (7.13), the con-
dition (7.24) is proved if we can show the relation
{T¥2) - T¥(1) + [GX(1) — Gu(2)]

XT¥* () T¥(2)},, ., =0, (1)
which, on averaging by (---),, also becomes the condition
(5.12) in view of Eqs. {4.12) and {4.21). To prove Eq. (C1), we
first introduce the unitary matrix U, , defined by its matrix
element

U,(x|x') = exp[idl-x/2]6(x — X'),

and then define the matrix 4, for any matrix 4, by the
transformation

(C2)

Aﬂ. = UAAU;.— l, (C3)
whose matrix elements are therefore given by
A; (x|x") = A (x|x")exp[id-(x — x)/2]. (C4)

Here, since g, (x) is a diagonal matrix, it follows that ¢, ;
= q,. Generally, the relation

(4B-C), =A4,B,C;, f;l4,B,..) =flA, By, )
(C5)
holds.
Here, we also introduce the Hermitian conjugate ma-
trix A" of 4, defined by the matrix elements
AT(x|x') = A *(x'|x), and hence, by Egs. (C2) and (C3),
Ul=U]', Al=UAU;'=4",. (C6)
Particularly, the matrix elements of G, and G'_, are given
by
G, (x|x') = G{x — x")exp[il-{(x — x')/2],
G' ,lx|x') = G*x' — x)explid-(x' —x)/2]. {on)]
The T matrix for g, in the medium M is connected to
4., according to the formula (4.8), by
0. =THM1I+GTH ' =1+ TGN 'TYY, (C8)
where the last expression is the Hermitian conjugate of the
former. Hence, performing the unitary transformation of
Eq. (C8) by U, and U _,, separately, the use of the formula
(CS) leads to
Qe =qus =T (1 + G T5,)™!
=84 =1+ Tﬁf*_aG*_i)_'Tﬁ’,*_a ’
which gives the relation between T%, and T'X ' ; as
ﬁAETZA - Tg*_,l + TZT_A(GT,A — G,{)Tf,z =0,
(C10)

whose matrix elements are given, on referenceto Eq. (C7), by

(€©9)

Uy (%)) = TH(x)|x )¢t —xb2 _ T M(x)|x )ettn = =2
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+ fdx dxr [G ‘(xl _ x)ei/l-(x' —x)/2 __ G (X _ xr)eizl-(x — x')/Z]
X T (el T &' |xy)e == =% = 0. (C11)

Thus, on multiplying both sides of Eq. (C11) by ex-
plid-{(x, 4+ x,)/2 — p}] and then performing the A integra-
tion over the entire range of w »A> — «, we obtain, say,
v, (x,]x,), given by

b, (%1 1%2) = T ¥, x2)8x, — p) — T3 *{xa|x,)00x> — p)
+ J.dx dx'[G*x' — x)6(x' — p) — G (x — x")8(x — p)]

X T 3*{x|x)) T &(x'|x,) =0, (C12)
which is equivalent to Eq. (C1) since, for arbitrary function
f(x;; x;), the relation holds, in matrix form, as

fdxl ey, (5, g ey x2) = {T(2) — TH%(1)

+[G*D) - GITOTYQY (5 Vs —s—, =0.
(C13)

The relation (C12) corresponds to the usual optical con-
dition, indicating that the total scattering cross-section is
proportional to the imaginary part of the scattering ampli-
tude, but is more general in the two points that v, (x,|x,) = 0
not only for arbitrary x; and x, but also for arbitrary p and
further for any absorbing medium, described by a complex
M; for the latter point, the Fourier transform of G * — G, say
G*s)— G () =[L(s)—M*©)" —[L () — M@ )], tends
to 2mis[L (s)] as M—0, and therefore the integral in Eq.
(C12) tends, when integrated with respect top over the entire
range, to be contributed to only by those components of the
Fourier transform of the integrand obeying L (s) = 0, or
from the “shell” components. Here, on the other hand, when
M #0and/or the change with respect to the coordinates p is
large enough, the off-shell components also become impor-
tant enough to make appreciable contributions to the
integral.
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A note on the Schrédinger equation for the x° + Ax%/(1 + gx® potential
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The energy levels and wave functions of the Schrédinger equation involving the potential

x% + Ax?/(1 4 gx?) are calculated by the variational method, for any range of A and g, without
having to resort to numerical quadrature. Using properly scaled (in A and g) harmonic oscillator
functions as a basis set, an easy to compute analytical expression of the current Hamiltonian
matrix element is derived. Perturbative results are also given.

I. INTRODUCTION

Recently, special interest has been drawn to the resolu-
tion of the following eigenequation:

d 2
(& -veo+ £ o, W
where
V(x) =x*+ Ax*/(1 + gx?). (¢))

Interest in this type of interaction arises in several areas
and these have been summarized by Mitra' and Kaushal®. In
particular, this type of potential occurs when considering
models in laser theory.>* The ground state and the two first
energy levels were first computed by Mitra,’ for a large range
of A and g (4, g = 0 to 100) within the variational Rayleigh—
Ritz framework. Properly A-scaled harmonic oscillator ei-
genfunctions have been chosen as a basis set for the represen-
tation of the Hamiltonian operator. By repeated use of the
recurrence formula for the Hermite polynomials, it has been
shown by Mitra that the current variational matrix element
can be obtained by a recursive procedure from the knowl-
edge of one unique matrix element H,,. Nevertheless, it was
possibly overlooked by Mitra that this H,, can be directly
expressed in terms of the Error function. Therefore Mitra
had to resort to numerical quadrature for obtaining /|, and
encountered some difficulties, especially for large values of
g. Furthermore, the above recursive procedure could lead to
numerical instabilities and therefore further discussion,
based on some other algorithm may be necessary, even
though the actual results for the eigenvalues may not differ
significantly.

On the other hand, Kaushal? has used a relatively com-
plex perturbation algorithm in order to obtain an asymptotic
expansion of the eigenspectrum but had to restrict the calcu-
lation to rather small range of g (g = 0 to 1) and large range
of A (A = 0 to 100). At the same time, the work of Kaushal
may be questionable in that the author expands 1/(1 + gx?)
in a power series for gx? < 1, but does not present any esti-
mate on the error made in restricting the domain of x in this
way.

It is shown, in the present paper, that as long as the
harmonic oscillator eigenfunctions are used as basis set, the
current matrix element of the Hamiltonian can be calculated
exactly for any value of A and of g without having to resort
numerical integration. Taking advantage of a two-parameter
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A and g-scale transformation, the determination of the spec-
trum of the eigenequation (1) is reinvestigated both within a
variational and a perturbational scheme.

Il. METHOD

It seems quite reasonable to consider the eigenequation
(1) asa perturbed (and properly scaled via b ) harmonic oscil-
lator wave equation

(iz- b2x2+e)¢ =0 @3

dx2 v v = )

and to use a basis set for a variational procedure or a Ray-
leigh—-Schrdodinger perturbation scheme, the well-known
orthonormal eigenfunctions

174 172
¢u = (i) (_l_) e~ bx‘/2HU (b 12 .X), (4)
T 24!
where v =0, 1, 2, ... and H, is a Hermite polynomial of
degree v.
The associated eigenvalues are
€, =2b@+1/2). 5)

Since ¢, involves a polynomial and since the eigenequa-
tion (1) is of even parity, it follows that, either in a variational
or in a perturbation treatment, the critical part of the calcu-
lation is the evaluation of the following basic integral:

172 =
Ik — 2(&) J e bxl(b 1,2 x)zk ____d_x_z (6)
T o 1 +gx

A. Analytical expression of the basic integral

It is easily found that I, can be determined from the
very simple recursion relationship

172

Lo =— ilk +2(£) 'l—bkﬂ

4 T g
Xf e~ x* dx N
0
or

b 2k — 1M

Iy =— _(Ik - (—k)_) ®
g 2

This relation yields

(g e

Finally, the only integral to be calculated is
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I= 2(3)”7’ f ot 9% (10)
T o 14 gx?

It should be noted that Mitra," also found that the central

element to be computed was H,, = I,,. The integral {10) sim-

ply defines the complementary error function, Erfc (see, for

instance, Ref. 5, p. 302), namely

I, = \[mze”Erfe(z) withz = (b /8)'">.

The Erf or Erfc = 1 — Erf functions have been, for
many years, extensively and accurately calculated and tabu-
lated (see, for instance, Refs. 5-8). Furthermore, series and
asymptotic expansions are available.>*"'° For large z, the fol-
lowing asymptotic expansion of I, can be used:

(11)

0 1 m
~1 —)"2m —1 !!(———) . 12
Iy>~1+ mgl( )"(2m — 1) 52 (12)
On the other hand, for small z, one can use®
2 &, zZm
= & (1 - = — ) ——-—) 13
lo=Jm N2 z,,,éo‘ ) mi2m + 1) 13

Let us mention that we have verified formula (13) for b = 1,
g = 100 (i.e., z = 0.1). Limiting ourselves to m up to 3, we
found I, = 0.15889286. From tables and expression (11), we
obtained exactly the same result up to the last figure.

One can also use the following Hasting’s formula

5
2 2y a;t'+ €l2); lez)} <1.5x 1077,
T i=1

Iy= (14)

where
t=1/(1 + pz); p =0.3275911; a, = 0.254829592;
a, = — 0.284496736;

a, = 1.421413741; a, = — 1.453152027; a, = 1.061405429.

At the expected limit of accuracy, one obtains
I, = 0.15889290.

From a comparative study of the accuracy of all these
formulas for several ranges of z, we found that the most con-
venient expression (except for really very small z) is the one
given by Henrici'

e (172), )
2t Lo AL )

n+1
where (@), = a(@ + 1)@ +2)--(a+n —1); (@), = 1. The
associated Laguerre polynomial L '/ a8 well as the factor-
ials are very easily generated by recursion.

I,=z

(15)

B. Choice of the scale transform

It is clear that for g€A and also for very large g, (1)
mainly behaves as an oscillator wave equation (3) with
b?=1+ Aorb? = 1respectively. Hence, a physically good
scaling has to depend simultaneously upon A and g. In order
to extract a harmonic potential from the second term of ¥ (x)
{Eq. (2)], one can replace gx? by its average and choose, for
each state “v” to be computed,

b2=1+a=1+4/(1+g@+ 1/2)). (16)

Nevertheless, the drawback of this choice is the creation of a
nonorthogonal basic set. In order to avoid this disadvantage,
we have chosen a unique average scalinga = 4 /(1 + g/2)
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which is well adapted to most low lying states. Of course, if
one is interested solely in one specific state, for example “v”,
it is more convenient to choose a = 4 /(1 + g(v +1/2)).

It is interesting to compare our scaling formula (16)
with that of Mitra' and Kaushal,?5 2 = 1 4+ A. In Tablel, the
zeroth order ground state energies, which are obtained when
alternately using Mitra’s scaling and ours (16), are com-
pared with the exact value. It appears that, if for small g both
scalings are fairly good, for large g the former scaling fails to
predict even the order of magnitude of the exact ground state
energy. Our scaling gives the correct order of magnitude of
the energy levels for all A and g values.

C. Representation matrix of the Hamiltonian

Since the eigenequation (1) is of even parity, one can
treat separately even and odd states and distinguish between
the even and odd normalized basis set

b)w —bx /2 N (P 172
,=l—) e d Pk x)*,
b= 3.

—bx‘zz: 1 1/2.N25 + 1
e / d(ns)(b /x) y

b 1/
¢2n+1 = (_)
m s=0

where the d ¥’ and the d /) are the coefficients of the normal-
ized Hermite polynomials of degree 2n and 2n +1,
respectively,

di)=(=)"2"""V 2nl /((25)i(n — 9)Y),

17

(18)
d9D =n+1/2)2dD /(s +1/2).
Settingb > = 1 + a, the potential V' (x) [Eq. (2)] can be rewrit-
ten as

Vix)=bx"+ [((1 — apx® — agx’)/(1 + gx*)].  (19)

TABLE 1. Zeroth order ground state energies calculated from different
scaling procedures

(a) g-dependent scaling E="V 1 + 1 /(1 + g/2);

(b) exact value;

©E=V14+4
A
g 0.1 1 10 100 200
(2) 10465 13973 3.2440 9.8101  13.8375
01 ®) 1.0432 1.3805  3.2503 9.9762  14.1032
; @ 10328 12910  2.7688 8.2260  10.0499
(b) 102426 12324  2.7823 9.3594  13.4687
(a) 1.0083 1.0801 1.6330 4.2031 5.8595
10 ) 1.0059 1.0592  1.5800 57939 9.2811
(@ 100098 100976  1.0936 17207 2.2184
100 ;) 1.00084  1.00841 = 1.0840 1.8363  2.6631
(a) 1.000495 1.00494  1.04833 1.4107 1.7263
500 (b) 1.00044  1.00442  1.04419 1.4413 1.8812
© 1.0488 14142 3.3166 10.050 14.177
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TABLE II. The first four energy levels for different values of A and g in increasing order of excitation (Jacobi diagonalization of an 18 X 18 matrix).

A

0.1

0.5

g 2 5 10 20 50 100 200 500
1.04317371 1.20303955 1.38053180 1.68561740  2.38954155  3,25026122  4.51242099  7.0686947 9.97618009 14.1032168  22.3084299
0.1 3.12008186 3.57080929  4.07988301  4.96859933  7.05096392  9.61906641 13.3973600 21.0607383  29.7811911 42.1612060  66.7760954
T 5.18109479 5.87158370  6.66791910 8.08680404 11.4848086  15.7293363  22.0055699  34.7638297  49.2926905 69.9231255 110.945882
7.23100998 8.12187144  9.16656747 11. 0627486 15.7066621  21.5910055  30.3432738  48.1814982  68.5130522  97.3906193 154.818813
1.03121454 1.15156359  1.29295052  1.55104915  2.19211847  3.01685429  4.25506611 6.79278953  9.69215782 13.8139887  22.0149518
0.5 3.07390256 3.36380139  3.71390237  4.37658192  6.12105873  8.48227060 12.1236133  19.6850376  28.3625979  40.7156819  65.3089021
’ 5.09306915 5.46321387  5.92063165  6.81529745  9.32076345 12.9480334  18.7961421  31.2380423  45.6365729 66.1860474  93.6226964
7.10585043 7.52788119  8.05237875  9.09000674 12.0931670 16.6793649  24.4519211  41.549253 61.5778732  90.2681487 147.546529
1.02418675 1.11858946  1.23237205 1.44732998  2.01300219  2.782330 3.977692 6.47811496  9.35941803 13.4687482  21.6587477
1 3.05165067 3.25584210  3.50742053  3.99841495  5.37944 7.417506 10.7906303 18.1287122 26.705965 38.992519 63.528936
5.05928655 5.29506292  5.58986086 6.17851432 7.92192614 10.7010259  15.698561 27.3753456  41.4410998  61.7775337 102.558118
7.06549833 7.32454029  7.64831681  8.29493343 10.224358 13.3883239  19.409653 34.6454207  53.839093 82.0052851 138.855208
1.01789466 1.0870649 1.170485 1.331863 1.782435 2.442570 3.534937 5.931990 8.758278 12.827070 20.979385
2 3.031773 3.186776 3.329042 3.649514 4.593627 6.09516618  8.838714 15.497575 23.743326 35.803455 60.139256
5.035846 5.175886 5.34849066  5.6940304 6.739675 8.490523 11.94156 21.395858 34.257779 53.80779 93.926914
7.03474084 7.226541 7.381135 7.750547 8.868673 10.732244 14.448137 25.294215 41.494948 67.626030 122.80434
1.009787 1.048807 1.0972941 1.193317 1.47402433 1.918909 2.7446638 4,7584713 7.342857 11.215761 19.168545
5 3.01608085 3.0803718 3.1606623 3.320997 3.80001389 4.5915684 6.152962 10.586344 17.1828134  27.99277 51.18189
5.01560022 5.0780463 5.1562048 5.312852 5.78531644 6.5803330 8.1988138 13.107241 21.205211 36.237616 72.140082
7.0169852 7.0849202 7.1698253 7.339591 7.8485497 8.695784 10.39439 15.451712 23.895738 40.581092 85.176092
1.0059428 1.0296851 1.05929700 1.1183019 1.293580 1.5800249 2.132445 3.6443906 5.793947 9.2811627 16.73919
10 3.0088109 3.04405055  3.0880908 3.1761407 3.4400419 3.8790372 4.7537844 7.350187 11.572198 19.551651 39.580823
5.00828042 5.0414117 5.0828477 5.1657921 5.415200 5.8327692 6.6746838 9.2463907 13.62879 22.490906 48.071034
7.0090376 7.04518677  7.0903704 7.1807285 7.4517292 7.9031549 8.8051293 11.504728 15.988706 24.95478 51.883453
1.0034334 1.0171614 1.0343083 1.068558 1.1709608 1.3404716 1.6751703 2.6454669 4.157188 6.850189 13.278094
20 3.0046566 3.023282 3.0465640 3.093123 3.2327765 3.4654425 3.9304376 5.3226407 7.633095 12.212003 25.5030372
5.0043275 5.0216391 5.0432824 5.0865814 5.2165782 5.4335727 5.8688196 7.1846197 9.409245 13.950132 27.870513
7.0047083 7.0235415 7.0470827 7.0941635 7.235395 7.4707439 7.9413024 9.3518730 11.699220 16.382007 30.39511
1.001569 1.0078473 1.0156933 1.0313808 1.0784008 1.1566708 1.3127555 1.7774654 2.5401081 4,0209960 8.1288805
50 3.0019372 3.0096860 3.0193720 3.0387439 3.0968584 3.1937121 3.3874053 3.9683697 4.9362526 6.8704990 12.659978
5.001808 5.0090444 5.0180891 5.0361795 5.0904585 5.18094088  5.3620252 5.9060391 6.8154661 8.6452110 14.220266
7.001943 7.0097191 7.0194382 7.0388763 7.0971901 7.1943775 7.3887445 7.9717804 8.9432892 10.885480 16.706681
1.0008411 1.0042054 1.0084106 1.0168203 1.0420438 1.0840643 1.1680354 1.4193826 1.8363850 2.66311244  5.0840857
100 3.0009831 3.0049158 3.0098317 3.0196635 3.0491587 3,0983170 3.1966324 3.4915694 3.9830992  4.9660377 7.9138556
5.0009257 5.0046377 5.0092755 5.0185512 5.0463792 5.09276246  5.1855409 5.4639723 5.9283525 6.8584230 9.6605099
7.0009845 7.0049224 7.0098449 7.0196899 7.0492246 7.0984491 7.1968972 7.4922353 7.9844448 8.9687849 11.921169
1.0004420 1.0022101 1.0044203 1.0088404 1.0221001 1.0441967 1.0883796 1.2208439 1.4413330 1.8812271 3.1920300
200 3.0004955 3.0024779 3.0049558 3.0099115 3.0247789 3.0495579 3.0991156 3.2477883 3.4955736  3.9911350 5.4777444
5.0004729 5.0023648 5.0047296 5.0094592 5.0236482 5.0472970 5.0945959 5.2365039 5.4730537 5.9462928 7.3672267
7.0004958 7.0024791 7.0049583 7.0099166 7.0247916 7.0495833 7.0991665 7.2479157 7.4958292  7.9916496 9.4790563
1.00011849 1.0009245 1.0018491 1.0036983 1.0092456 1.0184910 1.0369811 1.0924449 1.1848632 1.3696191 1.9232260
500 3.0001992 3.0009963 3.0019926 3.0039852 3.0099630 3.0199260 3.0398520 3.0996301 3.1992601  3.3985199 3.9962969
5.0001928 5.0009640 5.0019279 5.0038559 5.0096399 5.0192799 5.0385600 5.0964009 5.1928043  5.3856183 5.9641161
7.0001992 7.0009964 7.0019928 7.0039857 7.0099644 7.0199288 7.0398576 7.0996440 7.1992879  7.3985755 7.9964367
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Using the definition (6) of 7, and the recursion relation
(8), one obtains the following expression of the current Ha-
miltonian matrix element between basis functions, even and
odd respectively (see Appendix),

HE) =b8,,(4n+1)
+ X 2d0dN7 s

s=0r=0
Q0
HD =b8,, (4n +3)
+3 $ad0d07,
s=0=0
where
— 1M
>, =%1k _%—-—-(Zkzk DY Q1)

Finally, using (8) the #°,,, are very easily computed
recursively either by hand or by a very simple routine in
terms of I, [Eq. (15)).

lll. RESULTS AND DISCUSSION

Eigenvalues and eigenfunctions of wave equation (1)
have been obtained on the basis of scaled orthonormal har-
monic oscillator functions by the variational method for a
large range of g and 4 (g, A = 0.1 to 500). Moreover, since
our zeroth order energies (see Table I) are in good agreement
with the order of magnitude of the exact values, we have
verified the accuracy of the results given by a traditional
Rayleigh-Schridinger perturbation calculation (first and
second order). (We have considered that the values obtained
by Mitra and corroborated afterwards by our variational cal-
culations converge towards the exact values.)

A. Varlational calculations

Since the basis set is orthonormal, it is well known that
the variational procedure reduces to the diagonalization of
the even (or odd) #°,,,, matrix representation. We have used
the Jacobi diagonalization procedure for different sizes of
N X N matrices (N = 4 to N = 18). It is worthwhile to note
that for N = 4, we obtain an overall accuracy of three signifi-
cant figures. For N = 16, our results are identical with those
calculated by Mitra (except for a discrepancy for the first
excited state when g = 0.5, 4 = 100). In order to obtain eight
significant figures, the calculations have been performed for
N = 18. The first six energy levels for different values of A
and g (A = 0.1 to 500, g = 0.1 to 500) are given in Table II.

B. Perturbational resulits

Using perturbation theory, we have numerically dia-
gonalized the Hamiltonian matrix. We found that either for
small g/b ratios (this is the case, in particular, when g is small
and A is large), or for large g/b ratios, the eigenvalues thus
obtained compare favorably with the exact values, even
when the perturbation process is limited to the first order. In
this last case, analytical expressions of the energies are very
easy to obtain in terms of Z(b, g) and g/b (or b /g). For the
ground state and the two first excited states, for instance, one
obtains

A
(v=0) % g (fo—1)

22

E@= 1)=3(b—%)+ %(2%(10—1)“),

TABLE III. Perturbative results for the gound state energies (a) first order [Eq. (22)]; (b) second order; (c) exact value; (d) Kaushal (Ref. 2)

i
g 0.1 0.5 1

10 50 100
a 1.0432 1.2034 1.3814 3.25114 7.0689 9.9768
o1 P 1.04318 1.20312 1.3807 3.25066 7.0689 9.9763
e 1.04317 1.203039 1.380532 3.250261 7.068696 9.97618
d (1.04305) (1.20290) (1.38045) (3.250244) (7.068692) (9.9761778)
a 1.0315 1.1547 1.3001 3.0306 6.7977 9.7023
05 b 1.03140 1.1523 1.29459 3.0231 6.7973 9.6960
P 1.03121 1.15156 1.29295 3.01685 6.79278 9.69215
d (1.032) (1.103) (1.263) (3.0139) (6.7922) (9.69185)
a 1.0248 1.1239 1.2446 2.8190 6.4929 9.3860
| b 1.0246 1.1207 1.2361 2.7989 6.4928 9.3727
c 1.0241 1.1185 1.2323 2.7823 6.4781 9.3594
d (1.015) (1.100) (1.227) (2.754) (6.472) (9.3567)
a 1.00596 1.0302 1.0613 1.6439 3.8029 5.9362
10 1.00594 1.0297 1.0593 1.5907 3.7266 5.9098
¢ 1.00594 1.02968 1.059297 1.580025 3.64439 5.7939
a 1.00157 1.00788 1.01584 1.1671 1.8781 2.731
50 p 1.00157 1.007848 1.10569 1.1570 1.7916 2.588
c 1.001569 1.007847 1.01569 1.15667 1.77746 2.540108
a 1.00084 1.00421 1.00845 1.0874 1.4665 1.949
100 b . 1.00420 1.00841 1.0841 1.4222 1.8504
c - ’ " 1.08406 1.41938 1.8364
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TABLE IV. Perturbative results for the first three excited states energies (a) first order [ Egs. (22) and (23)]; (b) Kaushal (Ref. 2) to be c ompared to the exact

values in Table IL

A
g v 0.1 0.5 1 10 50 100
1 3.1201 3.5725 4.0834 9.621 21.073 29.810
(3.1189) (3.5695) (4.0789) (9.61843) (21.06057) (29.78110)
2 5.1823 5.8852 6.6974 15.7789 34,7789 49.298
0.1 (5.175) (5.864) (6.661) (15.7228) (34.7621) (49.29177)
3 7.2288 8.1233 9.189 21.618 48.160 68.503
(7.208) (8.093) (9.132) (21.554) (48.1716) (68.5079)
i 3.073 3.366 3.724 8.509 19.785 28.657
(3.061) (3.362) (3.459) (8.40) (19.663) (28.3514)
2 5.098 5.5147 6.053 13.586 31.562 45.783
0.5 (5.022) (5.311) (5.852) (12.560) (31.016) @s.521)
3 7.101 7.531 8.098 17.144 41.324 61.194
(6.916) (7.011) (7.556) (15.675) (41.170) (61.321)
1 3.050 3.255 3.513 7.478 18.228 27.138
(2.976) (3.049) (3.305) (6.754) (17.952) (26.615)
2 5.130 5.346 5.7318 11.937 28.413 42.022
1 (4.801) (4.499) (4.634) (9.355) (26.779) (41.030)
3 7.061 7.322 7.674 14.168 34.667 52.991
(6.489) (5.448) (5.212) (10.091) (33.092) (52.802)
E 2 =5lp A perturbational treatment of the wave equation (1) could be
w=2)= - Eb. - ? more conveniently tackled in the framework of the *“per-
1 b b\2 b 1 turbed ladder operator method”.!" Analytical results will be
X [[—{ +2—+ 2(—-) ](I0 -1+ (— — 7)], given elsewhere.
g 8 & Finally, one can say that, after properly scaling the har-
(23) monic oscillator basis set, eigenvalues and eigenfunctions of

su-n=T= 5]+ o2 42
i+ (32 )

where b2 =1+ a; a =A /(1 + g/2). For small g/b ratios,
one can use these formulas in conjunction with the asymp-
totic expression (12) of 1, and then determine the energies as
a series of g/b«<1. Only a few terms (3 to 4) are needed in
order to obtain a good degree of accuracy. For large g/b
ratios, the same formulas {22) and (23) can be used in con-
junction with (13} or (14) and yield an expansion of the ener-
gies in powers of g/b<1.

First order and second order energies for the ground
state are furnished in Table ITI in comparison with the exact
values. From Table IV, it is shown that the first excited states
energy levels which are obtained from our simple formulas
(22) and (23) are, on the whole, closer to the exact values than
those obtained by Kaushal® from a more complex formula.
This is certainly due to the introduction of the g-dependent
scaling [Eq. (16)].

It should be noted that, from the expression {20) of
.., second order energies can also be obtained by a series
expansion in b /g (or g/b ). Nevertheless, in our opinion, a
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the wave equation (1) can be obtained for a wide range A and
of g without difficulties. (The coefficients of the eigenfunc-
tions are not given here but are available on request to the
authors.) Indeed the computer program for the calculations
is straightforward: double precision is sufficient and only a
few seconds of computer time (IBM 168) were needed in
order to obtain the results of Table II.

APPENDIX

Using the definition (6) of 1, one gets by termwise inte-
gration of the product ¢,, (x)é,,, (x),

A — a)x? — agx* >
<¢2n 1+gx2 ¢2m
=3, 2%
s=0r=0 ™
A—a a
X(( b ) Is+r+1 - —b;gz'ls+l+2)‘
Using the recursion relation (8), one can write
I _ b I [25+¢+1)— 1]
s+t+2 — T T A\ds++1 T Qs +r+1 .
From (5)
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M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

2
<¢2n - d_ + b3x? ¢2m> =b4,,4n + 1) (Dover, New York, 1965),
dx? SA. Lowan, Tables of Probability Functions, Vol. ], N. B. S. Series, New
_ , . o York, 1941.
Finally, one obtains the expression (20) of #%,) . Obviously, "Tables of the Error Function and its Derivative. Applied Math. Series, N.
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%J. Kaye, J. Math. Phys. 34, 119 (1955).
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Exactly solvable eigenvalue problem with hypergeometric

eigenfunctions
Michael J. King and Fritz Rohrlich

Department of Physics, Syracuse University, Syracuse, New York 13210
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A Schrédinger equation with a momentum dependent interaction leads to exact solutions
e L *(R%,d *x) with radial parts of the wave function which are hypergeometric functions and
their appropriate analytic continuations. The normalization integrals are obtained in closed form.

The Schrédinger equation to be discussed below arises
in the relativistic two-body problem of a Hamiltonian for-
mulation of dynamics in which the interaction is momentum
dependent." The corresponding classical interaction has the
form — B%(x-p), where x and p are relative positions and
momenta. Its solution is presented here for at least three
reasons: The method of solution is somewhat unconvention-
al, the wave functions are physically acceptable despite a
singularity on the interval [0, «0 ), and the normalization inte-
grals, although apparently not known in the literature, can
be obtained in closed form. The whole problem is an instruc-
tive application of the theory of hypergeometric functions.

1. THE DIFFERENTIAL EQUATION

We consider the equation

[V? — B2 x- V) J¥ix) = — n¥(x), (1
where the ordered differential operator is defined by

(VP = (x-V + Vx)]?

= (xx:V}-V + 4x.V + 2,

The first term can be written as

x’V2 4+ L?* —2x.V,
where

L= —ixXV.
The differential equation (1) thus becomes

[ V2B x*V2 4+ 2x.V+ L2+ Ny = —n¢,. (2)
This equation separates in spherical coordinates,

g (x) = % $ S YTOeR., 0

l=0m= —1

The radial functions R,, (r) satisfy

Ii+1
(-8R, — 28R, + (1 - 187 — LR,
=0,
which is conveniently written in terms of the dimensionless
variables

*Parts of this work are contained in a Ph.D. thesis by the first author
(Syracuse University, 1980).
*Supported in part by a grant from the National Science Foundation.

2786 J. Math. Phys. 21(12), December 1980

0022-2488/80/122786-03$1.00

p=Fr, viv+1)= —|+n/B?

_ ©)
P(p) =R,V B,
in the form
d (1 o d 104D, _
” (a-p ” P)+ (w4 x Je. =0

For small p the centrifugal term will dominate for all /> 0. It
is therefore convenient to separate the behavior at the origin

Po(p) =p'* g1 () @
leading to
141
(1 = p2g, +2 (—;— —(+2p )g

+vv+ D) —(+DI+2) 1g, =0.

The equation reduces to the hypergeometric equation by the
substitution
t=p’, u,(t)=g,(p)- )
One finds
t(l —t)u;, + [c —(@+ b+ 1)t Juj, —abu,, =0, (6a)
where
a=i(l+v)+1, b=ll—v)+} c=a+b (6b)
The square integrability requirement on R, (7),

R, (NeL *([0,),dr), (7a)
translates via (3), (4), and (5) into
u, ()L *([0,00),t ' 172 dt). (Tb)

The problem is to find those values of v for which the solu-
tions u,, of (6a) satisfy (7b).

2. THE EIGENVALUES

The hypergeometric differential equation (6a) has a so-
lution which is analytic in the complex ¢ plane cut along the
real axis from t = 1tot = + co. At ¢ = 1it has a logarith-
mic singularity. This solution consists of the hypergeometric
function

= F(a,b;a + b;t), )]

t<1

u, (1)

which is analytic in | | < 1, and its analytic continuation G,,
into the rest of the cut plane. Since the singularity at t = 1 is
only logarithmic
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u,(t) t leL2([0,1],t’+‘/z dt). )

The problem of satisfying (7b) consists in finding suit-
able A and v such that u,,(¢)|,. , defined by

u,(t) | = lim [4G,,(t+i9) + (1 - )G, (¢ —ie)],
>1 €
(10)
satisfies the condition
u,(t)| eL*[1,0)t'+'?dr). 08))
>1

Now the analytic continuation of (8), G, (t), for |¢| > 1 and
valid in |arg( — ¢)| <7 is®

G,(t) .
_T'b+al'ib—a) 1 o i
= TP - F(a,l bl —b+a t)
" T'a+b)la—-5b) 1
r(a) (—e2)

xF(b,l —al—a+ b %) .

From (6b) we see that these two terms require v> — § and
v < — }, respectively, in order to satisfy (11); one of them
must be eliminated. Since the solution is symmetric in g and
b, it is arbitrary which one survives: the result will be the
same. We choose to eliminate the second term. Equation {10}
then requires

o (( _t"f)b 1 _Lﬂzi o ) =0

which can be satisfied only with A =} and
costb=0, 2b= —2k +1 ({k integer).

It follows, therefore, from (6b) that (11) will be satisfied when
A=), v=1+42k=n>0 (k integer). (12)

The last inequality results from the above-mentioned re-
quirement v> — . The eigenvalues v are thus determined
and give with (3),

7=Bvv +1) + 1 =Bn + " (13)

3. THE EIGENFUNCTIONS

Substitution of the result (12) into (8) and (10) leads to
the eigenfunctions u,, (¢ ) where

u,(t) Ll =Fi+n)+ 5 —n)+ 4l + 3t], (l4a)

CTA+Pr(=n—-p
1 T@—k)P (=)
XFQU+m + L4+ kn+ 31/t).
These must now be normalized.
The normalization integral

U, (t)
(14b)

f Ri(ndr=1 becomes ;f Uian'*"dr=1.
(¢] (o}
(15)

These integrals cannot be found in the customary tables.
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However, they can be expressed in terms of known functions

as follows.
The differential equation (6a) can be written in “Sturm-—

Liouville” form as

d [ ¢, a+b—c+1 dF] c—1 a+b—c
=t —e)pt +1 22 | = agbt 1—1t F, (16
dt ( ) dt e ( ) (16

Here we wrote

F=F(abc;t)
instead of u,, since the following will be valid also when
¢ =a + b is not satisfied.

Let F=F (a,b;c;t) be a solution of (16) when a,b,c are
replaced by @,b,¢. Then one easily derives by integration by
parts the identity

fﬂth-F[abtc“'(l — t)a+b—r__ab‘ts_ 1(1 _ t)a_,_g_‘?]

- . _ - - . |7
—_ [tc(l___t)a+b—c+1FFl__tC(1_t)a+b—c+lFFl]

a

B — - - P -
_J- thIFl[tc(l _ t)a+b—c+ 1 —tc(l _ t)a+b—c+l]'
If one choses
G+b=a+b c=c
the last integral vanishes identically and one finds® with
a=a+eb=b—e

ela—b+e)| dtFlabic;t)Fla+eb—ect)c!

X(l __t)a+b-—c
B

= (1 —tF+o-+ " Wiabp,et) (17)

where W (a,b;c,e;t ) is the Wronskian
F(a+eb—eqct) F(abgct)
F'a+eb—eqt) F'(abict)

A special case of this result is obtained in the limit e—0.
One then finds

W (a,bic,e;t )=

lim - W (a,bicsest)

e—0 e
= — F¥a,b;c;t) 9 (i InF(a + e,b —ec;t )) ,
at \de e=0
so that one has the integral

(@a— b)rthz(a,b;c;t)t"’(l —)itb-c
= — 1t — 1)+ - HEN g bot)

d 8
—— InF _ e
% (aeat (@+eb—ect ))e=0 a (1%

The integrals needed for (15) are the special case of this re-
sult whena + b =c.

For this special case one needs the right-hand side of
(18) near 7 = 1 as approached from below and from above.
From standard expansions® one deduces with
2(@ — b) =2n +1 from (6) and (12)
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L de 1!+ (1) = 2n2+ _B —2@b) ¥ ®) — ¥@),
(19a)
fwdtt’+‘/2ufn(t)
2
- B@b) @+ y(1—b)l,  (19)

2n +1
where B (a,b ) is the Gaussian beta function; 1/ is the logarith-
mic derivative of the gamma function. Since

Yo)+y(1-b)=7,
for b = | — k, the sum of the two integrals (19) is
J w, ()2 dr = 2
o 2n 4+ 1
The correctly normalized wave function satisfying (14) is
therefore
U,it)= (1/17')\/2n + 1B [ + n) + 14! —n) + 1]
Xy, (t), (21)
with u,, (¢ ) given by (14). This can also be written as

B ~Yab). (20)

U, 0)| = (1/mf2n + 1B+ n)+ LY — 1) + 4]

XF[ W +n)+ Lyl —n)+ LI+ 3], (22a)

t<1

Uln (t)

t>1

=(/m\2n+1B{ +n)+ 1, —n—}4]
1

( . t)(l/Z)(l+ n)+ 1

XF[W04m 4 1= g+ 3] o)

The normalized radial functions R,, (r) are expressed in
terms of these functions by

R, )=V B (Br)*'U,(B*r). @3)
4. DISCUSSION

Our results can be summarized by saying that the
Schrodinger equation (2) has the eigenvalues 7 given by (13)
and the eigenfunctions

) = {R OY700).

The R, are given in terms of hypergeometric functions by

Egs. (22) and (23). The energy eigenvalues depend only on

the quantum number # which is a non-negative integer. The
angular momentum quantum number can take on all values
I =n —2k>0 where k is an integer.
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However, there are various additional points of interest.
For distances r such that Sr> 1 the eigenfunctions must be
defined as averages of the two edges of a branch cut from
Br=1to + . Furthermore, the eigenfunctions have a
logarithmic singularity at 8r = 1. This does not cause diffi-
culties in physical interpretation because the probability is
well defined over any finite interval A7 including the point
Br=1.

Furthermore, the normalization problem led to the
derivation of a new class of integrals over two hypergeome-
tric functions. These are given by (17) for finite e and by (18)
for the limit e—0.

Of some interest is also the special case / = 0. For that
case the equation for the radial part of the wave function
reduces to

d dp,,
- ((1 - == )+ n(n + )Py, =0,
dp dp

which is Legendre’s equation, and » must be an even integer
according to (12). The solutions are now given by the Le-
gendre functions of the second kind Q, ( p). More precisely
one obtains from (22) and (23) the result

Ro,(D=@/mV B V21 +10,(8, 24)

using the known relations® between the Legendre functions
and the hypergeometric functions. The normalization of
(24) can be checked from known integrals.*

After completion of this work our attention was drawn
to a paper which deals with an interaction that is the same as
ours when a certain parameter is suitably chosen.’ However,
their solution (for that special case) differs from ours because
they restrict the domain of ¢ to [0,1] while we have no such
restriction. Their quantization condition is therefore also
different from ours.

'M. King and F. Rohrlich, Phys. Rev. Lett. 44, 621 (1980); a more detailed
discussion of the relativistic Hamiltonian dynamics of which this is a very
special example is contained in M. King and F. Rohrlich, “Relativistic
Hamiltonian Dynamics I1: Momentum Dependent Interactions, Confine-
ment, and Quantization”, Ann. Physics (to be published).

2This result for the special case of negative integer e and @ + e was apparent-
ly first obtained by I. I. Hirschman, Jr., Proc. Am. Math. Soc. 8, 286 (1957).

3A. Erdelyi et al., Higher Transcendental Functions (McGraw-Hill, New
York, 1953), Vol. I; Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (U. S. National Bureau of Standards, Wash-
ing, D.C., 1964).

*1.S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products
(Academic, New York, 1965). We note that formula 7.1 13.2 in this refer-
ence is incorrect and does not agree with 7.112.4 in the limit v = o.

5M. Lakshmanan and K. Eswaran, J. Phys. A 8, 1658 (1975).
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K-surfaces in the Schwarzschild space-time and the construction of lattice
cosmologies
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We investigate spacelike spherically symmetric hypersurfaces of constant mean curvature K
{(which we call K-surfaces) in spherically symmetric static spacetimes. We obtain the differential
equation satisfied by these surfaces from a variational principle. The spacetime Killing vector
leads to a first integral in the form of a conservation of energy for a particle moving in an effective
potential. An embedding of the K-surfaces’ intrinsic geometry in flat space likewise follows from
an effective potential motion. We apply the formalism to the Schwarzschild solution, and display
results of numerical integrations for a variety of K-surfaces and their flat space embeddings. We
use these to construct “lattice” cosmological models, and obtain a foliation of K-surfaces of such
models with large scale behavior of both the open and closed Friedmann type.

I. INTRODUCTION

Hypersurfaces of constant mean curvature X (called K-
surfaces in this paper) have long been considered interesting
objects in studying the dynamics of space-time.' However,
there is a dearth of explicit examples of families of nontrivial
K-surfaces in inhomogeneous space-times.

Given a single K-surface, one can obtain a local K-sur-
face foliation by solving an elliptic equation on the lapse
function. This approach has been exploited by Estabrook et
al.? for maximal surfaces (K = 0}, and more recently by
Eardley and Smarr’ for surfaces of K #0.

Alternatively, it is well known that each K-surface sepa-
rately satisfies a variational principle. In this paper we use
this principle as a computational tool to find directly the
family of spherically symmetric K-surfaces in any spherical-
ly symimetric static space-time. We discuss in detail the be-
havior of these surfaces in Schwarzschild—Kruskal space-
time.

The behavior of K-surfaces (K #0) in Schwarzschild-
Kruskal spacetime differs from that of maximal surfaces
both in the asymptotic and in the inner regions. Asymptoti-
cally, the K-surfaces become null and go to null infinity .7,
whereas maximal surfaces—like the familiar ¢ = const slices
of Schwarzschild space-time—go to spacelike infinity i, In
the interior region, regular spherically symmetric maximal
slices do not exist® in the region r < 1.5m, whereas regular
K-surfaces can approach the singularity at » = 0 arbitrarily
closely if |K | is large enough. In fact, we show numerically
that the entire spacetime can be foliated by K-surfaces. A
K-surface foliation therefore suggests itself as particularly
adapted to radiation problems, and for studying the regions
of large curvature in a more general asymptotically flat
space-time.

The importance of K-slice foliations in cosmological
space-times is well motivated by the Friedmann example

“Supported in part by the National Science Foundation under grants PHY -
7906940 and PHY-7909281

"Present address: Department of Applied Mathematics, University of Wa-
terloo, Waterloo, Ontario, N2L 3G1.
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and by the fact that, even locally, closed spacetimes cannot
be foliated by maximal slices. Thus, the K-slices of Schwarz-
schild are useful if one wants to patch the Schwarzschild
space-time onto a closed cosmological model. We discuss
this problem in the context of building “lattice cosmological
models.”

il. VARIATIONAL PRINCIPLE FOR K= CONSTANT
SURFACES

To obtain the variational principle for K-surfaces in
space-time we generalize another well-known extremum
property: In Euclidean space the spheres have constant
mean curvature, and they have the least surface area for a
fixed enclosed volume. Similarly, in space-time we extremize
the three-dimensional area 4 (S') of the hypersurface S, hold-
ing constant the 4-volume V' (S, ) enclosed by § together
with any fixed surface S,. We use a Lagrange multiplier to
include this constraint in the variational principle and
obtain*

81 =0, (1a)
with
I=A(S)+A(S,S,)=Jn"d3S,‘+/1fd“V. (1b)
S 14

Here S is any (finite) achronal surface subject to variation
with fixed boundary. S, is a fixed hypersurface, homotopic
to S, with identical boundary, and n * is a field of unit vectors
normal to S'and S,. 4 (S} is the three-dimensional area of .S,
and V' (S, §,) is the four-dimensional volume bounded by §
and §,. The arbitrariness of S, corresponds to an arbitrary
additive constant in /. Alternatively, one can make the
unique choice S, = H ~(§'), the past horizon of S. The vari-
ational principle (1) then agrees with that of Goddard.*

To show that Eq. (1) leads to K-surfaces, note that the
boundary of ¥V'is S — S, and use the divergence theorem to
rewrite I as an integral over V'

I=A(S)—-A(S)+AVI(S,S)+4(S)
ZJ. [n*, +A]1d*V+4(S). )
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The variation of this expression can vanish for arbitrary vari-
ations of S only if the integrand vanishes everywhere on S.
However, on S, the divergence of the unit normal is related
to the mean curvature K. Hence, we have
n,+A=—-K+A=0. ?3)

This shows that X is constant and its value is just the La-
grange multiplier 4.

{li. APPLICATION TO SPHERICALLY SYMMETRIC
STATIC SPACE-TIME

The variational principle (1) provides a convenient way
to derive the equation for K-surfaces in spherically symmet-
ric static space-times, and particularly to find first integrals
of this equation. In suitable coordinates the metric takes the
form
ds* = — B{(ndt* + C(rdr* + P{d0? + sin*0 dé ?). (4)
Let the spacelike surface Sbe described by t = ¢ (r, 6, ¢ ), and
choose for S, the surface t = 0. The variational principle
then becomes

5f [Z + A (B(NC (M)t ()] sinddrd8dé =0, (5)

where

3% = —Bt? —(BC/A)[t; + (t,/sin6)P] +C (6
is positive for a spacelike surface, and subscripts denote par-
tial derivatives. The variational equation obtained from Eq.
(5) by varying ¢ is
— AP(BC)V* = — (Br*t,/%), + (BCsinbt,/X),/sinf

+ (BCt, /%), /sin’6. (7)

To simplify this equation we restrict attention to spherically
symmetric hypersurfaces ¢ = ¢ (7). The resulting ordinary dif-
ferential equation can be integrated once with respect to 7,
and then solved for the “rate of change of proper time with
proper distance” dt */dr* = (B /C)"*,:

(de*/dr*y? = (H — T/ [(H — T )* + Br'], (8)

where
J :=/1J- [B(u)C(u))"*u* du (indefinite integral),

and H is a constant of integration.

If B and C are negative (“inside the horizon”), the
spherically symmetric spacelike surface S is more appropri-
ately described by » = r{t), and the variational principle (1)
takes the Lagrangian form (with 7 = : dr/dt)

0=6JLdt=6J[rz(—B+Cr'2)”2—J]dt. 9)

Here we can also obtain a first integral: because L is time
independent, the Hamiltonian H : = AdL /dF) — L is
conserved:

H=Br(— B+ CA~Y? 4 J = const. (10)

The solution of Eq. (10) for dr*/dt *, i.e.,
(dr*/dt*? —BrH-J) *=1, (11)
is equivalent to Eq. (8). Thus, either Eq. (8) or Eq. (11) can be
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used to solve for K-surfaces, both inside and outside the hori-
zon [except in special cases like 7 (r) = const, where the in-
verse H{¢ ) does not exist]. Equation (11) is particularly useful
for a qualitative discussion, because it is analogous to the
energy conservation law for a particle of unit total energy
moving in a potential given by the second term on the left.
For given H, K, the surfaces differ only by isometry.
Therefore the intrinsic metric ¥ and extrinsic curvature

K = —].%, y are uniquely determined:
oy BCr
AxdY = —————dr* + PdQ2?, 12
Yy H—JF+ B + (12)
K =K+ 2H—J)y *BC)™ "
K,=K,*= — (H—J)yr 3BC)"'2. {13)

IV. ISOMETRIC EMBEDDINGS

The intrinsic geometry of two-dimensional Rieman-
nian spaces can often be visualized by an isometric embed-
ding in three-dimensional flat space. The embedding condi-
tion is that the geometry inherited by the surface as a
subspace of flat space be the same as the surface’s given in-
trinsic geometry. In general, the embedding is local only and
cannot be extended to the whole two-dimensional space.

To visualize a spherically symmetric three-dimensional
surface by means of an embedding it is customary to sup-
press one of the angle variables and embed the resulting “re-
duced” two-dimensional spacelike surface. For the
K = const surfaces of interest here we find that the positively
curved portions of the reduced surface can be embedded as a
rotationally symmetric surface in three-dimensional Euclid-
ean space. The negatively curved portions can be similarly
embedded in three-dimensional Minkowski space.

The intrinsic geometry of the spacelike K-surfaces can
be read off from Eq. (4), and by setting d¢ = O we find the
metric of the corresponding reduced surface

do? = [C — B (dt /dr)*}dr’ + r*dg°. (14)
Let the metric of flat Euclidean or Minkowski space be writ-
ten in cylindrical coordinates z, r, ¢:

di*= +dz* +dr*f + rdo> (15

Let z(r) describe an axially symmetric surface, and on this
surface equate d/? and do” to find the embedding condition

+ (dz/dr)* +1 = — B(dt/dr)’ + C. (16)

To solve explicitly for z(r) we substitute (dt /dr)* from Eq.
(8); the problem then reduces to a quadrature.

Like Eq. (11), the isometric embedding equation can
also be written as an “‘energy conservation law” for potential
motion

" ( ar )2 r*BC

“\dz rFBIC—-1)—(H—-J)?
a form which is useful for a qualitative analysis of the re-
duced surface.

+1=0 (17

V. EXAMPLES OF SPHERICALLY SYMMETRIC
K-SURFACES

In all asymptotically flat space-times, the spherically
symmetric K-surfaces which are not confined by horizons
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FIG. 1. (a} A family of K-surfaces with K = 2 and various values of H in a Kruskal diagram. The throat of all surfaces is on the v axis, and the value of H for
each surface is given in the table below. The surfaces that do not reach the sigularity at 7 = Qhave & valuq in the range H _= - 1/6<H<H, = 0.7787.1. {b)
Various K-surfaces which are not reflection symmetric about the v axis. Surfaces VI and VII are reflection symmetric abput the axes ghown. l}ach axis
intersects its surfaces at its throat, as defined by its intrinsic geometry. Surface IIX has no reflection symmetry and terminates at .the smgul_a’rlty. {c), (d)
Penrose diagrams of these surfaces. The transformation to the coordinates ', v' used here, as well as in .Flg. 4 and 6, is given Py . =.5[tan (v +v)

+ tan—Y(u — v)). The slope of these surfaces near #* is determined by the value of K. They dip in the interior to avoid the singularity.

Surface # 1 II 111 v
K= 2 2 2 2
H= — 0.166667 —1/12 172 H,

have a common asymptotic form—that of K-surfaces in
Minkowski space-time. In Minkowski space-time the only
everywhere smooth, spherically symmetric K-surfaces cor-
respond to the integration constant’s value # = 0, and they
are the familiar constant-interval hyperboloids (analogs of
spheres in Euclidean geometry), which become lightlike at
r— 0. If H #0, the surfaces become lightlike also at the
(space) origin » = 0, and hence they are singular there. They
can be obtained by numerical integration of Eq. (8) with
B = C = 1 (even if K = 0 the solution is an elliptic integral).
Our main application concerns the Schwarzschild solu-
tion. Here we find (Fig. 1) a larger variety of K-surfaces,
depending on the value of H. The regular surfaces corre-
spond to a limited range of H values H _ <H<H ; for values
outside this range the surfaces hit one of the singularities at
r = 0. {Contrary to the situation in Minkowski space-time,
there is a curvature singularity at » = 0 in the Schwarzschild
space-time. Hence, surfaces which are “irregular at » = 0”
are of some interest in the latter space-time). Whereas in
Minkowski space-time all the regular surfaces are homogen-
eous (invariant under Lorentz transformations), only some
of the surfaces in Schwarzschild space-time—namely those
with H = H, and H = H_— are homogeneous (invariant
under ¢-translation and space rotations). However, all the
regular surfaces have an inversion symmetry about their
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v VI vl IIX
2 -2 2 1.2
12 0.166667 — 0.166667 3/4

“throat,” characterized in the simplest cases by symmetry
across the v axis in the Kruskal diagram.

Although numerical integration is necessary to obtain
these surfaces explicitly, some of their properties can be
qualitatively understood: The Schwarzschild version of Eq.
(11), obtained by setting B=1/C=1~—1/r,

(drt/dt** = (1 —1/r)y¥dr/dt)*

=1+7F~1)H~ 1Kr)? (18)
or

dr*/dt* +vin=1
can be considered as the energy equation for a particle with
total energy unity, in an effective potential ¥ (r)

= — r(r —1)(H — }Kr’)? (Fig. 2). Here we have set
2m = 1 without loss of generality, since this amounts to us-
ing new dimensionless variables »/2m, ¢t /2m, H /4m?, and
2mK. For example, the r = const K-surfaces mentioned
above correspond to “unstable equilibria” of the potential:
VH, K, r)=1and dV /dr{H, K, r) = 0. Now for r>1, Vis
negative definite, so there are no corresponding r = const K-
surfaces. However, for any r < 1,

K*=@&/PYr—9(0 —n, H>=@/9r -1 -7,
(19)

gives us such a surface.® K-surfaces which do not satisfy Eq.
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FIG. 2. Plot of effective potential ¥ (r) = — r(r —1}(H — 1Kr°)* for the
curves shown in Fig. 1.

(19) may or may not contain a “turning point” at which
¥V = 1[and therefore (dr*/dt *)* = 0]. Surfaces with no such
point necessarily reach the singularity.

Because of the asymptotic flatness of Schwarzschild,
those K-surfaces which escape to r-infinity asymptotically
resemble the hyperboloids in Minkowski space. We note that
since V' (r) <O for all > 1, if a given surface reaches r> 1, it
necessarily reaches infinity in 7. For large r we have
V (r)— — 9/K /%, and hence the solution of Eq. (18) becomes
the hyperboloid

P=1t?—(3/K?. (20)

The surfaces plotted in Fig. 1 were obtained by numerical
integration of Eq. (18), or of the equivalent differential equa-
tion in terms of the Kruskal coordinates

u = (r—1)"2 ¢”%cosh(t /2), v=(r—1)"?¢”%sinh(t /2),
which takes the form

A _AFEB n B~ H— kP,
du Au 4+ Ev
A?:=E* 4+ P(r—-1). (¢3))

To fix the sign of 4 we demand that X be the divergence of
the future pointing normal (or convergence of past pointing
normal). Surfaces of positive X are then concave up in the
asymptotic regions ¢t = + (* + (3/K)%)"2 This rule about
the sign of 4 leads to a smooth surface through the turning
point (where 4 2 = 0), and implies that 4 switches sign at this
point.

A particular K-surface is specified, and hence can be
integrated by computer, if we give H, K, one “point” (7, ¢) on
the surface, and the sign of 4. [This latter choice specifies on
which side of the throat of this K-surface the point {r, ¢) will
be.] We can regard r as a parameter within the surface; there-
fore,the spherically symmetric K-surfaces in Schwarzschild
space-time form a three-parameter family. One parameter is
the surface’s constant mean curvature X itself, another the ¢-
translation from some fiducial surface (e.g., that surface, of
the same K and H, whose throat occurs at ¥ = 0). The third
parameter H measures how much the intrinsic and extrinsic
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curvature varies on the K-surface. This is shown by Eq. (13)
which becomes in the Schwarzschild case (or for any spheri-
cally symmetric metric with BC = 1)

K '=K/3+2H/P, K,’=K,*=K/3—-H/r.
22

When H = 0, the extrinsic curvature tensor has the covar-
iant constant, isotropic, “pure trace” form K, = 1Kg,, .
Similarly, when H = 0 the Ricci tensor has the simple form

R = —2m/P —2K?/9,
R,°=R,*=m/r —2K?/9, (23)

i.e., the Schwarzschild maximal slice value supplemented by
the isotropic, covariant constant tensor — (2K ?/9)g,, . The
intrinsic metric is given by Eq. (12):

ydxidd = (1 —2m/r + K*P/9y'drP + PdR>.  (24)

(This is the unique family of spherically symmetric three-
dimensional metrics with constant scalar curvature

R = 2K?/3, which also occurs as the geometry of the maxi-
mal, ¢ = const slice of the “Schwarzschild solution” with
nonvanishing cosmological constant A = K ?/3). In the gen-
eral case, when H #0, we can consider the value H to be a
measure of the deviation from this “homogeneous and iso-
tropic” behavior of the curvatures.

For each fixed value of X there exist values H, and H.
such that all surfaces with H < H_or H > H, contain one and
only one singularity, while those with H. < H < H, contain
either two singularities or none at all. The H = H,or H = H.
surfaces are the homogeneous, 7 = const sufaces of Eq. (19)
(see also Fig. 1). From the explicit form of 4 2 of Eq. (21), we
see that the constant values 7 , corresponding to H , must
satisfy 0 < 7. <.75 <r, < 1. Further, we find that for K > 0 all
nonsingular surfaces (H_. < H < H.) which intersect the re-
gion « > 0 have minimum r greater that r., while the nonsin-
gular, K > 0, surfaces intersecting # < 0 have minimum r
greater than 7.. The maximum values for r on the double-
singular surfaces obey similar inequalities.®

For any given K-surface, there is a corresponding em-
bedding which may be obtained by integrating Eq. (17) eval-
uated for the Schwarzschild case

+ (dr/dzf* =1 — /[P — (H — IKPY]. (25)
The appropriate sign for {dr/dz)’ is determined by the sign of
the right-hand side of Eq. (25). This also determines whether
the embedding is Fuclidean or Minkowskian. Note that it
often happens that part of a given surface requires Euclidean
embedding while the rest requires Minkowskian embedding.
This happens with some of the surfaces of Fig. 1. In Fig. 3,
we give the embeddings of the surfaces in Fig, 1. All are
obtained numerically. However, Eq. (25) is simple enough to
permit a qualitative analysis by the “particle in a potential”
analogy similar to the above analysis of Egs. (18) and (21).
We omit the details.

Can one foliate the Schwarzschild space-time using
K-surfaces? Previous experience with attempts to foliate
with maximal slices indicates that while the region outside
the horizon is easily filled (indeed, one may use a set of sur-
faces that all have the same H and K ), filling the inner region
is more difficult.
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F1G. 3. Embeddings of the K-surfaces in Fig. 1. Solid curves show Euclid-
ean embeddings, dotted curves show Minkowskian embeddings. Curves
need to be rotated about the z axis to generate the embedded surfaces. Note
that surfaces VI and VII of Fig. 1(b) have the same embedding as surface I of
Fig. 1(a).

It has been conjectured, however, that if the full set of
values of X is used, then a foliation can be achieved. Numeri-
cal support for this conjecture is provided by the family of
slices sketched in Fig. 4. For simplicity, all slices were cho-
sen with the throat at # = 0. Note that the foliation must
consist entirely of # = const surfaces for K<0 (see figure cap-
tion). We thank the referee for pointing out that the exis-
tence of such foliations can, in fact, be proved on the basis of
the results of Eardley and Smarr.? They show that any K-
surface foliation of the exterior (not only spherically sym-
metric) with constant X approaches the corresponding
r = r, surface in the limit. It can therefore be extended to a
complete foliation, as above, by r = const surfaces down to
r=0.
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VI. CONSTRUCTION OF LATTICE UNIVERSES USING
K-SLICES

Whereas K-surfaces in asymptotically flat space-times
are relatively unfamiliar, such surfaces have always been
used in relativistic cosmology, typically as the spaces seen by
comoving observers. An interesting connection between
these two realms is provided by “lattice universes.” The K-
surface foliations of Schwarzschild space-times prove to be
quite useful for the construction of such models. These slices
provide the original Lindquist-Wheeler” lattice universes
with a smooth foliation of constant *“extrinsic time,” which
corresponds closely to the Friedmann comoving time. In ad-
dition, a larger class of models can be built from K-slices of
Schwarzschild than from maximal (K = 0) slices.

Lattice universes are space-times consisting of a num-
ber of Schwarzschild regions (appropriately truncated at
some finite, time-dependent radius) which are patched to-
gether as closely as possible—so that the violation of the
Israel matching condition® is minimized. Explicitly, Lind-
quist and Wheeler built their version by (a) choosing a (finite
spherical) maximal hypersurface .S from Schwarzschild, (b)
fitting together NV copies of S (with a “comparison hyper-
sphere” serving as a template for the fitting) to form an initial

(b)

FIG. 4. Foliation of Schwarzschild-Kruskal spacetime by X-surfaces in
Kruskal (a) and Penrose (b) diagrams. Only a few typical surfaces are shown.
Whereas there is some arbitrariness (e.g., in the location of the throat) for
the surfaces in the past of » = 1.5m, all surfaces in the future of 7 = 1.5m
must be of the » = const type. Namely, since the future r = 0 singularity
corresponds to collapse (converging normals), surfaces with K <0 must lie
to the future of surface with X > 0. However from the concavity of K-sur-
faces in the asymptotic region as discussed in the text, one knows that K-
surfaces which emerge from the horizon reach # ¥ if K> 0, and & ~ if

K <0. Hence, in a foliation, K-surfaces of both signs cannot reach null
infinity.
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{b)

FIG. 5. Embedding diagrams of lattice universes. Figure 5(a) shows the
typical paraboloid of revolution, generated by the parabola P, which has the
intrinsic geometry of the equatorial plane of a maximal (¢ = const) surface
in the Schwarzschild solution. This surface can be matched only to “com-
parison hyperspheres”, of which two examples S, S, are shown, but not toa
“comparison hyperplane”. Figure 5(b) shows how some K-surface embed-
dings do match to a comparison hyperplane H. Two copies of the embedded
surface are shown to illustrate adjacent cells of a lattice universe. The curve
generating the surface is half of curve I of Fig. 3. All surfaces are shown only
up to their throat, and should be continued symmetrically on the top.

surface SV, and (c) evolving S into a space-time by letting
the N regions effectively free fall into each other. Such a
scheme can never produce an exact solution to Einstein’s
equations because of the irremovable gaps between the
packed spheres. Nevertheless, Lindquist and Wheeler show
that a remarkably good approximation can be achieved, one
measure of which is the accuracy with which the dynamics
follows that of the “comparison Friedmann model.”

The Lindquist—-Wheeler scheme, based on maximal
slices, can only produce lattice universes which approximate
the positive curvature (3-sphere) Friedmann models. This
follows from the fact that the initial surface S~ of the lattice
spacetime constructed from maximal slices is necessarily a
surface of maximum expansion (recall that the only Fried-
mann universes which contain such a maximal slice are the
positive curvature models). Figure 5, which shows how the
embedding diagrams of the N copies of S patch together,
further illustrates this point. We note also that in the Lind-
quist—Wheeler scheme, only the original “¢ = 0” surface can
be smoothly constructed from maximal slices; later and ear-
lier to ywarzschita = const surfaces have discontinuous slopes
at the cell boundaries.
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If, however, we use general K-slices rather than maxi-
mal slices only, then we can build lattice space-times which
approximate Friedmann cosmologies of every sort—nega-
tive curvature and flat versions as well as the positive curva-
ture types. The construction scheme for these generalized
lattice space-times is basically the same as that of Lindquist
and Wheeler. Note, however, that the nonmaximal K-slices
permit us to follow the evolution of the lattice space-time
into the future and past, using a preferred, smooth time
choice. We now describe how this is done, using as an exam-
ple a lattice model which approximates a (intrinsically) flat
Friedmann cosmology.

Any K-slice Sg in Schwarzschild for which there exists
a radius p, at which the imbedded surface becomes horizon-
tal (i.e., dz/dr|,_ , = 0) may be used as the basic cell for the
initial surface. Such a K-surface (truncated at » = p,) can be
matched smoothly onto the “comparison hyperplane”
{which is simply flat Euclidean 3-space E 3); we can therefore
construct the initial slice for our lattice model by packing
copies of Sy (2-spheres packed in E 3). Of course, with equal
approximation we could identify cell boundaries and obtain
a closed lattice universe with 3-torus topology, containing
one or several Schwarzschild masses.

As in Lindquist and Wheeler, the dynamical evolution
of the cell boundaries must be radial free fall in order to fulfill
the Israel matching conditions® at the point of contact of cell
boundaries. We therefore find p(t) by solving the Schwarz-
schild radial geodesic equation. Its solution is

_t__—_i(_p_)yz_*_Z(_ﬁ_)l/z
m 3 \Z2m 2m
172
_ 1n[ _(ﬁ./i'ﬂ__“_] +7, (26)
(0/2m) +1

where 7 is chosen so that ¢ = ¢, where p = p,,. [Note that Eq.
(26) describes radial free fall for a particle at escape velocity,
i.e., which reaches infinity with vanishing speed. This is ap-
propriate only for the flat Friedmann example now being
discussed.] The relation r = p(t ) from Eq. (26) of course does
not determine a slice, since we still need H and K. One rela-
tion between H and X is obtained by demanding that the
slices be smooth across the cell boundaries for all times.
Since all cells are equivalent and symmetric, this means that
the slice is orthogonal to the path p(¢ ) of the boundary. This
relation can be visualized even more directly as the demand
that tlze)embedding of the evolving slice stay “horizontal” at
r=p(t)

2mp* = (H — {Kp°). (27)

We might try to complete the job of determining the evolving
slices by demanding that K match that of the appropriate
comparison hyperplane. Such a condition is consistent with,
but not required by, the Israel junction conditions. (For the
present case, these conditions demand that v,,, ¥4, ¥ 445

K %,, and K ¢, all be continuous. However, they permit K,
and therefore also K, to be arbitrarily discontinuous.) If we
do this, we find K (t) = 3(2m/p(t)’}'/? and H = O (all time).
Thus, the extrinsic curvature is isotropic not only on the
boundary (where it matches that of the comparison hyper-
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plane), but everywhere. However, these surfaces have the
undesirable feature of intersecting each other, and they are
not all symmetric across the same throat # = 0. A successful
alternative is the condition that the surface be, in fact, sym-
metric across this throat. (This condition is necessary if one
wants to join pairs of throats and thereby form “worm-
holes.”) This prescription gives us a K-slice foliation of a part
of our lattice model space-time. A computer generated pic-
ture of this foliation is given in Fig. 6.

The lattice space-time cannot, however, be completely
foliated by this prescription. The reason is similar to that
given in the caption of Fig. 4: Near the “bang” K must ap-
proach 4 oo, and near the individual black holes’ collapse it
must approach — oo; hence, on some surface it must be
zero. However, this K = 0 maximal surface cannot satisfy
the cosmological boundary condition (27), as one can see
from the behavior of the effective potential in Eq. (25). (Al-
ternately, one can use the 3-torus identification and note that
a spacelike surface of local volume maximum cannot exist in
this ever expanding universe.*) In fact, K = 0 is approached
only asymptotically by the surfaces constructed according to
the prescription. The surface r = 1.5m is the limit surface of

{a)

(b)

FIG. 6. Foliation of a lattice universe by K-surfaces shown in Kruskal (a)
and Penrose (b) diagrams. Since all cells are identical, only one is shown.
The edge of the cell is a geodesic G, and it indicates how the universe as a
whole is collapsing. Only the interior part of the K-surfaces (shown in solid
lines) corresponds to the lattice universe. The foliation was constructed
according to the presciption in the text. All surfaces have X > 0, with X
decreasing in time. The foliation needs to be supplemented by X = const < 0
surfaces in the collapse region near the future singularity. The values of X
and H are as follows, starting from the bottom surface:

K= 2.3 1.3 090 0.60 0.42 0.24
H= —0.1 —0.06 0.18 0.40 0.45 0.40.

2795 J. Math. Phys,, Vol. 21, No. 12, December 1980

infinite expansion, To foliate the remainder of the space-time
we can fall back on the = const< 1.5m surfaces. These sur-
faces have one disconnected component of infinite volume
for each of the model’s black hole masses, and do not connect
across the entire universe as the cosmological slices do.

The construction of the other two types of lattice uni-
verses, with their preferred foliations, is achieved in a way
very similar to that just described. The only changes are that,
for the positive curvature Friedmann approximation, we use
K-slices for which dz/dr is positive at the boundary and re-
place Eq. (26) with the radial geodesic infall relation of a
particle dropped from rest at some finite » = R (the maxi-
mum radius); while for the negative curvature Friedmann
approximation we use K-slices for which the embedding is
Minkowskian at the boundary, and replace Eq. (26) with the
free fall relation for a particle reaching infinity with some
nonvanishing speed. In the former case the prescription
gives the complete foliation of the space-time,” while in the
latter case the constructed surfaces again have to be supple-
mented by disconnected r = const surfaces. Of course, the
packing of the regions is somewhat different for the three
types as well.

VIl. CONCLUSIONS

We have shown how to construct explicitly K-surfaces
in the Schwarzschild solution, and given some applications
where these surfaces provide a smoothly matched slicing of
space-times which are patched together out of Schwarzs-
child regions. One can use these slices for numerous other
matching problems; for example, they provide a smooth slic-
ing of collapsing spherically symmetric interior solutions. In
particular, it is well known ' that an exterior Schwarzschild
solution, truncated in the center at some radial geodesic, can
be matched to a section of a dust-filled Friedmann universe
(“collapsing dust ball”). The standard description uses the
Friedmann homogeneous time coordinate in the interior,
and Schwarzschild time in the exterior, so that the ¢t = const
slices, even if continuous, are not smooth. However, the
same interior slices will smootly fit onto K-surfaces of
Schwarzschild—in the particular case of collapse from infin-
ity they would be the H = 0 slices we mentioned above, but
their exterior rather than their interior parts. The slicing of
matched interior and exterior solutions by K-surfaces for
marginally bound collapse has been treated by Eardley and
Smarr.? They discuss the details of this type of slicing, note
some of its disadvantages, and obtain nonhomogeneous inte-
rior K-surfaces as well.

We have shown by explicit numerical example that
there appears to be no obstacle to foliating by K-surfaces the
Schwarzschild space-time, and the various space-times con-
structed from it by patching or approximate patching. This
is of some interest because the theorems' available today
about existence of K-surface foliations always involve some
avoidance assumption which is not a priori known to be sat-
isfied in specific examples.**

The K-surface slicing of the Lindquist~Wheeler lattice
universe provides a very simple explicit example of the “si-
multaneity” of the cosmological bang and “‘crunch” in a sit-
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uation involving processes of very different proper time du-
ration—the collapse of the individual Schwarzschild
regions, and the collapse of the universe as a whole. This
solution also gives a simple example where one can see the
mixmaster oscillations of Belinsky, Khalatnikov, and Lif-
shitz'? played out. Our K-slices of a Schwarzschild region, in
the limit K— 0, show the behavior that one would expect in
general for a “black hole” region in a cosmological solution,
and by which one might recognize, when using such slicing,
that one is approaching that region of the bang or crunch to
be associated with a black hole: Rather than undergoing the
general mixmaster oscillations, the metric on these slices
corresponds to the “zero frequency” behavior where trans-
verse distances shrink to zero, and radial distances expand to
infinity. No simpler illustration of this behavior can be given
than the particular K-surfaces on which » = const: For small
r, Eq. (19) becomes K = 3r~*/2. Hence, the metric on the
surface, as a function of K-time, is

do? = K /3)3de? 4+ 2K /340,

The other regions which one would expect to appear in gen-
eral, and which would show the more general mixmaster
oscillations corresponding to cosmological collapse, as op-
posed to black hole formation, are of course shrunk to zero
by the matching assumptions in the special example of the
lattice universe.

The lattice universes which approximate “flat” and
“open” Friedmann universes also illustrate the behavior of
K-slices when there is local black hole collapse but infinite
cosmological expansion. In this case, of course, the collapse
regions cannot be viewed simultaneously as one single
crunch, because the universe as a whole in fact does not col-
lapse. Here we found that the K-surface foliation initially
provides connected Cauchy surfaces for the whole universe.
These surfaces foliate the entire region outside the black
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holes’ horizons, and their volume tends to infinity as K ap-
proaches zero. However, to complete the foliation, discon-
nected surfaces are needed, with one component collapsing
down on each black hole singularity.
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Gddels cosmological solutions have been generalized by Novello and Reboucas [Astrophys. J.
225, 719-24 (1978)]. An attempt is made further to generalize their work. A class of solutions is
obtained which are Godel-like in the sense of Novello and Reboucas, but which have singularities

at both ends of time.

1. INTRODUCTION

Solutions of Einstein equations for the energy-momen-
tum tensor

T.=(p+PV.V,~pg.. +4q.V.+q.V, ey
where p is pressure, p is density, V,is velocity, and g, is heat
flux, and the metric
ds’ =dt? +24 (x,t) dy dt — (m — 1)4 *(x)dy?

— H¥t)dz? — F¥(t) dx?%, )
where m is a constant and the coordinate system is co-mov-
ing, i.e.,

V#=0, for u#0,
=1, for u=0,
and (3)
(txp.2) = (Ox' %2 x°),
have been sought by Novello and Reboucas.! They have
shown that such solutions have the interesting property that
A (x,t) can be expressed as
A(x,t)=¢e“"4_(t), C a constant. )

Such solutions have been called Gédel-like by the above au-
thors. For the metric (2) with a co-moving frame and energy-
momentum tensor (1) the field equations without any speci-
fied equation of state reduce to

HF = m*C, m* aconstant, (5a2)
F  FA F? @2m —1)C?
Zm—l)[—— £4, _ __}_ em-_nc _,
¢ F FA, F? 2F?
(5b)
A F?* 4AF F
—1 [_2+ 2 _]
m=D\ ot T aF F
c* 2F?
+(2m—l)F— 7 =0. (S¢)

Equations (5) have been solved by Novello and Reboucas for
F=1Thisgivesm=14p—A=1C%p+A=])C? where
A is the cosmological constant, and

4,(1) = 64(1) +1,
In the present note we shall try to generalize these solutions
by solving (4) for an equation of state

p—A=p+A. )

where 8, is a constant.

2. SOLUTIONS

It has been shown by Novello and Reboucas! that from
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(1), (2), and (3) one gets the tetrad components as

T,'=T2=T_ @)
From (6), (7), and Einstein equation,

R2=0. ®8)
From (2), (3), (4), (5), and (8)

A,F/F =k, wherekisa constant. 9)
(9) and (5b) then give

m=1/2 10)
From (9), (10), and (5¢) we get

A2 +8k%Ind, =% (11)

Now, if k£ = 0, then we get the solutions by Novello and
Reboucas, which need not be discussed here.
If k£ #0, we get from (11)

A, = gllt — wske (122)
where

(€% /4k?) f e “*du=t+B, (12b)
and from (9) and (5a)

F — Deu/4k
and (13)

H=— m*C o~ vk

D b

where B, D, and [ are constants.

It can be easily checked that (10), (12), and (13) togeth-
er satisfy equations (5). They also satisfy (7) and (8) and
hence the equation of state (6). Moreover in (12) we note
that, although it has not been possible to express » and hence
A, explicitly in terms of ¢, the integral in the left-hand side of
(12a) is the familiar distribution function of normal distribu-
tion whose tables are available.

3. CONCLUSIONS

From (2) we note that 4, = 0 gives detg,, = 0and
hence a singularity. Therefore from (11) we see that 4, can
range from Otoe' /%’ i.e., increase from O to ¢/ 7**” and then
decrease from ¢’ /** " to 0. From (12a) we note that at 4, = 0,
u= ,and at 4, = ¢ 7*’, 4 = 0. Therefore, the time taken
in going from 4, = 0 to 4, = &' /* " is (¢! /3 ") /4k 2
X §& e /™ dy, which is finite for & 0.

Likewise the time taken in going from 4, = ¢’ 7** " to
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A, = Oisalsofinite, i.e., the system goes from one singularity
to another in a finite time.

Thus summarily the solutions of Einstein’s equation
with a metric (2), energy-momentum tensor (1), and equa-
tion of state (6) are either the solutions by Novello and Re-
boucas or are given by (10), (12), and (13). In the second case
the system has singularities at both ends of time.

It can also be noted that, if the equation of state is un-
specified, then another class of solutions of (5) can be easily
obtained by taking F = 1. However, that gives the unphysi-
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cal result, namely p + p <O.
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The expression for g,, as a function of the scalar field ¥ is obtained in the general scalar tensor
theory of gravitation proposed by Nordtvedt and later discussed by Barker, assuming that there
exists a functional relationship between them. Exact solutions for a plane symmetric static
gravitational field are also obtained in this theory. Further the calculations are extended for the
static electrovac with the assumption that here both g,, and the scalar field ¥ are functions of the
electrostatic potential ¢, and the results are different from those previously obtained in the

corresponding situation of Brans—Dicke theory.

I. INTRODUCTION

Within the framework of the general scalar tensor the-
ory of gravitation (Nordtvedt') one can allow the parameter
o to be an arbitrary function of the scalar field ¥. Recently
Barker” proposed a special case of the Nordtvedt’s general
class of scalar tensor theories where the Newtonian gravita-
tional constant G does not vary with time in the homogen-
eous cosmological situation and argumerits in favor of the
this theory were put forward.

It is worthwhile to discuss the static space-time in this
theory and one arrives at some new results in this special case
of general scalar tensor theory where the exact form of w as a
function of the scalar field ¥ is obtained from the condition
that G' = const. One can further generalize some of the re-
sults of Raychaudhuri and Bandyopadhyaya? for a static
electrovac in Brans-Dicke theory” of gravitation where
@ = const.

In Sec. II we consider a general static space~time and
find the exact form of g, as a function of the scalar field ¥
assuming, however, that there exists a functional relation-
ship between them. Such a relation was previously obtained
by Banerjee and Bhattacharya® in Brans-Dicke (B-D) the-
ory. Further we give here an exact plane symmetric static
solution in Nordtvedt’s general scalar tensor theory with @
given in Barker’s form: o = (4 —3%)/(2¥ —2). These solu-
tions are new and reduce to those of Taub® in Einstein’s
theory when the scalar field is absent.

In Sec. III we consider a static electrovac representing
an electrostatic field alone in the general scalar tensor theory
of gravitation. Assuming that both g,, and the scalar field ¥
are functions of the electrostatic potential ¢ we get two rela-
tions, one connecting g,,, ¥, and ¢, and the other is a differ-
ential equation relating ¥, (%), and ¢. These relations,
however, reduce to those previously obtained in B-D theory
for @ = const. Further explicit expressions for both g,, and
¥ are obtained as functions of the electrostatic potential ¢ in

“On leave from the Department of Physics, Jadavpur University, Calcutta
700032, India
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Barker’s special case. We have not yet succeeded to get exact
solutions in particular cases of this static electrovac.

1I. STATIC GRAVITATIONAL FIELD

The field equations in the metric formulation of Nordt-
vedt can be expressed in the form

87 w
G, = — - T, — ;;;('1’# Y, —1, .Y,¥%
1
- "; (Wu;v - gvaW) (1)
and
v, ve
W= — —=f (9'2) , Q)
Qo +3) \d¥
The line element for a static space—time can be written as
ds® = goodt > + g dx'dx’, 3)

with g,, and g; being functions of space coordinates only,
and i, jbeing 1, 2, and 3. One of the field equations, which is
of interest, can be written as

YR = — (0/¥)V°¥,— ¥°, —iOW. 4)

Here any subscript u indicates derivative with respect to x*
coordinate. Now since for a static metric (1)

_ L 007, 1.2

R% = 5(—__?72(8 &'(—8)""8oo.,). ®)
and ¥, =0, Eq. (4) leads to

¥ (28— 800, ) + [g"\/ —g¥; ]J

+ googi/‘( - g)llz'pigoo/' =0. ©)
Assuming now that a functional relationship exists between
Zoo and the scalar field ¥, and using the wave equation (2),
one can, in turn, write Eq. (6) in the form

(,,,563 +1 ) (#i(—g)")
&ao K
Y850 ) (- &) (dw/d¥) .
- 1 U223 7
( 8oo * Qw +3) / ™

Here the prime indicates differentiation with respect to the
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scalar ¥. Now in view of the fact that w = &(¥), Eq. (7) can
be written in a slightly modified form,

[¥ Gio/go) + 11, s _ Q0 +3),¥°
[ @50/800) +1] 220 +3)

We write In[¥ (g5, /800) + 1] = X and InQQw +3)'2 =Y,
and thus get from (8) the relation

X¥'=Y¥ &)
Againsince XY =X (¥)and Y = Y (¥), Eq. (9) leads to

X'=Y
which in turn, on integration yields

X =Y + const. (10)

InB-Dtheoryw = constand consequently Y’ = X' = Oand
we get X = const. This is the known result in B-D theory
previously obtained by Banerjee and Bhattacharya. Equa-
tion (10) gives a relation between g, @, and ¥ in the general
scalar tensor theory of Nordtvedt as

[¥ @o/800) +1] =4 Qo +3)'7, 1)

A being the integration constant. If w is a known function of
¥, goo can be expressed explicitly as a function of ¥ on inte-
gration of (11). In the special case proposed by Barker,

o = (4 —=3¥)/2(¥ —1) which has a consequence that the
Newtonian G turns out to be a constant. It is now easy to
integrate Eq. (11) if one substitutes for @ given by Barker and
the integration yields the exact form of g, as a function of ¥,
in the form

8oo¥ = const X 24 tan (¥ — D' (12)

Next we proceed to give here an exact solution for a plane
symmetric static gravitational field in Nordtvedt’s general
scalar tensor theory with @ given by Barker’s form. The line
element in this case is given by

ds? = e**(dt? — dx?) — e (dy* + d2),
where a and 3 are functions of the x coordinate. The field
equations (1) and the equation (2) are now explicitly written
for this metric as
YB1+2aB)=0¥i/2¥—-a¥ -28,¥,
Y@, +Bu+BY= —0¥i2¥-BY¥ ¥,

®

(13)
¥ (28, + 387 —2a,8)
= —oWi/2¥ +a,¥, — ¥, —~28,¥,
Y +28\¥ = —0¥/Q2w +3).
Omitting details of the steps for integration procedure the
solutions of the set of equations (13) can be finally written in
the form
e =k(ax + b))~ "2 cos’ In[d (ax + b)V"*],
(14)
*® = (ax + b) cos? Inld (ax + b)V?],
and
¥ =sec? In[d (ax + b)V?],

wherea, b, ¢, d, and k are all arbitrary constants appearing in
the processes of integration. It can be easily verified that the
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solution (14) obtained in the static plane symmetric case are
consistent with the relation previously derived in (2) in a
more general situation. When we put ¢ = 0, ¥ = const and
the solutions (14) reduce to those given by Taub® in general
relativity.

lli. STATIC ELECTROVAC

In this section we extend our discussions to the case of a
static electrovac, where the electrostatic field existing can be
represented by the nonvanishing field tensor F,; with
i =1,2,3, and further F;;, = ¢, ¢ being the electrostatic po-
tential. Then Maxwell’s equation can be easily expressed as

[s*°g%(—9)'"¢;]. =0. (15)
For an electromagnetic field the energy momentum tensor is
written in the form
4rT,, = —F,F,°“+ g, F.gF, (16)
and in view of (16) one gets from the field equations (1) the
relation
YR =g% g"%.¢; — (0/W)¥°¥W, — ¥°, —iO0¥. an
Since the field is static ¥, = 0 and Eq. (17) reduces to
R =g® g'pg, — ¥° — 0¥, (18)
and in view of (2), (5), and (18) one can immediately write
v (%8 (— g)l/ngOJ ).

= 2g%%g%(— g)l/2¢i¢j —8%g"(— g)l/zgoo,j Y
~ (g~ 9)'¥)),. (19)
Now if one assumes that both g, and ¥ are functions of the
electric potential ¢, which is, however, trivial for many spe-
cial cases of symmetry, one can obtain from Eq. (19) the
relation
[6%8"(—8)'"good; ¥ 1.

= Zgoogij( - g)1/2¢i¢j - (3‘]( - g)llzq/j),i s (20)

with prime denoting differentiation with respect to ¢. Again

since go,g® = 1, it is easy to show in view of Maxwell’s equa-
tion (15) that

(8(—2)"¥), =82 — 8)"°3;(80¥"),- (1)

In Brans-Dicke theory 0¥ = 0, and in consequence one
gets the condition g, ¥’ = const. In Nordtvedt’s extended
theory, however, in general g, ¥’ is a variable. Using (21)
and Maxwell’s equation (15) in (20), one can immediately
obtain

£"8(— £, [@o0¥) 26 1, = 0. @

Writing now £ (¢ ) for [(ge¥ )’ — 2¢ ], which is a function
of ¢, Eq. (22) can be represented in the form

©'4:4,)6" =0,
which leads one to the conclusion that £ * = 0 for a nonvan-
ishing electric field, or in other words,

(80¥) —26=a, (23)

a being the integration constant. Integrating (23) one can
write finally the relation connecting goo, ¥, and ¢ in the form
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8w¥ = (¢* +ad +b), e2))
b being another integration constant. It may be noted that
the relation (24) is identical with that obtained by Ray-
chaudhuri and Bandyopadhyaya in Brans-Dicke theory
even if in our case  is not a constant.

In the next step we prove that for a static electrovac in
Nordtvedt’s general scalar tensor theory
8oo¥' « (2w + 3)"2, with @ as function of ¥. The proof is as
follows.

The wave equation (2) for the scalar field can be written
as

12
i ) 2g) = — =8 i wns.b.. (25
(g(—8)'°¥'9)), o +3) gl@'¥")¢;. (25)
Since in view of g,,g”® = 1 and Maxwell’s equations the left-

hand side of (25) can be replaced by

[gOOgij( - g)1/2¢j ] 80 ¥ + g~ g)l/2¢i¢j v,
one can easily reduce Eq. (25) to the form

8o , W' _ o'

By o2 | 26)
Loo v’ (2w +3)
which, in turn, on integration finally yields the relation
, C
8oo¥ @7

- Qo + 3)1/2 ’
where C is the integration constant.

One can now write in a straightforward way from (24)
and (27)

v C

¥  Qo+3)"%p +ad+b)

If @ = const, the relations (27) and (28) reduce to those in
Brans-Dicke theory. We can proceed further to find the ex-
plicit functional relationship of g,, and ¥ with the electric
potential ¢, provided we know the exact form of w as a func-

28)
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tion of ¥. For this we choose Barker’s form '

@ = (4 —-3V¥)/(2¥ —2) mentioned previously in Sec. IL

With this for @ Eq. (28) can be written in a modified form
v’ C

YW—1)"? ¢ +ap+b @9

It is now a differential equation relating ¥ with ¢ and yields

on integration

W - secz lnC ((2¢ + a) — (a2 _4b )1/2 )C/Z(az —4b)2
'\t +a)+ @@ —4)~

*

for a* > 4b,
W= secz(Cz - —_"——) . fora® = 4b, (30)
24 +a)
and
C a_ (24 +a)
V= SOCZ(CS + (4b _ aZ)l/2 tan ' (4b — 02)1/2) 4

for a* < 4b,

where C,, C,, and C, are constants of integration.

The relations (30) express ¥ as a function of the electric
potential and one can now obtain a straightforward way the
value of g,, as a function of ¢ by using Eq. (24).

ACKNOWLEDGMENT

One of the authors (A. Banerjee) would like to thank
F.ILN.E.P. for the financial support.

'K. Nordtvedt, Astrophys. J. 161, 1059 (1970).

?B.M. Barker, Astrophys. J. 219, 5 (1978).

A K. Raychaudhuri and N. Bandyopadhyaya, Prog. Theor. Phys. 59, 414
(1978).

“C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961).

3A. Banerjee and D. Bhattacharya, J. Math. Phys. 20, 1908 (1979).

$A.H. Taub, Ann. Math. 53, 472 (1951).

A. Banerjee and S.B. Duttachoudhury 2801



Dynamics in nonglobally hyperbolic, static space-times ®
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Ordinary Cauchy evolution determines a solution of a partial differential equation only within the
domain of dependence of the initial data surface. Hence, in a nonglobally hyperbolic space-time,
one does not have fully deterministic dynamics. We show here that for the case of a Klein—-Gordon
scalar field propagating in an arbitrary static space-time, a physically sensible, fully deterministic
dynamical evolution prescription can be given. If the cosmic censor hypothesis should be
overthrown, a prescription of this sort could rescue deterministic physics.

1. INTRODUCTION

The cosmic censor hypothesis of classical general rela-
tivity states that all singularities of gravitational collapse are
hidden within black holes; that no “naked singularities”—
visible to a distant observer—can be produced. A stronger
version of this hypothesis recently proposed by Penrose!® as-
serts that any physically reasonable spacetime must be glo-
bally hyperbolic. The solid theoretical evidence in favor of
even the weaker form of this conjecture is still rather meager,
consisting mainly of the analysis of spherical collapse and
perturbations of spherical collapse® together with proofs of
the impossibility of obtaining certain types of counter exam-
ples.® Indeed, the unaesthetic aspect of adding objects other
than black holes as possible endpoints of gravitational col-
lapse is probably more responsible than the above solid evi-
dence for the widespread belief in the validity of the cosmic
censor hypothesis in its weak form.

One of the main unaesthetic features of the lack of glo-
bal hyperbolicity is that by definition, there is no initial data
surface whose domain of dependence is the entire space-
time. If naked singularities are formed in gravitational col-
lapse, even the distant, asymptotically flat region of the
space-time fails to lie in the domain of dependence of an
initial surface. Thus, in nonglobally hyperbolic space-times,
the dynamical equations cannot predict from initial condi-
tions what happens in certain regions of the space-time.
Physically, the reason for this is that singularities are present
and the dynamical equations say nothing about what can (or
cannot) come out of a singularity. Unless some additional
type of boundary conditions can be imposed upon the singu-
larity, a complete breakdown of predictability occurs in any
region of the space-time where the singularity can be seen. In
specific examples, it may be possible to invent boundary con-
ditions on a singularity which yield a sensible, deterministic,
dynamical evolution. But given the infinite variety of patho-
logies of singularities, it might well seem a hopeless task to
invent a sensible general prescription for dynamical evolu-
tion in the presence of arbitrary singularities.

“'Supported in part by NSF Grant PHY 78-24275 and by the Alfred P.
Sloan Foundation.
Sloan Foundation Fellow.
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The purpose of this paper is to show that this task may
not be quite as hopeless as it may at first appear. We shall
consider the evolution of a Klein—-Gordon scalar field in an
arbitrary static space-time (with arbitrary singularities con-
sistent with staticity). We will show that the problem of de-
fining the dynamics can be translated into the problem of
finding self-adjoint extensions of the spatial part of the wave
operator. But the problem of finding self-adjoint extensions
(as opposed to the problem of defining boundary conditions
on singularities) is a well studied problem and, since the op-
erator considered here is positive, it is known that positive
self-adjoint extensions exist. Indeed, a natural choice of ex-
tension—namely, the Friedrichs extension—can be defined.
Thus, the problem of defining dynamics of a Klein~Gordon
field in a nonglobally hyperbolic, static space-time can be
solved by using the prescription defined below in Sec. 2,
choosing the Friedrichs (or another) self-adjoint extension.
The methods and results below are special to the Klein-
Gordon field in static space-times. However, the results indi-
cate that if it should become necessary to abandon the cos-
mic censor hypothesis, it may well be possible to retain well
defined, deterministic, physically sensible laws of dynamical
evolution.

In Sec. 2, the dynamical evolution prescription is de-
fined and shown to satisfy the following properties: (1) Solu-
tions are uniquely determined throughout the space-time by
their initial data; (2) Where ordinary dynamical evolution is
defined (i.e., in the usual domain of dependence of the initial
surface) the results coincide with the evolution prescription
given here; (3) For smooth initial data of compact support,
the solution is smooth throughout the space-time. Thus, our
prescription defines a physically reasonable dynamical
evolution.

Finally, in Sec. 3 we attempt to gain some insight into
the meaning of the prescription in terms of “boundary condi-
tions on singularities.” We show that if the singularity of the
space-time is an artificial one, that is, for an extendible space-
time {so that a smooth boundary can be attached to the origi-
nal manifold), the prescription defined by using the Frie-
drichs extension corresponds to putting zero Dirichlet con-
ditions on the boundary. Thus, one may view the dynamical
prescription of Sec. 2 (using the Friedrichs extension) as a
means of generalizing the notion of Dirichlet boundary con-
ditions to arbitrary naked singularities in static space-times.

© 1980 American Institute of Physics 2802



2. PRESCRIPTION FOR DYNAMICS

Let (M,g,, ) be a static space-time, i.e., one that pos-
sesses a one parameter group of isometries with everywhere
timelike orbits which are hypersurface orthogonal. We wish
to consider the propagation of a massless Klein—~Gordon sca-
lar field ¢, satisfying

V4V, 6 =0. )
Suppose we specify initial data for ¢ on a hypersurface >
orthogonal to the static Killing field £*. If the space-time is
not globally hyperbolic, 2 will not be a Cauchy surface and
data on 2 will determine ¢ only in the domain of dependence
D (). Outside D (X'), the partial differential Eq. (1) does not
determine ¢. Our aim is to formulate a physically sensible
prescription for determining ¢ everywhere.

To do so, we rewrite Eq. (1) in the form

3% /3t*=VDYVD,$), )

where V2 = — £*#£,, t denotes the Killing parameter, and
D, denotes the derivative operator on the hypersurface 2.
We may then view

A= —VD%¥VD,) 3)

as an operator on the Hilbert space # of square integrable
functions on 2. If we choose the volume element used to
define 7 to be V' times the natural volume element on 3
and if we initially define the domain of 4 to be C7(Z) (i.e.,
the smooth function of compact support on X' ), then A will be
a positive, symmetric (but not self-adjoint) operator. In this
way, we may reformulate the problem of solving the partial
differential Eq. (1) into the problem of finding a one-param-
eter family ¢, of vectors in 7% satisfying

d’p,/dt*= — Ag,. C))

Our reformulation, Eq. (4), is not strictly equivalent to the
original Eq. (1): the time derivative in Eq. (4) is a Hilbert
space derivative rather than a partial derivative at fixed spa-
tial position and with the present definition of the domain of
A, ¢, must liein C'§. These modifications do not yet improve
our ability to solve the dynamical equation. However, we are
now in a position to further modify Eq. (4) to yield our dyna-
mical prescription.

Let A, denote a positive self-adjoint extension of 4.
Because of the positivity of 4, at least one such extension—
the Friedrichs extension 4 .—always exists.* We replace Eq.

(4) by
d?¢,/dt* = — A4, ®)

and, in turn, replace Eq. (5) by its solution in terms of its
initial data @, and ¢,

¢, = cos(d ’t)po + A 772 sin(4 [t )4, ()

Here the operators cosA >t and 4 7 '/ sind Y/t are defined
using the functional calculus of self-adjoint operators.>°
They are bounded operators (with ||cos4 % || = 1 and

l4 £ '/* sind *t || = ¢), and thus can be defined to act on all
vectors ¢, and ¢, in ¥°. For ¢, defined by Eq. (6), it follows
from the type of argument used in the proof of Stone’s theo-
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rem® that for ¢, and ¢ in the domain of 4, d %4, /dt *indeed
exists (in the strong limit sense) and satisfies Eq. (5). Finally,
itis clear that at t = 0, ¢, reduces to ¢, while d¢ /dt reduces
to éo, S0 g and ¢50 are correctly identified as initial data for ¢.

Our prescription for defining the dynamics of ¢ is thus
the following: We prescribe a positive, self-adjoint extension
Az of A. The allowed initial data consists of all 4, and ¢,
lying in the domain of 4. (Actually, ¢, need only lie in
domA }/2.) In particular, since domA, DdomA, all C &
specifications of ¢, and ¢50 are permitted. The solution corre-
sponding to this initial data is then defined everywhere [not
just in D (X)] by Eq. (6).

Having defined our prescription, we now turn to show-
ing that it is physically sensible. Specifically, we first shall
show that our solution Eq. (6) reproduces the solution of Eq.
(1) determined by ordinary Cauchy evolution in the region
D (X ) where Cauchy evolution is defined. Then we show that
for initial data in C §° (or, more generally, for initial data in
domd £ for all k ) our solution, Eq. (6), is smooth throughout
the space-time.

Let ¢ denote the solution obtained by ordinary Cauchy
evolution in D (Z,) of Eq. (1) with, say, smooth data (@q,d,) in
domA; specified on the initial surface 2. Suppose ¢, dif-
fered from ¢ in D (2 ). Then there would be a static hypersur-
face 2, (corresponding to time ¢ = ¢,} such that, viewed as
L?-vectorson 20D (Z), wehave ¢, #4, . LetSbea Cauchy
surface for D (%) which coincides with X', on an open region
where ¢, #¢, (see Fig. 1). Let f;‘ be a smooth function on .S
with compact support contained within Sn, such that

j VoI W, — 6,)#0, ™
SNE,

where here and in the following the natural volume element
isunderstood in all integrals and the factor of ¥ ! is explicitly
put in to yield the volume element used in defining #°. De-
fine fthroughout D () to be the ordinary Cauchy evolution
of the initial data (f=0, f= f, ) on S; set f'= 0 outside

D (Z,) in the region between X, and ¥,. Then fsatisfies Eq.
(1) throughout the region between 5, and ', and the restric-
tion f, of fto any hypersurface 2, lying between 3, and 3,
liesin C$(Z).

Consider, now the quantity

c<z)=LV*'[f*(f?—'f—%)—%iww,)]. ®

A simple calculation yields

o[ volr(2-28)- 2L -0 o

But, since f'and ¢ are smooth solutions of Eq. (1) and fis of
compact spatial support, a straightforward substitution of
Eq. (2) to get rid of the time derivatives followed by integra-
tion by parts shows that the terms in ¥ cancel. On the other
hand, using Eq. (5), together with the fact that

3°f/9t*= —Af, = — A f,, the terms in ¢, can be ex-
pressed as,
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FIG. 1. The construction used in the proof that ¢, agrees with usual Cauchy
evolution in D ().

L,V'{‘f*—d—zqs—”r Ay

dt? ot?
= (anE‘ls;) - (AEfn‘?S:)
=0, (10)
since A is self-adjoint. Thus, we have
de/dt = 0. (11

However, by construction ¢(#,) 7 0 and from the definition of
¢(¢) together with the assumption that ¢ and ¢, have the
same initial data on 2, we have c(¢,) = 0. This contradiction
proves that ¥ and ¢, must agree in D (Z,).

Next, we show that our evolution prescription yields a
smooth solution if the initial data is in C §(2,) or, more
generally, if ¢, and (150 lie in domd ¥ for all positive integers k
(If ¢ and d, are in C $(Z,), they clearly lie in domd *
Cdomd4 X.) If ¢, and , are C = but not in domd % for all k,
it is possible that our solution will still be smooth but our
method of proof fails.

From the definition of ¢, , Eq. (6), it follows immediate-
ly that if @,é, € domA %, then ¢,edom4 % and indeed,

A5d, =cos(d )4 b+ A £\ sin(d ALy (12)

Thus, letting y denote the vector on the right-hand side of
Eq. (12), we see that for all geC $(Z,) we have,

(¢.4°8)=.9). (13

Equation (13) states that ¢, viewed now as a distribution, is
a weak solution of the partial differential equation.

Ar¢, =x. (14)

But, on any open set 2 C 3, with compact closure, 4 “is a
strongly elliptic partial differential operator of order 2k.
Furthermore, since y isin & it is certainly in W(42 ), where
W, (12) denotes the mth local Sobolev space* of 2. Conse-
quently, it follows from an elliptic regularity theorem of
Friedrichs’ that ¢,eW,, (12 ). But Sobolev’s lemma*® then
implies (for X three-dimensional) that ¢,eC ** ~2(£2). Since
both k and {2 are arbitrary, this implies ¢,€C *(2,).
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Thus, we have shown that for fixed ¢ our solution is a
smooth function of the spatial variables. Differentiability of
¢, with respect to ¢ in the (strong) Hilbert space sense follows
from the type of argument used in the proof of Stone’s theo-
rem.® Smoothness of the t-derivatives in the spatial variables
then follows from a repetition of the above argument. How-
ever, as already noted above, the existence of the Hilbert
space derivative with respect to ¢ is not equivalent to the
existence of the partial derivative with respect to ¢ at fixed
value of the spatial variable. Fortunately, we can prove
space-time smoothness of our solution ¢ at an arbitrary point
p as follows. Let 2, denote the static hypersurface passing
through p. We have already shown thaton X, ¢, and d¢, /dt
are smooth functions. Therefore, the ordinary solution ¢ to
the partial differential Eq. (1} with this initial data will be
smooth throughout D(J',). But, by our previous result ¢
agrees with ¢ in D(Z,). Since D(Z,) certainly includes p, this
shows that ¢ is smooth at p in the space-time sense.

3. THE FRIEDRICHS EXTENSION AND DIRICHLET
BOUNDARY CONDITIONS

In the previous section our dynamical evolution pre-
scription was defined and shown to satisfy a number of rea-
sonable conditions. However, these results do not shed light
on the physical meaning of the prescription in terms of
“pboundary conditions on the singularity.” In this section we
shall attempt to gain insight into this issue by studying our
prescription—using the Friedrichs extension® 4. of A—in
the rather trivial case where the “singularities’ are produced
by “cutting out holes” from the space-time. More precisely,
we consider the case where the given static space-time M is
extendible to a larger static space-time M ' and the boundary
in M 'of each static hypersurface 2 is a smooth two-dimen-
sional manifold. We shall show that our requirement that ¢,
and ¢, (and thus that our solution ¢,) lie in the domain of 4,
implies “Dirichlet boundary conditions” for 4, , i.e., that ¢,
vanish on the boundary of 3 in M ’. In other words, our
solution is the one that would arise physically by putting a
grounded conductor at the boundary of 2. For the case of
true singularities (i.e.; an inextendible space-time) this result,
of course, is not applicable. However, it does indicate that we
may think of our dynamical prescription (using the Frie-
drichs extension A4 ;) as defining a generalized notion of Dir-
ichlet boundary conditions applicable to true singularities.

We first demonstrate our result in the case of a two-
dimensional space-time, taking the static hypersurface 2 to
be simply a finite interval (a,b ). The operator A4 in this case is
simply

A= — V(%) —%(V(x) %), a5)

where, by the extendibility hypothesis, ¥ approaches a finite,

nonzero limit at the endpoints of the interval. Now, the do-

main of the Friedrichs extension, A, of the operator 4 [de-
fined on the initial domain C $(J')] is contained within the

closure of C (') under the norm

A1 = (S5 + (SAf). (16)

(Indeed, the Friedrichs extension is the unique self-adjoint
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extension of A4 satisfying this property.*) But, using the ex-
plicit form of 4, Eq. (15), for feC & we have

an=| b veo| 4L

Consequently, the norm defined by Eq. (16) is equivalent to
the first Sobolev norm of /. Since 3 is one-dimensional, con-
vergence of a sequence of C§ functions in the first Sobolev
norm implies uniform convergence of these functions.®
Hence, every function in the domain of A is continuous
(since it is the uniform limit of a sequence of continuous
functions) and can be continuously extended to a function
that vanishes at the endpoints of the interval (since every
function in the sequence can be so extended). Hence, in the
case where X is onedimensional, every solution ¢, defined by
our prescription satisfies Dirichlet conditions on the bound-
aryof 2.

The argument is similar for the case where 2 is three-
dimensional and has a smooth two-dimensional boundary in
the extended space-time. Again, the domain condition, Eq.
{16), of the Friedrichs extension implies that ¢, is locally in
the first Sobolev space. However, in three dimensions this
does not imply that ¢, is continuous so we cannot necessarily
even speak of the numerical values of ¢, as one approaches
the boundary. However, it does imply that the restriction of
&, to a two-dimensional hypersurface in Z defines a locally
L *-function.® Our aim is to prove that for ¢,edomd . the
restriction of #, to two-dimensional surfaces varies continu-
ously and (viewed as an L *-vector) vanishes as one goes to
the boundary. To do so, we pick an open set on the boundary
with compact closure and in a neighorhood of this portion of
the boundary construct geodesic normal coordinates, thus
obtaining a one-parameter family of two-dimensional sur-
faces o, which approach this part of the boundary as s—0.
Fix a smooth function g with support contained within a
compact region I where the geodesic normal construction is
valid. (g is not required to vanish on the boundary.) Let
fEC (T ) and define

h(s)=f g/ (18)

where the natural volume element induced on o, is used in
the integral. Then, using the Schwarz inequality, we find

I @)<C, f 12 (19)

2

dx. a7
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dh

<c. | ‘(mz w20, 20)

where C, and C, depend on g. Hence, we have

Jalnr+] 2])
(i %

<C, f (fF+|D°fP

<C, j W VS + VD]

<C4L(V“lfl2+ VIDefP)

= G{(LN) +(/4N} @D

Let{ £, | beasequencein C (2 ) which approaches, in the
norm, Eq. (16). By Eq. (21) A, (s) will converge in the first
Sobolev norm. Hence, as in the one-dimensional case, its
limit

H(s) = f ¢é.. @2)

will be a continuous function which vanishes as s—0. Since g
is an arbitrary smooth function, this yields the desired result
that ¢, (viewed as a locally L >-function on o,) varies con-
tinuously with s and goes to zero on the boundary. Thus, in
the three-dimensional case, our prescription also yields Dir-
ichlet boundary conditions.
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Integrals over anticommuting variables are use to rewrite partition functions as fermionic field
theories. The method is used to solve the two-dimensional Ising model, the planar close-packed
dimer problems, and the free-fermion eight vertex model.

L. INTRODUCTION

The interplay of field theory and statistical mechanics is
important. Many complicated field theories have simple un-
derlying statistical mechanics analogues.! This supplies
physical insight into these complicated field theoretic struc-
tures and allows the extraction of the key concepts. On the
other hand, when a statistical mechanics model is expressed
as a field theory, various field theory techniques can be used
such as perturbation theory, operator methods, variational
methods, functional methods, etc. These are powerful ave-
nues of attack, especially for extracting numbers. In short,
the statistical mechanics point of view allows one physical
insight whereas the field theory point of view supplies the
powerful mathematical tools. It is therefore important to
establish connections between statistical mechanics and field
theory. It is in this direction that these papers are written.

We will write statistical mechanics systems as fermionic
field theories. This is done to systems which a priori have no
vestige of fermionic character. What is involved is a math-
ematical rewriting of the degrees of freedom. A functional
integral approach is used. This involves integrals over anti-
commuting variables (Grassmann integrals). It has been
known for a long time that anticommuting variables are nec-
essary for a fermionic path integral formulation.? Previous-
ly, however, such integrals were used only in formal ways,’
rarely being employed in actual caiculations. In this paper
and the following ones they will be used in a practical man-
ner to obtain numbers. They are, without a doubt, powerful
mathematical tools.

In short, new mathematical methods are introduced to
attack statistical mechanics problems by expressing parti-
tion functions as fermionic field theories via Grassmann
integrals.

The new anticommuting variable techniques are impor-
tant for two reasons. First, models solvable by previous
methods are more easily solved using anticommuting varia-
bles. For example, the two-dimensional Ising model is solved
in one line [Eq. (3.3)], a page of algebra yields the partition
function [Eq. (3.12)] [later on graphical methods are intro-
duced which solve the model by drawing one picture (see

“Supported by the High Energy Physics Division of the United States De-
partment of Energy.

2806 J. Math. Phys. 21(12), December 1980

0022-2488/80/122806-09$1.00

Sec. IV and Fig. (13}], and in a few more pages all correlation
functions are computed (see Sec. III of paper II). This is the
best way to solve the Ising model and compute physical
quantities. The above statement applies to other two-dimen-
sional models (free-fermion ferroelectric vertex models,
planar closed-packed dimer problems, etc.). The only two-
dimensional partition functions not yet computed via anti-
commuting variables are those solved by the Bethe ansatz.

Second and most important, anticommuting variables
are useful in treating unsolved models. Most physical sys-
tems are not exactly solvable. Therefore, methods which ex-
actly solve models but which cannot be adapted to unsolved
models are not nearly as useful as those which can handle
both. The anticommuting variables are in the latter class.
Papers I and II show that they can solve the solvable models
with ease. Paper I1I will show how they can generate viable
approximation schemes. Although many models have been
treated,*>%” the contents of paper III are restricted for rea-
sons for space to one unsolvable class of models, the dimer -
monomer mixing problems. From the anticommuting vari-
able viewpoint they are the simplest models in which to ap-
ply approximation methods. Paper 111, in fact, numerically
solves the monomer-dimer mixing models. In effect, an un-
solvable model is solved.' The point is that anticommuting
variables yield good techniques for unsolved models.

Qur method is completely new. There are other tech-
niques with which anticommuting variables might be con-
fused. These other techniques are different. There is the op-
erator formalism®®'? of Lieb, Schultz, and Mattis which
solves the Ising model. Their basic objects are fermionic cre-
ation and destruction operators, b;, b !, which satisfy canoni-
cal commutation relations, ;5| + b /6, = §,. The anticom-
muting variables %,, 7], completely commute: 7,1 + 1]7,

= 0. Unlike this paper, Ref. 8 used a transfer matrix meth-
od. The two methods are different and anticommuting varia-
bles are much more powerful. Pfaffian methods™'! have also
been used to solve various two-dimensional models. When-
ever the anticommuting variable action is quadratic, it is a
Pfaffian according to Eq. {2.7) and, in principle, can be
solved using Pfaffian methods. In this sense and for solvable
models Pfaffian techniques come closest to anticommuting
variable techniques. However, these two methods are differ-
ent; many simplifications occur when using anticommuting
variables, and, of course, Pfaffian methods cannot handle
unsolved models.
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What are the advantages of anticommuting variables
over previous techniques? (A) Anticommuting variables are
more natural. Grassmann integrals immediately present the
problem in a powerful familiar form: as a fermionic field
theory. Standard field theory method become applicable. (B)
It is easy to express systems in integral form. There are brute
force methods of doing this. Almost any lattice model with a
graphical representation is expressible as a fermionic (albeit
interacting) field theory. The same model often has several
representations. This is where ingenuity is required. It is im-
portant to be efficient and elegant. Actions involving many
types or large products of variables are useless. Approxima-
tion schemes will yield poor results and a proliferation of
variables makes manipulations difficult. (C) Point (B) im-
plies a wide range of applicability. Anticommuting variables
have been applied to a large number of problems in two,
three, and more dimensions. Pfaffian techngiues are restrict-
ed to two dimensions. (D) Technical problems are easier to
handle. With Pfaffian methods every site on the lattice must
be ordered to determine the overall sign. With anticommut-
ing variables the minus sign problem can be treated locally
(see Fig. S for the rules). Thus, extra minus signs are easily
determined. Anticommuting variables are simple to manip-
ulate. Given a string of fermionic creation and destruction
operators a proliferation of terms is generated in getting de-
struction operators to the right of creation operators. Be-
cause anticommuting variables completely anticommute
there is only one term. Anticommuting variables are more
like ordinary numbers. It is easier to compute partition func-
tions and correlation functions. The graphic methods of Sec.
IV greatly simplify the task. (E) The big disadvantage of
Pfaffian methods is their inability to handle “interacting”
theories. Pfaffians are too ackward to treat unsolved models.
Anticommuting variables, however, can handle such sys-
tems and do generate good approximation methods. All the
techniques of many-body theory are available. This is by far
their most important advantage.

Several models have quadratic action representations.
Among these are the two-dimensional Ising model and the
two-dimensional close-packed planar dimer problem. They
are free theories and are exactly solvable. In this paper, these
two partition functions are explicitly computed (Secs. 111
and 1V). This is a straightforward calculation: one trans-
forms to momentum space just as one would do with a free
field theory. This partically diagonalizes the problem; it
breaks up into a product of 4 X 4 determinants. Next, graphi-
cal methods are introduced to organize the algebra (Sec. IV).
They are useful because they are systematic and pictorial.
Section IV considers the general class of solvable 2-dimen-
sional close-packed dimer problems on various lattices. A set
of rules is derived which quickly computes partition func-
tions. These rules are illustrated using the square lattice.
Next, the rules are extended to general free theories. This
means that, given any quadratic action, there is a simple and
quick calculational procedure.

I INTEGRALS OVER ANTICOMMUTING VARIABLES

This section will review'? needed properties of integrals
over Grassmann variables. More details may be found in
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Ref. 12. A set of N Grassmann (or anticommuting) variables
are objects, 1, (@ = 1,2,...,N ), satisfying

NaTlg + NpTa = 0. @1
In particular, 72 = 0. Taking sums and products the most
general construct is

f=ao+ Eaaﬂa + zﬂaaﬂnaﬂﬁ
a a<

+ o A Qs N2 N (22

with the a's real or complex numbers. Functions of these
variables are defined via Taylor series, which because of Eq.
(2.1) terminate at the N th order. Equation (2.2) is the most
general function, an N th order polynomial.

The anticommuting variable integral of a function, f; of
the form of Eq. (2.2) is defined by

f dnf= J dny dnydiy f=a,3;..y.

The only term which contributes is the one where each 9
occurs precisely once, the sign being determined by the order
(for example, § dn, dn, n, 7, = —1). Often 7’s are associ-
ated in pairs (or conjugates), one of which will have a dagger
(i.e., 7, and 77},). This is convenient for determining the sign
of an integral. For these the measure is defined as

S dndn'=ydy, dyl--dyydn},.

Statistical mechanics problems will involve spins,
atoms, bonds, etc. at sites, x, to which anticommuting varia-
bles will be assigned. The variable, x, will range over the
region of interest; for a cubic crystal this might be a three-
dimensional lattice so that x = (,3,¥) has integer coordi-
nates. Often several variables are needed at a site, in which
case, an additional label, r, is required, and the #’s will ap-
pear as 7%, 7% {r=1,2,..,T} for T types. Graphically 7,
and ] may be represented by an o and an x at x. Different
types may be distinguished by using different colors. The
important point to remember is that a contribution to an
integral occurs only if each site is covered by one 0 and one x
of each color (type).

Key properties of these integrals which are conse-
quences of Eq. (2.3) are the following:

1. Shift of variable: Given J,, which anticommute with
themselves and with all the #’s,

fdnf(tm})= fdﬂf({ﬂa +7.)).

2. Change of variables: Let ¢, = 234 57, (With 4 in-
vertible) be linear combinations of 7’s and hence an equiv-
alent set of anticommuting variables. Then

f dn f () = (detd) f dyfA ~'p).

Contrast this with normal (i.e., Riemann) integration where
there is a factor (det4 ) ~' rather than (det4 ) in Eq. (2.5).
3. Quadratic and quadratic-like actions:

fd?) dn' exp(z ﬂaAaaﬂ);) = detd, (2.6)
aff

2.3)

29

2.5)

1
fdn exp(; ; naAaBnB) = Pf4, 2.7)
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[anan' [ ap vt exp (5 nuntdugtoih) = perma,
aff

(2.8)
1

fdn dn’ exp (7 }; Na nZAa,snam*s) = hf4. (2.9)

These are respectively the determinant, Pfaffian,'® perma-

nent, and hfaffian of 4. Permanents and hfaffians are deter-
minants and Pfaffians without the sign of the permutation
factor. In Egs. (2.7) and (2.9) 4 must be even-dimensional.
In Eq. (2.7) A may be chosen to be antisymmetric. In Eq.
(2.9) it may be chosen to be symmetric, but must have zero’s
along the diagonal. These equations are easily proved by ex-
panding the exponents: permutations of products of 4,5 are
obtained with the appropriate combinatorial and sign fac-
tors. Equation (2.6), however, is easier to prove by trans-
forming n'—A4 ~'n' and using Eq. (2.5).

Anticommuting variables are powerful objects. Let us
prove the well-known result'* that (Pf4 )*> = det4 for an anti-
symmetric even-dimensional matrix. Usual proofs are quite
cumbersome. Using Eq. (2.6) and rewrite

\[ M2+ M), na J e’ — i),

dn,dnl, = idn® dn®. Since 4 is antisymmetric 7,4,57}
= (1/29P A1 + (1/2mPA,mS (the cross terms can-
cel). The exponent factors into two exponents and the inte-
gral factorizes into two integrals, each of the form of Eq.
Q@.7.

Finally, one may take derivatives of anticommuting
variables. For example, (d /dn)n, = 1, (d /dn,)n, = 0. All
the usual rules of differentiation hold except for minus signs
in the product rule due to anticommutation relations. Thus
(d 7dn)(nmy) = (@ /dn ) )n, — nd Zdn ) = — 9,
These derivatives act to the right. Derivatives acting to the
left are defined analogously: 7 ,d /dn, = 1. A powerful tool is
the following;:

4. Integration by parts: Given two functions, fand g,

d J d
dnf—g= | dnf—g.
J nf n g nf dn g
In conclusion, anticommuting variables may be manip-
ulated, integrated, and differentiated much like ordinary

variables except that anticomutation must be taken into
account.

(2.10)

I11. THE SOLUTION OF THE TWO-DIMENSIONAL ISING
MODEL AND THE FREE-FERMION 8-VERTEX MODEL

The partition functions of a large number of statistical
mechanics systems have representations in terms of anti-
commuting variable integrals. There are brute force meth-
ods of doing this. They require many types of anticommut-
ing variables and have actions containing many terms
involving products of many variables. Space limitations pre-
vent us from illustrating these methods.* Instead, I will focus
on models having simple representations. This paper will
consider (solvable) models with quadratic actions. The third
paper will treat interacting models with quartic actions.
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Many partition functions which have a graphic repre-
sentation are expressible as anticommuting integrals. The d-
dimensional Ising model'® has such a graphical representa-
tion,>'"!* where one sum’s over closed nonoverlapping but
(posssibly) intersecting polygonal curves; in two dimensions
this is obtained by drawing curves separating regions of up
spin from down spin. There is a Boltzmann factor for each
unit of “Bloch” wall. Alternatively, one may use bond varia-
bles'® (which works in any dimension) for which there is a
similar representation with different Bloch wall Boltzmann
factors.

Let us consider 4 = 2. Then

leing( Jh ’ Jv) =chlosed polygons (zh Zy )’ (3 1)

where Zy;, (J,, J,) is the Ising model partition function,
with horizontal and vertical spin couplings J,, and J,,

Z osed polygons (Zn»2,) 18 the partition function for closed non-
overlapping polygons with Boltzmann weights, z,, and z, for
horizontal and vertical Bloch walls, and fis a multiplicative
factor:

= exp[N(BJ, +B1y)],
z, =exp(—28J,), (3.2)
z, = Cxp( - 26‘]}1 )’

where N is the number of sites.

The closed polygons should be considered as particle
trajectories (vacuum bubble loops). The particles should be
fermions so that polygons cannot overlap.

I will use anticommuting variables to draw the poly-
gonal configurations. Two sets of variables will be used at

each (a,8) site: 75,755, and 75,7%,. The superscripts h
and v stand for horizontal and vertical. Consider

Zeroaes sorygonsni2ze) = (= ¥ f dytdytexpld),  (3.3)

where N is the number of sites and
A = ABloch wall + Acorncr + Amonomer ’

o F—
Apioch wan = Z (zhnaﬁna+ 18+ 2y NapNap 41 ),
aff

A

corner — Z (01772;3"7;:9 + 037];;7]2;
aB
+ @M Mig + AalapTag ) » (3.4)
Amonomer = z (bhﬂ‘«;'l,in:;i + bvn\r_’z}i’ngﬁ) .
aB

The Bloch wall action produces a unit of Bloch wall in either
the horizontal or vertical direction (see Fig. 1) weighted by

(a,B+1)

N———O
(e,8) (a+1,B)

(a) (b)

(a,B)

FIG. 1. Block wall operators: (a) is the graphical representation of
b k", 5 which occurs in Eq. (3.4) and produces a horizontal Block wall;

(b) is the vertical Bloch wall operator, %% 4 -
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(a,B) (a,8) (a,B) (a,B)
(a) (b) (c) (@

FIG. 2. The corner operators in Eq. (3.4): In all cases they occur at the (@, 8}
site, that is corner operators only change the direction of a curve; they do

not connect neighboring sites. Although one could use labels to distinguish
horizontal and vertical variables, it’s easier to use the following convention:
ifan o or an x has a horizontal line coming into or out of it, it is a horizontal
variable; on the other hand vertical variables have vertical lines flowing into
or out of them. For example, (a) involves a horizontal x or %, and a vertical
oor 17,5. The arrow indicates the order, so that this term is %5715, the first
term in 4_,... of Eq. (3.4). (b}, (c), and (d) are the other three terms.

the appropriate Boltzmann factor. The term 4., pro-
duces the four corners of Fig. (2) necessary to construct a
ploygon.

The graphical notation in Figs. 1 and 2 is as follows: Ifa
horizontal line is attached to a variable it is a horizontal
variable. Likewise a line joins vertically to a vertical variable.
Arrows denote the order of variables. The arrow originates
from the first anticommuting variable and terminates on the
second one. In this way Figs. 1(a) and 1(b) can precisely be
associated with the terms in Ag,.;, ..., Likewise for Fig. 2
and the corner action. Expand the exponent in Eq. (3.3). By
the “golden rule” of Grassmann integrals, each site must
have a horizontal x and o0 and a vertical x and 0. The x’s and
o’s link up to form precisely the Ising model polygons. The
sides of polygons cannot overlap because the square of an
anticommuting variable is zero. Likewise, the double cor-
ners of Fig. 3 do not occur; a single corner uses up both
horizontal and vertical variables. Each polygonal configura-
tion is included precisely once. Finally, A, ome. fills all un-
occupied h and v sites with 0 — x pairs (monomers). I have
allowed for the most general quadratic form by weighting
corners with a,. This more general model is known as the
free-fermion model. The eight possible configurations which
can occur at a site are shown in Fig. 4 with their weights.
There is an extra ( — 1) for each site because of the { — 1)~ in
Eq. {3.3). For the Ising model setalla, = b, = b, = — 1.
Although the action in Eq. (3.4) produces the polygonal con-
figurations, it may not necessarily produce them with posi-
tive weight. This could be upset due to reordering of anti-
commuting variables. The Appendix deals with these kinds
of minus signs. The result is the extra minus in Fig. 4(h). In
general, it is quite easy to determine the overall sign using
three rules. These are given and illustrated in Fig. 5.

+ -

(a) (b} (c)

FIG. 3. Intersections. The double corners of Figs. (a) and (b) are not al-

lowed by Eqg. (3.3). When four lines meet at a site they must pass directly
through as in Fig. (c).

_’_
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(a) i'ifv :': ~ (a,a5+0a, a4 - by bp)
(b) :i ~ t: ~ (=) by
L S 2 A ) by
(¢c) +.+ *.* (=1 b
LR 2 % S ) q
(d) IR (—)
+.+~ +o¢ ~ —) 0z
S
LA vy =) a
(f) 2y ) T (~) ag
+ +~ "J ~ (—) a,
O
SRR ii ~ 4 (=)(=)=+

L

vt
FIG. 4. The eight possible configurations that can occur at a site. When
disorder variables are used [Eq. (3.2)], the first two columns represent corre-
sponding spin configurations. In obtaining the weights of column 4a( — 1)
factor has been included from the ( — 1)” of Eq. (3.3). The minus signs in (b)
through (g) may be eliminated because 1) there are always an even number of
(b) and (c) configurations and ii) corners (d) and (f) as well as (e} and (g) occur
in pairs. Alternatively, one could redefine the & °s and a’s in Eq. (3.4) to have
minus signs. Configuration {h) has an extra minus sign due to reordering of
anticommuting variables as described in Appendix B. The numbers in col-
umn 4 are easily obtained: For example, the b, of (b) is obtained because a
vertical bond enters and exits the vertical site and a horizontal monomer
with b, must fill the empty horizontal site.

The Ising (and free-fermion) model has been solved. Eq.
(3.4) represents the solution. It is trivial to compute the par-
tition function (and correlation functions). Equation (3.4) is
a translationally invariant quadratic action. One treats it as
one does with any free field theory: go to momentum space
via Fourier transform. This diagonalizes the problem. Going

FIG. 5. Sign rules: The rules for evaluating the

sign of a “dimer loop” are as follows: Pick an

initial o or x (here, o is chosen at A) and pro-
ceed around the loop (here, counterclock-
wise). There is a) a minus sign for each x occur-
ring before an o (the point, B), b) a minus sign

g for each arrow in the opposite direction (the
bond, C), and finally c) a minus sign if one
/ begins with an x. In this figure the sign is
A positive.
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to momentum space means writing
. 1 1
Tap g (2M+ 1)1/2 (2N+ 1)1/2
2wias 2mifit .
Xe"p(mﬂ * e )a @-9)
I will always choose @ to range from — Mto M and Bto
range from — N to N, sot that there are (2N + 1) rows and
(2M + 1) columns. In the Ising model there are
(2N + 1)(2M 4+ 1) sites. In Eq. (3.5) a, are an equivalent set
of anticommuting variables; s ranges from — M to M and ¢
ranges from — N to N. The determinant of this transforma-
tion is one. One should think in terms of the correspondence:

(@B)(xy), (3.6)
2ms 2t
(2M+1 "IN+ 1 )"’(”"’p”)'

The variables s and ¢ are simply momentum variables. Equa-
tion (3.5) implies periodic boundary conditons. These condi-
tions will always be chosen, so that one is working on a
torus.'”

In momentum space the action of Eq. (3.4) becomes

© o 2mis
A ree fermion Z a? a.’v’t €X ( )
free fi ; h@st p M+ 1
27it )
2N +1

P X o
+ aa, a:t + aS“Itast

s o

+ aZa.‘vlta —s—1 + (14(1;’,0 —s—1
+ byatia + b.a%a]. an

Only (s, and ( — s, — ¢t ) variables are coupled. The integra-
tions can explicitly be done using the definition in Section II:

L( 27s , 2t )
2M+1 2N +1
=hh_,vv_,—auathv, +h_v_))
—aahyv_,+h_v)+ @ +aa), (3.8

where
h, =b, —z, ex ( is ),
LR A T Yoy
3.9
( arit )
v,=h, —z, exp .
AN +1
The partition function is
Zfree fermion — (H L (Svt ))1/2’ (3. 10)

which becomes in the thermodynamic limit

1 (7 dp. f” ap,
- ree fermion — —InL 9 y 3.11
ﬁﬁ" fe 2 . 2”_ _”2ﬂ' (F py) ( )
where L is given by Eq. (3.8). The factor of 1/2 is due to
double counting of (5,¢ ) and ( — s, — t ). Equations (3.8) and
(3.11) agree with the known result.>'
For the Ising model set a;, = b, = b, = —1 to get the
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famous Onsager result'®:

_B.flsing
1 i dpx J-" dpy
= = Y14
> ) o) 3, n4 [cosh2BJ, cosh28J,

+ sinh28J,, cosp, + sinh28J, cosp, ]. (3.12)

1V. SOLVABLE CLOSE-PACKED DIMER MODELS AND
THE GRAPHICAL RULES

In a dimer problem®-'!:!* there are a set of sites and a set
bonds connecting certain pairs of sites. The bonds may ab-
sorb dimers. There is a Boltzmann factor, z,,, associated with
an absorption. A site may be used only once, so that no two
dimers may overlap or even touch. Effectively any two
dimers are infinitely repulsive. There are two kinds of prob-
lems: the close-packed problem in which every site must be
covered exactly once, and the usual dimer problem (or
dimer-monomer mixing) problem where some sites may be
left uncovered. The statistical mechanics of these systems is
determined by their partition functions. These partition
functions may be represented as anticommuting variable in-
tegrals. In general, the action contains both quadratic and
quartic terms meaning that the models are unsolvable inter-
acting theories. The third paper attacks these unsolvable
problems. This section considers solvable two-dimensional
close-packed dimer problems. By solvable, I mean solvable
by the usual Pfaffian methods.'! The models will be translat-
ed into Grassmann integral form, from which a series of
graphical rules will be derived. The treatment used here does
not differ from the usual Pfaffian treatment. What is gained
is a simple graphical approach which allows one to rapidly
solve a dimer problem. Furthermore, the diagrammatic
methods extend to any free-field-like theory. This section
serves as an introduction to graphic methods.

I refer the reader to the standard method of solution.'’
There are two key points:

1. Solvability Condition: A planar dimer problem is solv-
able if its bonds may be oriented so that every elementary
polygon is clockwise odd. Planar means it may bedrawnon a
piece of paper so that bonds do not cross. The bonds are then
given an orientation. The direction is usually denoted by an
arrow. A polygon is clockwise odd, if when traversing clock-
wise, one encounters an odd number of bonds oriented in the
opposite direction. An elementary polygon is a non-self-in-
tersecting polygon made up of bonds which has no bonds in
its interior.

11. The Method of Solution: Fix a standard B configura-
tion which covers the lattice. Each covering (these new ones
will be called 4 coverings) when combined with the B con-
figuration results in a set of closed polygons and isolated
dimer pairs, the partition function of which has a Pfaffian
representation.

Condition I and Observation II make the problem solv-
able by Pfaffian methods.

For every model satisfying I, the Method of Solution I1
can be translated into Grassmann integral form: A bond ori-
ented from point, P, to point, @, upon which on 4-dimer may
be placed corresponds to a term 77,7, in the action. A stan-
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dard B-bond between P and Q corresponds to a term 75,7},
A-dimer operators are ordered with the graph orientations,
whereas B-dimer operators are ordered oppositely to the

graph orientations. The action is schematically of the form

S ' (4.1)

B-dimers
The Boltzmann factors of A-dimers are z,,, whereas B-dimers
have unit Boltzmann factors. It is not hard to see that this
action produces the closed polygons and isolated dimer pairs
used in the Method of Solution II. The signs are all positive
because of Condition 1. This may be proved by employing
Kasteleyn’s theorem?®° which is easily proved by induction
on the length of a polygon and says that the above polygonal
configurations are all clockwise odd. Associate an undag-
gered variable with an o and a daggered variable with an x
and use the sign rules of Fig. 5. Let 2n be the number of edges
(it must always be even). If B-dimers were oriented with the
graphical orientation Kasteleyn’s theorem would give a mi-
nus one for rule (b). Instead thereisa( — 1)" ! because the
n B-dimers are oriented oppositely. If one begins with an ini-
tial o then there are n — 1 x’s which occur before 0’s. So rule
(a) gives ( — 1)" . Rules (a) and (b) combine to give plus for
the overall sign.

Some dimer models satisfy

Simplying Condition (C): A graph satisfies Simplifying
Condition C if vertices can be grouped into two sets (which I
call odd and even) such that no two odd (or even) vertices
have a bond in common.

When this condition is satisfied, transform — " and
n'—s7 at all even sites. This makes the bilinears in the action
of the form 77", the partition function becomes a product of
determinants rather than Pfaffians, the graphical rules sim-
plify, and calculations are easier to do. The rules will be
illustrated using the dimer model on a square quadratic
lattice.

Graphical Rules When Condition C Holds: or Rules
When Bilinears Are of nm' Form:

1. Group vertices into repeating units that fill a square
array. Use (a,8) to label the units and use r = 1,2,3,...,T to
label the different vertices within a unit.

> ozt

A-dimers

Adimer =

(a) (b)

FIG. 6. Illustration of Rule 2: Figure (a) shows the (@, 8) unit. There are two
B-dimers and four 4-dimers entirely contained in (@, £ ). There are eight A-
dimers which connect sites in (@, 8 to sites in nearby units. They occur in
pairs. For example, the upper right A-dimer, 7,92, ,, , has a partner, the
lower right A-dimer, 7,,_, 773,;,, Rule 2 erases one bond from each pair.
Figure (b) is an example of what results.
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® O—»—xX Y0 .
4 3 4 4 3 4
{a,B) a.B)
. >——) O—<—X [
f 2 { f 2 {
(a) (b}

FIG. 7. Rule 3 for 57t products: Figure (a) shows the two dimers of Fig. 6(b)
which start in the (@, £) unit at sites 2 and 3 andgo to the sites 1 and 4 of the
(@ + 1, ) unit. Rule 3 says to “‘fold” these back into the (@, # ) unit as shown
in (b). Let 0 and x correspond to the anticommuting variables a and at. The
the a}a, bond weight gets multiplied by explip, ) whereas the a;a] weight
gets multiplied by exp { — ip, ).

2. Consider one unit, . There are two kinds of bonds:
(a) those which are contained within U and (b) those which
go from U to some other unit. Of the latter, [(b)], for every
bond which goes from a type 7 vertex in U to type g vertex in
another unit, there is one bond which goes from a type r
vertex in another unit to a type ¢ vertex in U. Thus, they
occur in pairs. Half are to be included in U and the others
ignored and erased. Figure 6 illustrates this for the square
lattice.

3. Keep (a) type bonds as they are. For a (b) type bond
which goes from an r in U to a q in another unit, *“fold” it
back into U, so that it goes from » to g within U (see Fig. 7). If
gisanolocated in a unit m horizontal spaces to the right and
n spaces upward (m and n may be negative) multiply the
bond weight by

exp(imp, + inp,). 4.2)
If g is an x multiply the bond weight by the complex conju-
gate of Eq. (4.2), that is

exp( — imp, — inp,). 4.3)
Figure 7 illustrates this. Figure 8 shows all the weights in the
square lattice example after Rule 3 has been carried out.

4. Rules 1 through 3 result in a miniature dimer prob-
lem. Solve it by finding all coverings and their weights (see
Fig. 9 for the square lattice). Call the sum of the diagrams
L(p,..p,) The free energy per site, f, is

dp, f" ap,
—pBf= — InL ,
Bf = Ryl e (PxoPy)-

The factor of 1/T occurs because there are T sites per unit.
Graphical Rules When Condition C Fails: or Rules
When Bilinears Are of nm and n'n* Form: These rules will be

exemplified by treating the square lattice dimer problem.

(4.4)

FIG. 8. The weights for the
square lattice: Rule 3 applied to
Fig. 6(b) results in this figure.
The weights of th B-dimers re-
mains 1 as indicated. The A4-
dimer weights have contribu-
tions from (a) type bonds as well
as (b) types. When added they re-
sult in the factors A( p,) = z,

[1 —expip.)], vl p,)

=z,[1 ~ explip, )], etc.
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*——0 O———x

O—»—x

H——a—0 x——0O
(a) (b)

FIG. 9. The two coverings of Fig. 8: The value of (a) is h(p,)h( —p,)

= z;(2 —2 cosp,). The value of (b) v( p,)v( —p,) =222 cosp,). The
sum of theseis L (p,.,p,). When putinto Eq. (4.4), the frec energy per site is
obtained.

exp (ipx)
4 3 4 4 3 3
", C — éxp(-ipy)
U Ut explipg) U2
. H——X x,—~>-——x1
! 2 12 2
exp (-ipy)
{a} (b}

FIG. 11. The (b)-type bonds: Fig. (a) shows one 77 (b)-type bond and one
7'n" (b)-type bond. If U is the (@,8) unit then the two bonds go from the
(a,B) unit to the (@ +1, #) unit. Both give rise to two dimers in (b) the
weights of which get multiplied by the indicated phase factors.

h_s

hs

FIG. 13. The miniature dimer problem for the free-Fermion model: The
upper left 0 and x are @, , a',; the lower left are @, a',’; the upper right are

sty

a", ,a" . ,;thelowerrightarea” . ,,a" . Theweightsofbondsare

& -1

as indicated with h, and v, given by Eq. (3.9).
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U — U 2 %,
YK H————K
y2 T\‘/é

(a) (b)

FIG. 10. The (a)-type bonds: In Fig. (a), there is an 4-dimer and a B-dimer.
Each of these result in two dimers, one from U, to U, and one from U, and
U, as (b) indicates. The orientation remains the same, so that the 4-dimer in
U which goes from 4 to 3, still goes from 4 to 3 in both cases in Fig. (b).

{a) {b)

FIG. 12. The resulting bond weights: Figure (a) shows the resulting 4-
dimers and their bond weights. Figure (b) shows the B-dimers. Their
weights are all unity. Here , h(p,) =z, [1 — exp(ip,)] and v(p,)

=2z, [1 — exp(ip,)]. When superimposed (a) and (b) give rise to a minia-
ture dimer problem.

PASH!
o]

Ql_\
x

N ()
d

FIG. 14. The eight oriented corners and the minus sign factors associated
with them.

1 ® L‘j_‘»{:jg

FIG. 15. The pasting construction: Polygon, P, may be obtained from two
(possibly self-intersecting) polygons, P, and P,, by cutting open the corners
and rejoining. There are four (two different types of pairs of corners times
two orientations) possible pasting constructions.

P

{
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(a) (b) (c)

FIG. 16. How the minus sign arises: This is just a “fermion” statistics effect.
The order of operators in an intersection of P is indicated in Fig. (a) and is
i 73 )(m555). When Pis decomposed into nonintersecting polygons are in
Fig. 16, the order of the operators is that of (b) or (c). For case (b},

x

i) = — () 73)(75 95), that is, there is a minus sign relative to
(a). For case (c), (p: 7)) 073 773) is also —~ (i 7)(m3 773).

Although Condition C is satisfied, the simplifying transfor-
mation will not be performed.

1. Same as above.

2. Same as above.

3. Draw two copies of U. Call them U, and U,. For (a)
type bonds going from r to ¢ draw two lines: one from 7 in U,
togin U, and one from rin U, to g in U, (see Fig. 10). For 7y
dimers (i.e., A-dimers) of (b) type originating at an r in U and
terminating at a g in another unit, again draw two lines. First
draw one from r in U, to ¢ in U, and multiply its weight by
exp( — imp, — inp,), then draw one from rin U, togin U,
and multiply its weight by exp(imp, + inp,) (see Fig. 11).
For n'5" dimers (i.e., B-dimers) do the same as for 7 dimers
but multiply weights by the complex conjugated phase fac-
tors of the 57 case (see Fig. 11). In all cases, if bonds are
oriented from r to ¢ they remain so, regardless of whether
they go from U, to U, or U, to U,. Figure 12 shows the
resulting weights for the square lattice.

4. Solve the miniature dimer problem and call the result
L (p,.p,). The free energy per unit site is

1 (7 dp. (7 dap,
== 2= Duiip,) 5

Graphical Rules For A General Quadratic Theory: In
general, there will be 57", 77, and 7'7" products. Two
copies, U, and U,, of U are to be drawn. Follow the second
set of rules, 1, 2, 3, for 77 and 57'7" products. For 95! terms
use Rule 3 of the first set for the U, copy of U but for U, use
complex conjugated phase factors. Finally, use Eq. (4.5) and
rule 4. Figure 13 shows the miniature dimer problem for the
free-fermion action in Eq. (3.4). The coverings are easily
summed to give the function in Eq. (3.8).

V.CONCLUSION

The novel approach of this paper provides the best
means of solving the two-dimensional Ising model, the free-
fermion eight vertex models, and the planar close-packed
dimer problems.

APPENDIX

In this Appendix, I will analyze the sign problem asso-
ciated with Egs. (3.3) and (3.4).The conclusion will be that
the sign of a configuration of polygons is equal to the number
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of intersections which occur. This explains the extra minus
factor in the weight of Fig.4 (h),I will proceed in steps: first
dealing with an isolated non-self-intersecting polygon, then
with one that self-intersects, and finally dealing with a multi-
polygonal configuration.

Consider a closed polygon, P, which does not intersect
itself. I will show that its sign is positive. Choose a horizontal
bond of P and proceed to the right {and eventually around
the polygon). Start at the x and use the rules of Fig. 5. When
moving upward or to the right no minus signs result from
rules (a) or (b) because arrows are in the correct direction and
0’s occur before x’s. When moving downward or to the left,
each site has a minus sign from rule {a) and a minus sign from
rule {b). They cancel in pairs. Next consider what happens,
when one goes around a corner. There are eight different
types (see Fig. 14) (two orientations times the four basic cor-
ners of Fig. 2). They are oriented because we are moving
around the polygon in a particular direction. Figure 14 sum-
marizes the results: only comers of types d and d lead to a
minus sign. Now use the following theorem (which is easily
proved by induction on the area of P): Let m,,,m,, etc. be the
number of type a, type b, etc. corners occurring in an orient-
ed non-self-intersecting polygon, P. If Pis counterclockwise
oriented then

m, —m; =1,

m, —my; = 1,
(A1)
m,—m; =1,

my; —mg =1

This implies that the sign due to corners is ( — 1) — 1)
= — 1. For clockwise oriented, P, the theorem holds with
a<>d, b<>b, etc. Rules (a) and (b) therefore result in one
minus sign which when combined with the minus sign of rule
(c) gives an overall plus sign.

Now consider an oriented self-intersecting polygon, P.
It may be constructed from nonintersecting ones by the past-
ing construction of Fig. 15. The order of the operators in Pis
indicated in Fig. 16(a). When they are regrouped into the
forms occurring in the non-self-intersecting polygons [Figs.
16(b) and 16(c)] which “compose” P, a minus sign results for
each intersection as Fig. 16 illustrates.

Finally, the result holds for multipolygonal configura-
tions because pairs of polygons can only intersect an even
number of times. Summarizing, an extra minus occurs for
each intersection [Fig. 4(h)].
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By using integrals over anticommuting variables all the correlation functions in the two-
dimensional Ising model and free-fermion eight vertex model are computed. The method is quite

general and applicable to other solvable systems.

I. INTRODUCTION

Paper I represented several models as fermionic func-
tional integrals with quadratic actions.! As such they are
exactly solvable by free-field-theory-like methods. Paper I
computed the partition functions and established a simple
set of computational rules. A simple extension of free field
theory methods yields all correlation functions. The purpose
of this paper is to do these computations. For the Ising model
and for the free-fermion eight vertex model this is done in
Secs. III and IV. For the latter model, this is the first time all
correlation functions have been computed. This might seem
quite a task since the model is quite general with six indepen-
dent parameters. The method has actually been used in even
more complicated models® and can be adapted to any model
solvable via anticommuting variables. In fact, there is a sim-
ple three step procedure: First, determine anticommuting
variable correlation functions in momentum space. This is
done using free field theory methods. Next, determine them
in coordinate space via Fourier transform. Finally, relate
physical correlation functions to anticommuting variable
ones. Steps two and three are in Sec. II. For the Ising model
(respectively eight vertex model) step three is done in Sec. ITI
(respectively Sec. IV). The result will always be a Pfaffian. If
physical variables are related in a complicated way to anti-
commuting variables then the Pfaffian can become of cum-
bersome size. This happens with the Ising model. This is not
the case for the eight vertex model, where, for example, all
two point correlations are Pfaffians of 8 X 8 matrices. Only
higher point correlations are Pfaffians of large order (» point
is a 4n X 4n Pfaffian).

iil. ANTICOMMUTING VARIABLE CORRELATIONS

This section will compute the anticommuting variable
correlations (or *“propagators™) for the free fermion model
[Eq. (1. 3.4)]. The configurations and their weights were giv- |

en in Fig. I. 4. In addition, there are z, and z, Boltzmann
factors for each unit of horizontal and vertical Bloch wall.

The correlation functions will first be calculated in mo-
mentum space and then in coordinate space. This can be
done using free field theory methods or it can be done graphi-
cally as was done with the partition function in Sec. IV of 1.
One obtains a2 miniature dimer problem with one fixed bond.
Space limitation prevents us from describing the method.®
The results are the following: The nonzero momentum space
correlation functions are

(a.l::aa?rx> =(h_,v,v_, —aayv, —aav_,)/Dist )s
(2.1)
<a::a::) = (hsh — sv —t ala3h: - aza4h -—.v)/D (S,t )y
(2.2)
(@¥ay) =a,[h _,v_, —(a,a;+ aa))/Dist), (2.3)
(ayaly) =as[h_,v_, —(a,0; +a,0,)]/Dist), (2.4)
(d :s—l) =a,a,(v, — v _,)/Dist ), (25)
(aya” ,_,) =aa3h _, —h,)/D(st), (2.6)

{aa™ ,_,) = a,[(a,a5 + a,a,) — b,v _, 1/D{s,t), (2.7)
(@fia™,_,) = aav, —v_,)/Dsz), (2.8)
(asta -5 t> = ala4(h -5 hs)/D (S,t ), (29)

<asta —s——t> = a4[(ala3 + a2a4) - hsv-— t ]/D (S,t )s
(2.10)

where h,, v,, and D (s,t )=L (p,.,p,) are given by Egs. (I. 3.8)
and (I. 3.9}. Of course, correlations involving (5,7 } and (s',¢ ')
variables vanishifneither (s, ) #(s',¢ ‘nor (s, ¢ )#( — §', — t’).

To obtain coordinate space correlations, use Eq. (I. 3.5)
to express 77’s in terms of @’s, and then use the results of Eqs.
(2.1}+2.10). The thermodynamic limit can be taken and the
correlations are

T dp.
i) = [ T P explita—ap, + 18~ 5,1 I~ p oM —p,) —asa¥p,
~ aa,9(—p,))/L(p.p,.), (2.11)
S 7 dp,
ignsed = [ [ D explia — ', + 48— B, ] (bl ~ oM ~p,) ~ Giash(p,)
— axa.h(—p,))/L(p.p,), (2.12)
“"Work has been supported by the High Energy Division of the United
States Department of Energy.
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™ dp, d
(nh; na;;)—fw ;T Lﬂziexr)[la a')p,. +iB—B"p,la;[h{ —p, vl

- T dp, d
(77:;571;'5')=J i J- Ep—yexp[i(a

—x 2T

<77al377a '3’ 2

. ™ dp, dp,
g = [ =[P —explila ~ alp, + 5~ ', Jasas [ -

» 27 2

T d T
i) = [ L " P explita —ap, +il B~ B, Jaallaras + asa) —

v 27

" dp, d
nis) = [ 2 [ Zeexpliia’ —ab, +il8' — Blp, aaalvlp,) — W

e ™ dp, (™ 4
<n;w;w'>=f_ ? f_ Py explila’ —alp, + (B’ — Bp, Jaxas[h( -

1727T 172

T dx T dy
ntip) = | 2 [ 22 expliia’ — b, + 18"~ Blp, osll0a; + asa) — b p v — ) VL (P2,

1727T

where

h(p,}= b, — 2, explip. ),

vip,) = b, —z, explip,), (2.21)
and L is given by Eq. (I.3.8). Equations (2.11)+{2.20) are re-
spectively obtained from Eqgs. (2.1)+2.10) by replacing h,
and v, by the corresponding momentum valued functions of
Eq. (2.21). The factors exp (i@ — a’)p, ] and
exp[i( 8 — B')p, ] in Egs. (2.11)+2.20) are translation opera-
tors. Equations (2.18)~(2.20) have conjugated translation
factors.

Equations (2.11)~(2.20) are the coordinate-space anti-
commuting variable correlation functions for the free-fer-
mion model.

11. THE ISING MODEL CORRELATION FUNCTIONS

This section will calculate the correlation function of
two spin variables in the same row. It will be compared to the
known result as a check on anticommuting variable tech-
niques. Two horizontal spins are chosen for illustrative pur-
poses only. The approach extends to an arbitrary pair; in
fact, the vacuum expectation value of several o’s can be com-
puted. The only drawback is the cumbersome form of the
answer: a Pfaffian of (in general) large size. In short, every-
thing you ever wanted to know about the Ising model is
expressible as a Pfaffian.

We will need the free fermion anticommuting variable
correlations [Eqs. (2.11)-(2.20)]. Bond variables will be
used, in which case the Ising model is related to the free-
fermion (or closed-polygon) partition function

z, =tanh BJ,, z, =tanhpJ,,

[11=(12=a3=a4=bv=bh = —1

@3.1)

The weights of configurations are given in Fig. 1.4. These

values must be used (as opposed to the less restrictive condi-
tions ,a; = a,a, = b2 = b} = 1) because correlation func-
tions, unlike the partition function, need not have the same
number of @, and a; type corners, a, and a, type corners, etc.
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- a’)px + l( ﬁ - ﬁ,)py ]a3 [h(

4 dx dy
f_ $ J—wzp explila —a'lp, + {8 —B'p,Ja,a,[v(p,) — v(—

—p,))— (@ay +a,a))/Lp.p,),  (2.13)

~ PV~ p,) — @@y + aa) /L (p,p,),  (2.14)
—p,)V/L(p,.p,) (2.15)

p<) —h(p ) /L (p.p,), (2.16)

hp V(~p,) VL (p.p,), (2.17)
—p,)V/L(paip,)s (2.18)

px) —h(pJ1/L(pep,) (2.19)
(2.20)

[ This is obvious from Egs. (2.11)-(2.20) where correlations

are not simply functions of a,a,, a,a,, etc.

Spin variable correlation functions can be considered as
partition functions on a defective lattice.** I refer the reader
to Ref. 5, p. 248-257. This means that spin correlations are
(up to multiplicative constants) the partition functions of
Ising models with modified Bloch wall Boltzmann factors
along selected paths. For example, Z,; ., (0,00, .10 isz
times the Ising model with the usual z, and z, Boltzmann
factors for all Bloch walls except for the horizontal ones
between (1,0) and (m +1,0), where z,~' is the Boltzmann
factor. This defective lattice partition function is obtained by
replacing

CXP( 2 zhﬂﬁ)"lg'ﬂo)

a=1
by
ol 8 anthnt oo+ $ et = zonno]
a=1 a=1
= exr)( > zhn’;BnZlm)
a=1
X H [1 + @y~ 2 )M 110 ]’
a=1
so that

(C100m o) = ( [z + Q= 257000 ]). (2)

a=1
Equation (3.2) typifies how spin variable correlations are
related to anticommuting variable correlations. Equation
(3.2) can be generalized to the case when the left-hand side is
the vacuum expectation value of several ¢’s.
For free theories, the following formulas are useful:

{n,72N) = PfIM;; (for m even), (3.3)
where
= (771‘77]> (3.4
If(n n,) = (gln}) =0, then
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(ninminenlm,.) = detM;, (3.5
where
M; = (nln,). (3.6)

These formulas are the analogs of Wick’s expansion. In Eq.
(3.3) one sums over all pairings of s, the sign of which is
determined by how many permutations are required to get
the #’s in paired form.

The vacuum expectation value of an arbitrary product
of spins is expressible as a linear combination of anticom-
muting variable correlations. These vacuum expectation val-
ues can be computed using Egs. (2.11)+2.20) and Eq. (3.3).1
will demonstrate this for two horizontal spins.

Equations (2.15) and (2.18) imply
(Mhomho) = (Mhone) = Ofor all  and B. Apply Eq. (3.5)
to (3.2). The z, term of |z, + (1 — 22 om0 | in Eq.
(3.2) multiplies the same factor as the term in the Wick ex-
pansion obtained by contracting 75, with 7", , , . Therefore

(0100 110 ) = detM;, 3.7
where
M; =z,6; +(1 "2121)07}5’7;‘110
dp, (" 4 o
= Jn 2 J‘ —P—’—exp[zp,,(j—z)] (3.8)
-7 27 -7 2T

X {z, — (1 — 2} Jexplip, ) [h( —~ p.) V(p,)

XV( —'py) - V(Py) - V( -py)]}/L (px’py)'
In obtaining Eq. (3.8), Eq. (2.11) has been used. Equations
(3.7) and (3.8) express the correlation function of two hori-
zontal spins as a Toeplitz determinant, as is usually done and
yields the correct result.*>

To calculate the vacuum expectation value of a product

of spin variables, proceed analogously. It will be equivalent
to an Ising model on a defective lattice. When expressed in
terms of anticommuting variables, it will result in an expres-
sion of the form

(Mo’s) = ((c12 + d13m1M2X(C34 + d347574)

"(C2m —12m + d2m —12mTMam —1M2m )) (39)
In Eq. (3.9) 5, denotes an anticommuting variable such as
Nhgs Mg, Mg, OF 7. The variablesc,, ., andd,,, , are
constants determined by the defective lattice. For conve-
nience writed,, ., =d,d; _,; any values of d, satisfying this
will do. Wick’s expansion along with Eq. (3.3) tells us that
Eq. (3.9) is

(Ilo’s) = PfM;, (3.10)
where ,
did;{nm;) +6,4,;€i1, iodd
P [didj("h"?j) —5i-1jci—1n i even’ @10

The (n7) correlations are given in Egs. (2.11)—(2.20).

All Ising model spin correlations may be easily calculat-
ed using the above method. The reason they result in such
cumbersome expressions is the following: The variables
which solve The Ising model are the #’s. They might be
called the mathematical variables because they represent it
as a free field theory. Correlation functions of anticommut-
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ing variables are simple to compute. Contrast this with the
spin variables. They are the physical variables. They are,
however, complicated functions of the mathematical varia-
bles, the 7’s, which means that spin variable computations
result in cumbersome expressions. In conclusion, there are
two types of variables, spin variables which have a simple
physical interpretation but are mathematically awkward to
work with and 7 variables which do not have as simple a
physical interpretation but are easy to work with
mathematically.

IV. THE FREE-FERMION EIGHT VERTEX MODEL
CORRELATION FUNCTIONS

Once a model is solved via the anticommuting variable
method, it is straightforward to compute anticommuting
variable correlation functions. It is then possible (in practi-
cally all cases) to compute physical correlation functions.
This was demonstrated for the Ising model in Sec. III.

This section calculates all the vertex correlation func-
tions for the free-fermion model described by Eq. (1.3.4) and
Fig. 1.4 of paper 1. It is just a simple extension of the methods
used in Sec. III. The answer is expressed in terms of a Pfaf-
fian of (in general) a large matrix. A few simple examples are
worked out [see Egs. (4.2), (4.4), (4.14), (4.16), and (4.25)].
The main result is a set of computational rules. By blindly
following them, all vertex correlation functions can be
calculated.

In Sec. I11 Ising model spin correlation functions were
calculated. It is just as easy to calculate vertex correlation
functions in the free-fermion model [Eq. (1.3.4) and Fig. 1.4].
Equations (2.11)~(2.20) are all that is needed.

Let

_ bt he
B, = 20 NapMNa + 185

Baﬁ +12 = zv"]::ﬁntvx; + 1" (41)
B, , (1,2 represents the operator which produces a unit of
horizontal wall between (2,5 ) and (& + 1,8). Likewise
B s . 1,2 produces a unit of vertical wall between (a3 ) and
(@B + 1).If B’s areinserted in the integral of Eq. (I.3.3) then
walls must occur where B ’s operate. A closed polygon parti-
tion function with contraints that walls be in certain places is
obtained. Hence

(B 4 1/218) = the probability that a wall occurs at
{@ +1.8)
=2, (Mg 4 15)>
(Bug +1/2) = the probability that a wall occurs at (a,8 + §)
=2, (Napp +1)- (4.2)

Because Eqs. (2.11) and (2.12) have computed these anticom-
muting variable correlations, these probabilities are explicit-
ly known. In general

(B, Bap,B. 5,)
= the probability that walls simultaneously occur
at lay B @z Bo)yes (@ Brn)- (4.3)

In Eq. (4.3) one of the indices a; or j3, is half integer. To
calculate (4.3) insert the definitions in Eq. (4.1), factor out the
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zy,’s and z,’s to obtain the expectation value of a product of
2m 7p’s. Use Eq. (3.3) to express this as a Pfaffian of a matrix
M. The elements of M are the anticommuting variable corre-
lations given in Egs. (2.11)2.20). The answer is just a
2m X 2m dimensional Pfaffian (or an 2m X 2m determinant
since (PfM )* = detM ). For example, the probability that
horizontal walls simultaneously occur at (a + 1,8 )and
@ +48')is
(Bo s n/28Bar 1) = z [(712;7121 18) <77273' T s 16}
+ (7/2;3"72? +18°) (s, 18 szg' )
- (772‘/377275' Ynh', 15"]2‘:4. 18) ]
4.4)
The quantities on the right-hand side of Eq. (4.4) are given in
Egs. (2.11), (2.15), and (2.18).
A different set of questions can be asked, such as what is
the probability that one of the configurations in Fig. 1.4 oc-
curs at (a,8). Define

022 = (b,b, —a,a, — 0204)77273772;977:,;;77;;;» 4.5)
03} = bunagMas(l — b, 15sie)s (4.6)
03 = b agmas(l — bunlpmig)s @n
03 = amugnes(l — asnisnhs) (4.8)
09 = aMugas(l — amignhs) 4.9
0% = aspMas(l — aiisnip), (4.10)
08 = aymupas(l — @M ap)s @.11)
on=1- $§ 09
N =(a)
= (1 = b hsap)(1 — b, M Mig)
X1 - 01’72;1772;9)(1 - 02"7;;3772;3)
X(1 — asnesMop X1 — amipmis)- (4.12)

In Eq. (4.12) the sum lets j be a through g. The superscripts
(a), (b),...,(h) refer to the configurations in Fig. 1.4,i.e. 0 &)
should be associated with Fig. I.4a. The probability that con-
figuration (a) occurs at (a,3) is
(0%)) = Prob. that conf. (a) occurs at (a,8).
4.13)

The reason for this is simple: when O 8} operates all the
anticommuting variables are used up; no walls can enter the
(a,B ) site sothat nothing can happen (which is exactly what is
depicted in Fig. 1.4a) The factor of (b, b, — a,a, — a,a,) as-
sures that this site has the appropriate weight of configura-
tion (a). A similar conclusion is reached for the other O,;’s.
The probability in Eq. (4.13) is easily calculated

(0323) = (bpb, — a,a; — a,a,) [(7721?7]2; ) (ﬂ;ﬂ’g;)
— (e Y (et + (nmie) (s )
4.19)
In general
(02,05, 05 ) = the probability that sites,
4.15)

(a,8)) through (a,, ,8,,) have configurations (c,) through
©€m)-
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Equation (4.15) is calculated using Egs. (4. 5)~(4.12), Eq.
(3.3), and Eqs. (2.11)~(2.20). The result would be a sum of
Pfaffians. A similar sum was encountered in Sec. IIT in com-
puting Ising model spin correlations [see Egs. (3.9-(3.1D].
There, it was possible to rewrite this sum as a single Pfaffian.
The same trick works here. For example,

(03 = (byipmlis(l — b, yismis))

= (~ b,b,)(PIM), (4.16)
where
My= —M;= <773774) —1/b,,
all other M = (n,7,), 4.17)
and the abbreviations
M= T2=Nag Ts=7s MNa=7%s (4.18)

have been used. In other words the contraction between
74575 in calculating Pf M (via Wicks theorem or Gaussian
integration) gets an extra contribution of —1/b, . A system-
atic set of rules can be developed to calculate Eq. (4.15) as a
4m X 4m Pfaffian.

Rules for Calculating Equation (4.15) the Vertex
Correlations:

1. Using the following abbreviations for anticommuting
variables

Nar—3 = Nap,
Nar_ 2 = 772:3,,
Nai—1 = Mg,
N = 7’:;8,,
for I =1,2,....m. (4.19)
2. Equation (4.15) is
-0 =(fl e,

i=1

(4.20)

where
M; = (q;7m;) +4,;.

It remains to define the f’s and 4;’s:
3. The f’s are

[@=f®=(bd, —a,a; —a8)=/,
fO=f9= —bb,

(4.21)

4.22)

f(d) =f(f) = + a,as,

f(e) ____.f(s) = + a,a,.

4. The 4,’s are somewhat more awkward to define. 4;
is antisymmetric in / and j, thatis 4; = — 4, so that M in
Eq. (4.21) is an antisymmetric matrix. Each of the m opera-
tors, O fj{;i, involve the four anticommuting variables at
(a,,B;). Itis useful to group these into “clusters”. The cluster
associated with O ' is 7, 7,, 77, and 1, with 0 %2} itis s,
Ne» TM7» N> €tc. If 77, and 7, are from different clusters then
4, = 0 (in fact most 4,, are zero). It is thus sufficient to
define 4 ; for i and j within the / th cluster. This depends on
{c;), the configuration associated with the / th cluster. The
results are tabulated as follows:
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Configuration = Nonzero4; ij Values

{a) all4, =0

{b) A4,=—1/b, fori=4l—1,j=4

(c) 4;,= —1/b, fori=4l—3,j=41-2,

(d) 4, =1/a, fori=4l—3,j=4I,

{e) 4;=1/a, fori=4l—3,j=4/—1,

() 4;,=—1a, fori=4l—2,j=4l-1,

(g) 4;,=1a, fori=4l—2,j=4I,
4;,=—b,/f fori=4—1,j=4l
4,=—b/f fori=4]-3,j=4/-12,

(h) 4, = —a,/f fori=4l-3,j=4l,
;= —a/f fori=4l-3,j=4/-1,
4; =a/f fori=4/-2,j=4/—1,
A;,= —aJ/f fori=4l-2,j=4l

(4.23)

where fin defined in Eq. (4.22). Equation {4.23) defines 4 ;
fori<j. Fori>j,4; = — 4,. All other 4, are zero.
Equations (4.16)—{4.18) form a simple example of these
rules. As a more complicated example let us calculate the
probability, P&, €5 ™, | of having simultaneously configu-
rations (a}, {c}, and (h) at sites (@,,8,), (@,/5,), and (a,5;). Set
M, = (qsn6) — 1/by,
M, 0 = {neM10) — b, /1,
My, = (o) — ar/f,
M;,; = (pon12) — a,/f,
Moy = (o) + a5/f,
Mo, = (1:10M12) — au/f,

M, = {(num12) — bu/f,
all other

M, = (nm,), (,j=1 to 12).

The 7,’s are defined via Eq. (4.19) for / = 1,2, and 3. The
answer is

P :}B, 55,’5, g',)a, =(—byb, Nf )ZPW:,-: (4.25)
where fis given in Eq. (4.22). It is easy to calculate free-
fermion vertex correlations using the above rules. If m con-
figurations are specified the answer is a Pfaffian of a
4m X 4m matrix.

I conclude this section with a few remarks:

Remark (a): It is trivial to adapt the formalism to han-
dle walls and vertex configurations simultaneously. Every-
thing is calculable in terms of a Pfaffian. The probability of
havinga wall as(«,5 ) and a(b) vertex configurationat (a’,5")
is easily calculated and would be a Pfaffian of a 6 X 6 matrix.

Remark (b): When vacuum expectation values are tak-
en, other operators work equally well. For example

(4.24)

(20,9 15 MasMapTiap) = (O 3F). (4.26)
The reason for thisis simple. B, _, s whichisz, 7" 5705
produces a unit of wall which enters the (@,8) site from the
left. Because 75575 uses up the vertical variables at (2,8)
this wall must continue straight through thus yielding con-
figuration (c}; it is impossible to use any of the corners at

(@B).
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In a sense the O,;’s are not unique; many operators will
work. Those defined in Egs. (4.5)(4.12), however, have the
advantage of using only those anticommuting variables at
one site.

Remark (c): The matrix elements of M in Eq. (4.21)
involve the anticommuting variable correlations. These, in
turn, are given in integral form in Eqgs. (2.11)<(2.20). In prin-
ciple, the integrals in Egs. (2.11)—~(2.20) can be done in terms
of elliptic functions.

V. SUMMARY

Here is a summary of these first two papers. The focus
of attention was solvable two-dimensional statistical me-
chanics models, in particular, the Ising model, the free-fer-
mion model, and the close-packed dimer problems. The par-
tition functions were expressed as integrals over
anticommuting variables. In this form they resembled fer-
mionic field theories. The solvable models had quadratic ac-
tions, which were computed by using free field theory
techniques.

What else has been accomplished?

{a) The methods of derivation were new. This was the
first time Grassmann integrals have been used to obtain
physical concrete results. These are powerful new
techniques.

(b) In a novel and concise manner the Ising model parti-
tion function was computed. Using the formulas in Secs. 11
and III, any spin correlation function can be computed in a
page of algebra. This includes the vacuum expectation value
on any arbitrary product of spin variables. This work pre-
sented the simplest and shortest derivation of these resuits.

(c) For the first time all correlation functions were com-
puted in the free-fermion eight vertex model.

(d) New graphical methods were developed which al-
lowed one to compute partition functions and anticommut-
ing variable correlation functions by solving miniature
dimer problems. This provided a quick and simple graphical
calculational approach. Many models can be solved by
drawing a few diagrams.

These two papers show that the best approach to solv-
ing these two-dimensional models is through anticommut-
ing variables and functional integrals.

'S. Samuel, J. Math. Phys. 21,2806/ 1980). References to equations and fig-
ures in this paper will be prefixed by a I, e.g. Eq. (I.1.1} and Fig, L1 refer to
Eq. {1.1) and Figs. 1 of Ref. 1.

2§. Samuel, “The Correlation Functjons in the 32 Vertex Model,” IAS pre-
print (March, 1580).

?S. Samuel, “The Use of Anticommuting Integrals in Statistical Mechanics
I1,” LBL preprint 8300 (Oct. 1978), which can be found in S. Samuel,
Ph.D. thesis, Berkeley (1979).

“E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 4, 308 (1963);
B. M. McCoy and C. A. Tracy; Phys. Rev. Lett. 38, 793 (1977).

3See, for example, E. W. Montroll, Brandeis University Summer Institute in
Theoretical Physics. 1966, edited by M., Chrétien, E. P. Gross, and S. Deser
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The Ising model in three dimensions is fermionized by using integrals over anticommuting
variables. The result is generalized to the Ising model in arbitrary dimensions and in a magnetic
field. Approximation methods are developed to attack unsolved statistical mechanics models.
Perturbation theory and the Hartree approximation are applied to the unsolved monomer-dimer
problems. The result is a numerical solution to this unsolved class of problems. Anticommuting
variables appear to be a powerful approach to unsolved problems.

I.INTRODUCTION

Two previous papers'™ have applied anticommuting
variable integrals to statistical mechanics problems. They
provided a direct and simple way of writing statistical sys-
tems as fermionic field theories. They considered two-di-
mensional solvable models: the Ising model, the free-fer-
mion ferroelectric eight vertex models, and the planar close-
packed dimer models. Anticommuting variables are the best
way of completely solving these models. All quantities were
trivially calculable including partition and correlation func-
tions. These models had quadratic actions and were like free
field theories.

This paper continues to represent via Grassmann inte-
grals partition functions as fermionic field theories. Now,
however, only models resulting in interacting theories are
considered. These models are not exactly solvable, although
they are amenable to approximation schemes. Because they
are in field theory form all the techniques of many body
theory are applicable. This is one big advantage of anticom-
muting variables. There are several (Pfaffian and fermionic
operator) methods which exactly solve certain models in two
dimensions. Most physical systems, though, are “interact-
ing” models. These other methods neither go beyond two
dimensions nor are able to treat unsolvable systems. They
have limited applicability. Anticommuting variables can
handle both solvable and unsolvable problems. In the former
case they efficiently solved the model and in the latter case

they generate viable approximation schemes. They can per-
turb about a solvable model to obtain results for an unsolva-
ble system. This paper will show how this is done.

This is just the beginning. This paper uses only two of
the many possible approximation techniques available. This
will certainly be an active area of future research: to establish
new techniques as well as adapting many-body theory tech-
niques. The number of models to which anticommuting var-
iables can be applied seems limitless. This paper considers
dimer and Ising models in two, three, and more dimensions.

“This work was supported by the High Energy Physics Division of the U. 8.
Department of Energy under contract No. W-7405-ENG-48.

®Present address: Institute for Advanced Study, Princeton, New Jersey
08540.
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Nontrivial models can be represented in fermionic
functional integral form. To demonstrate this the Ising mod-
el in three dimensions is considered. A four fermion field
theory is obtained. Next the two-dimensional Ising model in
magnetic field is treated, and, it, too, is a four fermion field
theory. In addition, it is represented as a Z, gauge theory
coupled to a fermion. Although, these anticommuting vari-
able representations are somewhat complicated they demon-
strate that non-trivial models can be handled. The approxi-
mation methods developed in this and future papers* can be
applied to these models, however to illustrate the methods
the dimer-monomer mixing problem is considered. It is the
simplest nontrivial model representable in Grassmann inte-
gral form. As such it is quite amenable to approximation
schemes. It is also of particular interest: many problems can
be mapped into a dimer-monomer mixing model.

This paper contains several new results. The following
list of results, which might be part of the conclusion, serves
to indicate the contents of this paper.

In Sec. II the three-dimensional Ising model is ex-
pressed as an integral over anticommuting variables.’ In this
form it is equivalent to an interacting *“fermionic” field the-
ory. This is an important result because this paper’s approxi-
mation schemes become applicable to the Ising model. This
section will form the foundation of future work. The higher
dimensional Ising models are also written as anticommuting
variable integrals. This is the first fermionic representation
of the three-dimensional Ising model.

In Sec. I11 the integral representation in Sec. ITis adapt-
ed to the two-dimensional Ising model in magnetic field.
This is also an interacting “fermionic” field theory. Present-
ed next is a representation as a Z, lattice gauge theory coup-
led to a “‘“fermion”. The representations are again extendable
to high dimensions. Again, this is the first time Ising models
in magnetic field have been fermionized.

Section IV deals with dimer models in the abstract, that
is, the most general dimer model is considered. They are
expressed in anticommuting variable form and many-body
field theory methods are applied. Feynman graph rules are
presented. Perturbation theory turns out to be equivalent to
the low temperature expansion. The self-consistent Hartree
approximation is calculated. The Feynman rules are adapt-
ed so that corrections to the Hartree approximation can be
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calculated. These are computed to sixth order. No specific
model is considered. The results of Sec. IV are valid for the

most general dimer model. This is a new expansion.
In Sec. V the methods of Sec. IV are applied to specific

dimer models. The lattices include the d-dimensional hyper-
cubic lattices {such as the simple quadratic and simple cubic
lattices), the planar triangular, the tetrahedral, the bce and
the fcc lattices. A special set of Feynman rules are derived for
translationally invariant lattices. Embedding graphs (and
their weights) were found to 5th order for close-packed lat-
tices and to 6th order for loose-packed lattices. This allowed
a rapid computation of the Hartree-improved expansion to §
or 6 orders. The method is carried out to sixth order first for
the two-dimensional dimer problem and then for the d-di-
mensional hypercubic lattices. This is for the nonisotropic
case in which Boltzmann factors in different directions need
not be equal. In the isotropic case, it is found that the d-
dimensional hypercubic dimer problem is exactly solvable as
d becomes large as long as the temperature is high enough. A
1/d expansion is presented. A similar analysis is applied to
lattices with large coordination number, . All dimer models
become exactly solvable as g— o and a 1/4 expansion is
presented. For lattices with ¢ varying from 4-12, molecular
freedoms are computed in the pure dimer limit. Even at such
small g values results are good to several per cent. For the
isotropic case, previously established low temperature ex-
pansions are combined with Hartree methods to obtain the
Hartree expansion from 8-16 orders on six lattices. These
new series expansions accurately represent the six models in
the entire physical region. In the region where the approxi-
mation method is expected to be the worst, that is, at close-
packing, molecular freedoms are computed to an accuracy
of a fraction of a percent. Next the density and entropy are
calculated. At a density of about 90% maximum density the
density and entropy are calculated to an accuracy of from
four to seven decimal places. At 50% density the accuracy is
from six to nine decimal places and at 10% density the accu-
racy ranges from 11 to 19 decimal places. These new series
expansions are as good as any in the literature.

The Hartree series represents a numerical solution to an
interesting class of unsolvable models. The extreme accura-
cy achieved is beyond the requirements of physical or theo-
retical demands. In effect an unsolvable model has been
solved.

Anticommtuing variables have been used to obtain
many, many new results. Space restrictions prevent us from
presenting all of them but here is a list of what else has been
accomplished.® These results will be published elsewhere.*

1. Other complicated free-fermion vertex models have
been solved.”

2. Correlation functions have been computed in the
free-fermion 32 vertex model.?

3. The 1/N expansion and random phase approxima-
tion have been applied to dimer models. A dimer model with
a local U(V) symmetry has been solved in a 1/ limit.

4. Partition and correlation functions have been com-
puted for the general one-dimensional polymer system.
These results have been used to compute transfer matrix ele-
ments for two-dimensional dimer and polymer systems. The
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two-dimensional extremely anisotropic dimer and polymer
models have been “perturbatively solved” using these
results.

5. Bosonization of fermionic systems has been
discussed.

6. The free-fermion model has been used to obtain re-
sults for the general unsolved eight vertex model via pertur-
bation theory. Feynman rules have been presented and calu-
clations to second order have been done.

7. Hartree-Fock equations for the unsolved eight vertex
model have been derived.

8. Integral transformations on various models have
been performed. These include partial integration, real space
renormalization, rescaling and canonical transformations.
The Schwinger-Dyson equations have been used to establish
relations among correlation functions.

9. Rigorous upper bounds on the free energies have
been obtained for several systems.

The anticommuting variable methods developed in
these three papers are the foundation for all these new re-
sults. They will also be the foundation for future work.

il. THE THREE-DIMENSIONAL ISING MODEL AS AN
INTERACTING FERMIONIC FIELD THEORY

This section expresses the partition function for the d-
dimensional Ising model as an anticommuting variable inte-
gral over an action, that is, a lattice fermionic field theory.
Unlike the two-dimensional Ising model where the action
was quadratic,’ the action of the three-dimensional model
involves quartic as well as bilinear terms. For the d-dimen-
sional model there is a product of 2(d — 1) anticommuting
variables. Therefore the d-dimensional model is not of the
solvable free-fermion form but represents an interacting
field theory. The construction for the three-dimensional case
will be explained but the formula will be written for the 4-
dimensional case.

The partition function has a well-known geometrical
low temperature expansion similar to the two-dimensional
model except that one must sum over closed polyhedrons
instead of closed polygons. What kinds of configurations are
allowed? First, any number of nonoverlapping polyhedrons
can occur. They may intersect in the manner of Fig. 1a but
they may not overlap as in Fig. 1b. The configuration of Fig.
1b would be drawn as in Fig. 1c. The fact that overlap is not
permitted makes the use of anticommuting variables ideal.
Polyhedrons, constructed out of anticommuting variables,
cannot overlap because the square of a variable is zero.

(a) (b) (c)

FIG. 1. (a) Intersecting polyhedrons: Such intersections are allowed. (b)
Overlapping Polyhedrons. Such overlaps are forbidden. This configuration
would be drawn as in (c).
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Zs 4 1sing Vs I J3) < Z oeq polyhedrons Z1s 220 23),  (2.1)
where Z .4 potyhedrons (21> Z2» Z3) is the partition function for
nonoverlapping but possibly intersecting polyhedrons in
which the three types of faces are weighted by z,, z,, and z,
and

z,=exp( —28 J,). 2.2

In the two-dimensional model, the anticommuting
variable action that generated Z_ ;o4 poygons CONSisted of
three pieces: 4,.i1, Acormers A0 A onomer - Awan drew the sides
of polygons, 4., formed corners, and 4,,,,,m., filled un-
filled sites. Similarly, in three dimensions the action consists
of three pieces, Ag,.., Acormers A0 A onomer » Arace draws the
faces of the polyhedrons and 4_,... joins the faces together.

The expression for Z_,o.eq polyhedron iN terms of anticom-
muting variables is first presented and subsequently
explained.

Z yosed polyhedrons (215 225 23) = J.dﬂ dn' expA, 2.3)
where
A = Afﬂce + ACDmCl’ + Amonomer . (2.4)

Only two out of the three types of anticommuting varia-
bles occur at a particular edge midpoint.If it is an x edge,
they are the other two types, namely, %%, 7%, °, *'. Like-
wise for y and z edges.

Ag,.. hasthree terms. Each draws one of the faces of Fig.
2. A,.. involves a product of four anticommuting variables.
Together they span a square unit of surface area as Fig. 2
illustrates.

These quartic terms have two arrows. These arrows de-
termine the ordering of each of the two bilinears making up
the quartic. There is never any confusion determining the
ordering of anticommuting variables from figures such as
Fig. 2 because bilinears commute.

The faces in the x direction (for example) can link to
form larger x directed surface areas (Fig. 3a) but faces in two
different directions cannot (Fig. 3b). 4., makes this possi-
ble by using bilinear “hooks”. What is needed to link the two
faces in Fig. 3b is the object in Fig. 3c. It is of the form, 57>,
and acts like a hinge. Such objects are needed at the mid-
points of each of the three types edges. Thus, 4, ... has three
terms. Figure 4a shows an x edge, the possible anticommut-
ing variables which could enter it, and the corners. The cor-
ners are exactly the same as for the two-dimensional Ising
model.! Figures 4b and 4c show the analogous objects for y
and z edges. Perhaps a better name for 4., wouldbe 4,
because of the manner in which the edges are joined.
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but ' £ z, need j
Linked Unlinked
(a) {(b) (c)

FIG. 3. Linking: (a) The faces of Fig. (a) can form larger area elements. Here
five faqes link. (b) But a face in the x direction is unable to link with a face in
the z direction. The object in Fig. (c) is needed.

Finally, monomers are needed to fill empty sites. These
monomers are similar to the two-dimensional case.

In short, the corner and face actions correspond to the
simple pictures in Fig. 2 and 4. One should always think in
terms of these pictures.

A moment’s thought reveals that the action [Eq. (2.4)]
generates closed polygons of the type needed in Eq. (2.1). If
faces are weighted by the appropriate Boltzmann factors
[Eq. (2.2)], then, up to a minus sign, the correct weights are
obtained. A minus sign might be generated because of anti-
commuting variable reordering. The anticommuting varia-
bles must be put in 77" form. This involves anticommuting
operations, each of which yields a minus factor. Fortunately,
all terms are indeed positive: the quartic terms can be broken
up into the product of the two bilinears. The bilinears are
only able to combine with corners in a two-dimensional
plane. They generate planar closed polygons like the ones in
the two-dimensional Ising model.! By choosing the same bi-

l I

(a2, y ) T e

e u
i

L A
v T
(c)

(a+ 172, B+172,y)

FIG.4.A4_,,.,. To the left is the edge and its coordinates. In the middle are
the possible anticommuting variables which could enter. These variables
come from A,,... To the right are the four types of corners needed to link

faces.
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—- L1 14 - . g x [/
V"
{a) (b) (c)

FIG. 5. The Minus Sign Problem: (a) A cube of polyhedron. (b) The anti-
commuting variables used to construct the cube trace out this object. (c) By
breaking quartics into products of bilinears, the object factorizes into a
product of three planar polygons. Reordering minus factors reduce to the
planar case.

linear ordering as in a two-dimensional model, all terms are
guaranteed to be positive. Effectively, the minus sign prob-

lem reduces to the two-dimensional case. Figure 5 illustrates
this.

For the d-dimensional Ising model, use objects of di-
mension d — 1 (the low temperature expansion). The action
consists of bilinear terms plus interacting 2(d — 1) products
of anticommuting variables:

Apolycomplex = A(d—-l)face + Acomer + Amonomer ’ (25)
A race = E 2 Z; ("721 v,,,,,ﬂff +u,,
X gy
cyclically
X0 b, XU W) (26)
Acomer = ;E{ﬂf+ uu"fx +uy, + 77’:+ u,,”f+ uy
+ T,y + Mo Tern, 3 27)
Amonomer = g;{”’x + uuﬂf+ uy + 17lx + uun’:+ uu}’
(2.8)
w; = i(ei + ej)9
(2.9)

v, = ie; - €).

The e; are unit vectors in the ith direction.

The notation needs explaining. Begin with the spatial
labels. When spins have integer cartesian coordinates, the
polyhedrons, being drawn on the dual lattice, involve half-
integer coordinates.

The anticommuting variables sit at edge midpoints.
There are d types: 7', i = 1...d (along with their daggered
partners), which refer to anticommuting variables associated
with ith directions. Conventions used here are: 0 and x indi-
cate undaggered and daggered variables; a line in the /™ di-
rection attached to an anticommuting variable indicates that
it is of the /'™ type; the subscripts indicate an anticommuting
variable’s cartesian coordinates; and arrows denote the or-
dering of bilinears.

Hl. THE TWO-DIMENSIONAL ISING MODEL IN A
MAGNETIC FIELD

This section expresses the partition function for the
two-dimensional Ising model in background magnetic field
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in two ways. The first way uses anticommuting variables
only. It has quartic terms in the action and hence is an inter-
acting fermionic field theory. The second representation is of
“mixed” form: using both anticommuting variables and bo-
sonic variables. Itis, in particle physics language, a Z, lattice
gauge theory®'® coupled to a fermion. From a particle physi-
cist’s point of view this is an interesting representation: the
four-dimensional counterpart is a model for quark
confinement.

Let H be the magnetic field. In what follows it is neces-
sary for H to be positive (or zero).

The two-dimensional Ising model in magnetic field is
again equivalent to a closed polygon partition function. In
addition to polygonal sides being weighted areas must also
be weighted. There is a factor of

z, =exp(—28 H) @31
for each square unit of polygonal area. Treat the two-dimen-
sional system as a three-dimensional system which is one
unit thick in the z direction. Draw polyhedrons around re-
gions of down spin in lieu of polygons. This transforms the
problem into the Z jeeq polyhedron tyPe Of Sec. II. Take the
action in Eq. (2.5) ford = 3 but restrict position sums to be in
the z =0 to z = 1 layer. Use z, and z, of Eq. (2.2) to weight
faces in the x and y direction but use z}/? for z; (the square
root of z, appears because z, enters twice once in the z = 1
plane and once in the z = 0 plane, for each square unit of
polygonal area). Thus the two-dimensional Ising model in
magnetic field has been represented as a four-fermion inter-
acting field theory. Of course, the construction works in d-
dimensions by using Eq. (2.5) for the (d + 1)-dimensional
Ising model and restricting the (d + 1)th direction to be one
unit thick. The action involves bilinears and products of 2d
anticommuting variables.

The task of weighting areas can also be done using a
gauge field. Pretend, for the moment, that the polygons (or
more precisely, the polygonal curves) are oriented. Think of
such curves as charged particle trajectories, the orientation
being associated with the direction of flow of charge. Cou-
pling theém to an Abelian gauge theory (as in quantum elec-
trodynamics) would weight the polygon’s area because
(1 4+ 1)-dimensional QED has a linear potential. Unfortu-
nately, the curvesin Z,,o,e4 poiygon [EQ. (13.1)] are not oriented
and this trick fails. Fortunately, the difficulty can be over-
come by using a Z, gauge field instead of a U(1) one. Being
blind to the difference between positive and negative
charges, a Z, gauge field works. The result is

Zuo o H)=f 3 [andntepd, (32
Vst iap= %1
Usgr12= £ 1
where the action, 4 is
4= Awal] + Aoomer + Amonomer + AZ,’ (33)
AC?me,, and A, ,nom., are the same actions as in I Eq. (1.3.4)
(witha, =g, =a,=a,= b, =b, = — 1). A, is modi-
fied to Wt
Awall = ;(ﬂaﬂna + lﬂzh Ua + 1/28¢
(3.4)

-t
NopMag + 12 U1 ):
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and
Azz =K;(Ua+ 1728

an+lﬁ+l/2 Ua+1/2ﬂ+anﬂ+l/2 ) (3-5)
In these formulas
z, = exp( — 28J,),
z, = exp( — 28J,), (3.6)
tanh X = exp( — 28H ),
exp(NBH )

f'= exp BN, +J,),

(4 cosh K )V

1
= {8 simh 2K )"/ exp BN, +J,).

Again, the method generalizes to higher dimensions.

IV. COORDINATE SPACE PERTURBATION THEORY
FOR THE GENERAL DIMER PROBLEM

This section and the following section will deal with the
dimer problem. This constitutes a whole class of problems
since there are many lattices at one’s disposal. The dimer
problem is not only important because of its direct applica-
tion to physical systems, '’ but also because of the large num-
ber of problems which can be mapped into dimer form. This
enhances their importance. The only models which have
been solved are the one-dimensional dimer model and two-
dimensional close-packed models. Approximation methods
are therefore of interest. My purpose will be twofold: First,
the anticommuting variable technique will be used to obtain
new dimer series expansions. These represent new ap-
proaches to the dimer system. Secondly, in the process of
obtaining the expansions, various anticommuting variable
approximation techniques will be illustrated. Dimer models
are a good laboratory for testing these because of their sim-
plicity and because of other existing approximation schemes
to which they can be compared. The importance of these
sections is that the approximation techniques are applicable
to any model representable in fermionic-like field theory
form (such as the models discussed in Secs. II and III). One
merely mimics the methods illustrated here.

An extensive set of dimer references can be found in
Ref. 12, to which the reader is referred. I would like, howev-
er, to mention the following: Previous approximation
schemes fall into the following catagories: First, there are
those!? which solve exactly small finite lattices and then ex-
trapolate to large lattices. This technique is known as the
exact finite method: A close cousin is Monte Carlo.'* There
are also transfer matrix methods.!® These give excellent nu-
merical results. Next is the Bethe approximation.'S It is of
interest because of its simplicity both mathematically and
physically and because of its accuracy which is reasonable.
There are ways of calculating corrections to the Bethe ap-
proximation.'”!® Rigorous mathematical dimer results also
exist.'?!? The importance of Ref. 12 should not be neglected.
With reasonable assumptions Heilmann and Lieb have
shown that no phase transition can occur as long as mon-
omer Boltzmann factors are nonzero. The result is general.
It is applicable to almost all dimer models. Phase transitions
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can only occur for pure dimer systems. Finally, there are the
series expansions. The simplest is the low temperature ex-
pansion in powers of the dimer Boltzmann factor. This can
be organized into a Mayer type expansion.2-2!:22 A great
improvement is Nagle’s series.'® It starts with the Bethe ap-
proximation and generates a series using graphical methods.
It systematically calculates corrections to the Bethe approxi-
mation, which, because it is a good starting point guarantees
an excellent series. Nagle’s series is presently the best in the
literature. The Hartree series developed in this section
equals Nagle’s in accuracy. It is a new expansion. The field
theoretic Hartree method is used after expressing the dimer
problem as a fermionic field theory. Since dimers cannot
overlap, fermions are natural variables: roughly speaking,
dimers constructed out of fermions are unable to overlap
because of the Pauli principle. The perturbative techniques
developed here are easily extended to other systems such as
trimers or more complicated polymers. Nagle’s method has
also been extended to trimers? although more complicated
polymeric systems have not been treated. A final note: Ref.
12 has an important implication for this paper’s Hartree se-
ries (and also Nagle’s series). It guarantees convergence in
the entire physical region.

This section will treat the dimer problem from a general
point of view: A specific example will be considered in the
next section. Key results are the Hartree approximation [Eq.
(4.8)] and the Hartree-improved Feynman rules which gen-
erate the series in Eq. (4.12) and Fig. 10.

The general dimer model is an interacting fermionic
field theory with a quartic interaction term,

1
Ve=— ZagMa MM 4.1

One sums over all sites a and all sites 8 allowing z,,5 to be
zero if no bond exists between a and B. The factor of 1/2
compensates for the double counting in Eq. (4.1) (z,5=24,)-

The interaction, ¥, is pictorially depicted in Fig. 6 and is
of the same form as a two-body potential in a quantized
many body theory.2* This correspondence proves useful.
The bare propagator, G %4, is determined by the quadratic
piece, that is, =, 9,7} It is

Gog=an})o="bas- “2)

Perturbation theory is an expansion in powers of ¥ (or

z.5). Sincez,; = exp( — BE,z), this is the standard low tem-
perature expansion:

Perturbation Theory = Low Temperature Expansion. (4.3)

Feynman rules are similar to the usual many body theory
ones.?* One draws all graphs using the interaction of Fig. 6.
Because of the nature of the bare propagator in Eq. (4.2),
fermion loops occur at a particular site. It is convenient to

ZQB

a-----——---(8

FIG. 6. The dimer potential.
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FIG. 7. Simple perturbation theory to third order.

contract all fermion loops to a point. Figure 7 shows all the
connected vacuum bubbles to third order, first in the usual
way and then in the contracted form. The Feynman rules for
contracted graphs are:

(a) Draw all topologically distinct graphs, consisting of

any number of vertices. The vertices can have one or more

lines attached to them. The vertices are assigned a site index,

a. The empty graph is to be included and contributes one.
(b) For each edge associate a factor, 2.

(c) For each vertex at & with / lines emanating from it (a

vertex of degree /) put in a factor of ( — I)(/ — 1)L

(d) The graph may be topologically invariant under per-
mutation of some of its vertices. Such permutations generate
a symmetry group of the graph which is called the point
symmetry group of the graph. Put in a factor of [order of the
point symmetry group of the graph]'. The order of a group,
G, is the number of elements in G.

(e) For each pair of vertices connected by / lines (Fig. 8)
put in a factor of 1//1.

sseoo N

FIG. 8. Two vertices with / lines between them.
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The ( —1) in rule (c) arises because the vertex was ori-
ginally a fermion loop for which Feynman rules assign a
minus factor. The (/ —1)! is due to the fact that / lines enter-
ing a loop can be ordered in (/ —1)! ways.

If interchange of lines is considered a symmetry of a
graph then rules (d) and (e) combine into one:

(de) Put in a factor of [the order of the total symmetry
group of the graph].

Figure 7 shows the connected graphs through third or-
der in z,,4, along with the factors from rules (b), (c), (d), and
(¢). This illustrates how the Feynman rules work.

In rule (a) all topologically distinct graphs are to be
considered including disconnected ones. It is well known in
field theory that

Z= 3 =ep I , (4.4)
all graphs connected
connected or graphs

disconnected

that is, the connected graphs exponentiate. Therefore only
connected graphs need be considered. Figure 7 thus gives

1 1
InZ = — ——
2 %zaﬁ D) gjaﬁzﬂr

L

+
4 %5

1
Zop +— Z 2apZgyZys
2 aByé

1
+ _3- 2 zBaZ‘yazéa

1
- —zzaﬁzﬁrzra
apys 6 25y

1
- ‘;m’zczzﬂzBr + ?;Z?zﬁ + - 4.5)

Equation (4.5) is generic in character: it is the low tempera-
ture dimer expansion to third order for any dimer problem.
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Now that the dimer statistical system has been ex-
pressed in field theory language, standard field theory calcu-
lational methods are applicable. What has just been illustrat-
ed is simple coordinate space perturbation theory.
Significant improvements can be made; for example, the self-
consistent Hartree approximation.

It can be obtained by the replacement

1 1
7}_;4377,, 7 nenp— —2-21;2,,,3 (ol pmh )

+ a5 ) usmp — Mal ) Memhu ),
(4.6)

where (77,7} ), the Hartree propagator, is determined self-
consistently:

(0,18 Y = [1 + 30 (a7} >H] @7

Equation (4.7) was obtained by calculating the propagator
(n,m} ) with the quartic term in Eq. (4.1) replaced by Eq.
(4.6). For a translationally invariant lattice Eq. (4.7) is sim-
ple to solve (this will be exemplified shortly).

The self-consistent Hartree approximation for Z is

InZ,, = zln(l + S 2s a7} ),,)
a B
1
- —2— zzaﬂ (ﬂa 1’2 )H <’73"l£ )H . (48)
afB

Equation (4.8), the Hartree approximation to the partition
function, is one of the results of this section.

For the 1 — d dimer model, a numerical comparison of
the Hartree approximation, I" ¥ of Eq. (4.8), has been made
to the exact result, I'. Here, I" = (1/N)InZ, is the grand po-
tential per unit site. The Hartree approximation is, at most,
off by 8.28% for the entire range of z. The z which yields the
maximum error occurs near z = 2.31. It is particularly good
for small z and large z. It is encouraging that such a simple
technique yields a reasonably accurate approximation for all
2.

For the d-dimensional dimer problem on a square lat-
tice with weights, z,, z,, ..., 2, in the first, second, ..., d th
directions, the Hartree approximation is

O

Q |
\Q——O
R
O---0 H--O

O

FIG. 9. A typical bubble tree graph included in the Hartree approximation.
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FIG. 10. The Hartree-improved perturbation theory graphs and their sta-
tistical weights to sixth order.

r H
d-dimensional dimer

1 1 d 172
=In|l—+—({1+8 ) ]
[2 + 2( +8 3

i=1

_ ng_j__[ 1+ (1 +8 ﬁy,)“]z. (4.9)
i=1%;

i=1

Unfortunately, the d-dimensional dimer problem is un-
solved for d > 1, so that comparison with the exact result is
impossible.

It is common knowledge that the Hartree approxima-
tion sums up the “tadpole” vacuum bubbles. A sample tad-
pole graph is shown in Fig. 9. In terms of contracted graphs
(that is, with fermion loops contracted to points) the tadpole
graphs are the tree graphs. Knowing this allows one to com-
pute systematically the corrections to the Hartree approxi-
mation. Let

g v = <77777;‘/ )H ’
be the solutions to Eqgs. (4.7). Then

(4.10)

InZ = InZ,, + 3G, @11

with Z,, given in Eq. (4.8), and G, is the sum over connect-
ed Feynman graphs with rule (c) modified to

(c') Allow only graphs with vertex degree >2, ie.,
graphs with one line coming into a vertex are to be excluded.
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For each vertex a and / lines enamating from it put in a factor

of 2 (— L)ghil— 1)
Feynman graph rules (a), (b), (d), and (€) remain
unchanged.

Eliminating graphs of order one reduces the number of
graphs to be considered. Not only is the Hartree expansion
better than simple perturbation theory over an extended re-
gion of z but it is easier to calculate. Figure 10 displays the
statistical factors due to rules (c"), (d), and (e) for the graphs
in G to sixth order in edge weight. The graphs still need to
be multiplied by the g, and z,; factors of rules (b) and (c').
The terms in Fig. 10 generate a result guaranteed to be cor-
rect to order z5; when expanded in powers of z_;. Thus an
answer correct to z° for the general dimer problem has been
obtained. In addition, the effects of higher order (in z) graphs
have been included in the Hartree-improved expansion, so
that the result can be expected to have a wider range of valid-
ity than a simple low temperature expansion. The terms in
Fig. 10 to fourth order are

anH +_Z ﬁgzgf? ——Zz 82y 2ya gf,gz

z Bzﬁr ay gﬂg2

aBy

+ ?zziagiga

Eztzzﬁ Z5,828587

aﬁr

+- Ez 525, 2y625082858785

aByB

—_Zzaﬁgagﬁ + - (4' 12)
The terms of ﬁfth and sixth order can easily be written down
but for reasons of space are omitted. Equation (4.12) and
Fig. 10 constitute an important result in this section.

It is clear that the g, factors can be absorbed into the
2,5 factors: Equivalent to rules (b} and (c') are rules (c) and (b’)
with

(b') for each edge (Fig. 6) associate a factor of g,2.585-
The Hartree improved expansion is in powers of w4
=g,.Z,58p in contrast to z,, for simple perturbation theory.
In general the factor g, 2,58, will be smaller than z; and for
z,4 large it should be considerably smaller. The Hartree per-
turbation series represents a marked improvement over the
simple low temperature one. To illustrate this consider the
one-dimensional dimer problem again. For large z the Har-
tree expansion is considerably better than the low tempera-
ture expansion and for low temperatures the Hartree expan-
sion is just as good. Furthermore, the Hartree expansion
parameter is always less than z and never bigger than 1.
Therefore, w is less than the simple perturbation theory ex-
pansion parameter. It is always bounded being guaranteed to
be at most of intermediate strength. In contrast z can become
arbitrarily large. For the d-dimensional hypercubic dimer
problem the Hartree expansion parameters are

(— 1+(1+4827_ 2z )”2)2

o, =2Z; ’
437_ .z,

and are small or at most of intermediate magnitude. In fact,

(4.13)
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the ,; cannot be greater than § and in the isotropic case

Zy =2, = =2,,0;, =0, = =0,;=0<1/2d. It appears

as if the expansion parameter, », becomes smaller as the

dimension is increased, a point that will be discussed later.
One may also treat the combined monomer-dimer sys-

tem. The action is given by

dimer-monomer — +
A (ZarZap) zza NaNa
a

g Sl (414
which differs from 4 ™ in that z,, the Boltzmann factors
for monomers, are not unity. By rescaling 7,—(1/z_)7,, (or
by using simple physical reasoning) A dimer-menomer cap be re-
lated to 4 ™" so that A dimer-monemer jg not any more general
than 4 %™, However, this is not quite true. In Eq. (4.14)
some of the z, may be set equal to zero (in which case corre-
sponding sites must be occupied by a dimer). The rescaling
transformation fails. Simple perturbation theory is impossi-
ble since certain propagators blow up. Nevertheless the Har-
tree expansion exists because a finite Hartree propagator is
generated. Thus even pure dimer systems may be treated.
Equations are easily modified to account for Eq. {4.14). For
example, the 1’sin Egs. (4.7) and (4.8) become z, and z,,. The
point is that the Hartree expansion can handle the situation
of having some (or all) monomer Boltzmann factors zero,
whereas the usual low temperature expansion cannot.

V. DIMER MODELS (SPECIFIC LATTICES)

This section tackles the dimer problems on various lat-
tices via the methods of the last section. These models are
unsolved (except in the pure dimer limit for two-dimensional
planar lattices®®). Unlike the generic expansion [Eq. (4.5)], a
specific dimer problem has lattice embedding factors for
which it is useful to derive rules. Each term in Eq. (4.5) will
generate several terms as the indices @, 3, 7, etc. range over
sites. It is useful to group these terms into a new set of dia-
grams and define new rules. This is similar to the usual graph
and embedding theory.2°

This section obtains new series expansions and accu-
rately calculates physical quantities such as molecular free-
doms, densities, and entropies. Models in two, three, and
higher dimensions are considered. These computations test
the accuracy of the Hartree expansion. It is found that it
works amazingly well.

Rules for a Dimer Problem on a Translationally Invar-
tant Lattice: Rules (a) and (d) of Sec. IV get modified to

(a) Draw all diagrams on the lattice with different
shapes. Two graphs which are translates of each other but
have the same shape are considered equivalent.

(d) Treat vertices with different locations as being dis-
tinct; then there is a factor of [order of the point symmetry
group of the diagram]~".

(f’ r= (I/N )an = 2<:onm:<:ted diagrams (welght Of
diagram).

Consider now the Hartree-improved expansion. The
diagrammatic rules are the same as in “Rules for a Dimer
Problem on a Translationally Invariant Lattice” with the
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above substitutions {z,—w, and z,—w, ) in rule (b) the dia-
grams with vertices of degree one are ignored. Thereis alsoa
zeroth order contribution given in Eq. (4.8).

As an example, here is the Hartree expansion to sixth
order for the two-dimensional lattice:

Ty 4 gimee = In(} + 41 + 8(z,, +zv))1/2) + Fm( @)
+I'Y o)+ TI'e,, 0,)+ - (5.1)

where, for later convenience, terms of one-dimensional char-
acter are grouped into I" ¥ and terms of two-dimensional
character are grouped into I"?:

' w,)= —a, + o} + ), — o}

— $0} + 305 + -, (5.2)
I oy, 0,)= = 30,0, + 4o,0; + oho,)
+ d@ho; + w,@])
+ 15008 + ohed) + o (53)

A piece, — w,,, from the Hartree approximation has been
regrouped into I" " w,,).

When expanded in powers of z, and z,, the low tem-
perature expansion is recovered. Equation (5.1) will repro-
duce correctly terms to sixth order in z’s. Equation (5.1) will
be very accurate at low temperatures. Since the Hartree ex-
pansion includes the effects of some higher order graphs, Eq.
(5.1)is also expected to be good over a domain larger than the
low temperature one. In fact, even though it is a modified
low temperature low density expansion, the infinite tem-
perature limit can be taken. This is because as z,— and z,
— o, @, and o, approach constants. Atinfinite temperature
the problem becomes the close-packed dimer model which
has been solved.?® In the isotropic case (when z, =z, =2}
the answer is

rclosc-packed — glnz + G / H
~}lnz + 2916 (5.4)
with G, Catalan’s constant. The Hartree expansion in Eq.
(5.1) gives
I' — }Inz 4 .2803. (5.5)

It is reassuring that the Hartree improved expansion is accu-
rate in a region so far from its range of validity (low tempera-
tures). This indicates that Eq. (5.1) is probably reasonably
good over the entire range of z, and z,.

The Hartree expansion to sixth order has also been ob-
tained for the d-dimensional hypercubic lattice. Define

rogo)=nfi+y148 $o,)"|
i=1
T (@, 05 03)= 80,0307 + 0] 0,03 + 0] 0} 0;)
+ 80 w0} — 16(0, 0203 + 0,0; @}
+ 0} 0,03 + 00,0} + Vlw;0,
+ 0] 0303) — 16(0,0,0% + ©w50;
+ ot w,w,), (5.6)

4 2 2 2. 2
' 0y, @y, 03, 04)= =300, 030; + ©,0;0:0;
2 2 2
+ 0,0; W30, + O w405
2 2
+ 0100 04 + W] W 0304),
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where I ©@is the first piece of the Hartree approximation [Eq.
(4.9)] and the w, are defined in Eq. (4.13). Then the Hartree
expansion in d-dimensions is

r({wj})=ro({wj})+ ‘if‘m(wi)-{'— 2": r(2)(a)i,’wiz

i=1 i <iy

d
+ Z F(S)(w’_l’ Wy, Dy

i< <y

d
+ > Ir'e,,o, W, ;) + (5.7)
i <h<iy<i,

where I" ™ and I"® are given in Egs. (5.2) and (5.3) and the
other I"’s are given in Eq. (5.6). The superscript on the I"’s
refers to the dimension of the subspace of the imbedded dia-
gram. Thus 1" refers to those diagrams which are imbed-
ded in an n dimensional subspace of d-dimensional space.

In Sec. IV it was pointed out that, in the isotropic case,
the expansion parameter, w, gets smaller as the dimension of
the lattice gets bigger. For the hypercubic lattice,
o = 1/2d + O(1/d>/?). Thisindicatesthatasdincreases, the
Hartree expansion works better and Eq. (5.7) will be an ex-
cellent approximation. The situation, however, is not so
clear because the number of graphical embeddings increases
with d. Let d (G ) be the dimension of the maximum space in
which a graph can be embedded. A rough estimate of the
number of embeddings of Gis (24 }?'°' + 0f(2d }*'’ — ") for d
large. The weight of G goes like (1/2d )® where b is the num-
ber of bonds, so that the total effect of G behaves like

1

~ —(Zd o (5.8)
By inspection, it is found that b — d (G )>1 for all graphs so
that the effect of a graph is damped by a power of . Graph 1
of Fig. 10 has the leading behavior, decreasing like 1/d.
There are many (an infinite number of) next-to-leading order
graphs (i.e. graphs 3, 5, 6, 14, 24, etc. of Fig. 10) which behave
as 1/d?. Thus as d— « the contribution of any given graph
gets smaller. The Hartree expansion is better when d is big-
ger. Explicit examination of several series also seems to ver-
ify this. It appears that results in higher dimensions become
more accurate.

Because of this, the hypercubic dimer model is exactly
solvable in the d— oo limit. Trivial algebra yields

2

Fd.dim(z)dim"d::c %lnd + %lnzz - % + W

(- 1/z)-é1:1- + (1/122 — 1)/{(82d )"*2d )

+ 0(1/d?). (5.9)

Equation (5.9) was obtained by blindly expanding the Har-
tree improved series in powers of 1/d. It is clear from Eq.
(5.9) than not only must 4y 1 but also dz» 1 so that z cannot
be too small. Equation (5.9) is one of the interesting results in
this section.

Since the Hartree approximation and graph 1 of Fig. 10
were the only inputs in Eq. (5.9), Eq. (5.9) will hold for any
uniform loose-packed lattice for which the vertex degree (co-
ordination number), g, is large. For hypercubic lattices
g = 2d. In fact the result holds for lattices not containing a
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triangle so that triangle graphs (graph 2 of Fig. 10) are ab-
sent. This triangle graph can potentially be of order (1/¢).
Because w ~ 1/g¢ these dimer models are exactly solvable in
the g— oo limit:

1 1 2

(22) — ‘2—+——W§

imer 1 q
r ?z) — —In-+ ( 4zq

g~=2 2 2
1)1 1 ( 1 )
P L 4
+ ( z )4q (4zg)'*q\ 12z
o0 (lz) (5.10)
Ul
For lattices with triangles Eq. (5.10) is valid to order {1/¢"/%):

. S 1
r ;j;)mer, lattice with triangles — __ln_q_

¢—wZz 2
1 1 2 1
—In@2z) — —+—— 0(—). 5.11
+2 n(2z) 2+(4zq)1,2+ . (5.11)

Both Egs. (5.10) and (5.11) are only valid if z¢g> 1 as well as
g> 1. It is interesting that dimer models are exactly solvable
in this limit. In the pure dimer limit, Eqgs. (5.10) and (5.11)
give rough approximations for the molecular freedom. A
comparison with exact and estimated freedoms is presented
in Table I for several models. The lattices are the one-dimen-
sional (1-d ), simple quadratic (sq), tetratrahedral (t), simple
cubic (sc), body-centered cubic (bee), planar triangular (pt),
and face-centered cubic (fcc) lattices. The latter two contain
triangles and the results are not expected to be as good as
lattices without triangles. The results are accurate to several
per cent, even though the g value is not that large.

Gaunt?' has calculated low temperature expansions for
several dimer models. These included both two- and three-
dimensional systems. The expansions were for the isotropic
case in which all z,’s are equal. The low temperature expan-
sions were computed for various lattices to these orders: the
simple quadratic lattice to 15 orders, the planar triangle lat-
tice to 10 orders, the tetrahedral lattice to 16 orders, the
simple cubic lattice to 12 orders, the body-centered cubic
lattice to 12 orders, and the face-centered cubic lattice to 8
orders. When expanded in powers of z the Hartree expansion
to order n is guaranteed to reproduce the low temperature
expansion to order n. Hence n orders of low temperature
expansion uniquely determine n orders of Hartree expansion
and Gaunt’s series can be used to obtain the Hartree series to
many orders. The Hartree series in the isotropic case has
been calculated this way for the above-mentioned lattices.
The results are

I"*Yw)
1
= ln(l v ) =20 + 0* +1l0® —4o* +13 10°

433 40° ~106 20" +273 jo® +1432 §° —2816 40"
+6197 50! +636020'2 —93974 40" —446 S0

+2667238 30'* + - (.12)
)= ln( 1 16@ ) —30 +1jo? —23j0* 492 °
—805 —1743 307 18202 J0° —14780°
196618 40'° + -, (5.13)

2829 J. Math. Phys., Vol. 21, No. 12, December 1980

I'w) = ln(1 __140) ) -2 + 0* +110® —5l0* +5%°
+21 Jw® —66 20" +186}0® +472 §0° ~2744 40'°
+4493 20" +19074 30"
—91614 Zw'* 4192537 o'
+952636 #4w'® —3910844 J0'® + -,

(5.14)

r sc( w)

( -
ln
1 6(0

—410° —2793w +5688 30® —12695 j»°
+10999 40'° 4543356 80’ —20674584w'? + -, (5.15)

) —3o +10? +20° ~11j0"* +68 i’

rbcc(w)
- 1n(l ls ) 4o 1207 +230° —150° +235 100"
—8w

—645 10° +1979 jo” +30390}0° —1893430°
+1370054 20'° +1393387 Zw'!

—355734160"2 + -, (5.16)
r(w) = 1n(1 12@ ) —60 +30* —40® —79%0*
+1192 40° —1023200° +48353 Joo”
+16681410s® + -, (5.17)

where w is defined in terms of z and the coordination num-
ber, q, by

_ =1+ +492)7Y
w—z( o ) (5.18)
or
z=w/(1 — qu)* (5.19)

The coordination numbers of the various lattices can be
found in Table I.

By taking z— oo and using the truncated series in Eqs.
(5.12)—(5.17) the molecular freedoms at close packing can be
calculated. These along with a comparison to other methods
are shown in Table I1. Rough error estimates are also includ-
ed. As expected, more accuracy is obtained for models with
larger ¢’s. As an indication of what is obtainable “by hand”
(that is, without the use of computers) sixth order computa-
tions are also shown. Even at this order molecular freedoms
are correct to 1% or 2% for lattices with small g and to less

TABLE I. Motecular freedoms at close-packing as computed in the 1/g
expansion for various lattices.

Exact
or
Modeli ¢ —;— estimate best estimate % error
1-d 2 .94 1 6%
sq 4 167 1.79 6.5%
t 4 1.67 1.70 2%
sc 6 240 2.45 2%
bee 8§ 313 3.19 2%
pt 6 221 2.36 6.5%
fcc 12 441 4.57 3.5%

Stuart Samuel 2829



TABLE I1. Molecular freedoms at close-packing as computed by the Hartree series with a comparison to other methods.

sq pt t sc bee fce
Exact 1.7916 2.3565 - e —
Bethe approxima-
tion 1.69 2.41 1.69 2.41 3.14 4.61
Nagle’s series
truncated 1.769 2.352 1.701 2.442 -— 4.564
Nagle’s series
extended by
Gaunt,
truncated 1.773 2.360 1.701 2.451 3.189 4.565
Gaunt’s Padé im-
proved 1.78 — 1.80 2.356 1.702 2.449 3.198 4.570
Hartree approxi-
mation 1.47 221 1.47 2.21 2.94 4.41
Hartree series at
sixth order 1.75 4+ 0.03 2.37+0.06 1.70 + 0.02 2.44 4 0.01 3.17 +0.01 4.56 +0.03
Hartree series,
truncated 1.776 1 0.009 2.347 + 0.015 1.700 + 0.003 2.449 + 0.005 3.187 + 0.003 4.574 + 0.004

than 1% for lattices with larger g. At maximum order results
are correct to within 0.1% for large g lattices and within %
for the low g lattices with the exception of the simple qua-
dratic lattice where the error persists at 1%.
The dimer density, p, normalized so that at close-pack-
ingp=1/g,is
=—z—
g dz
The quantity igp is the number of dimers per site, whereas p

is the number of dimers per bond. The entropy, S, and mo-
lecular freedom, ¢, are

= —plnz + /)T,
¢ = exp(gS). (5.21)

Tables I11, IV, and V show the numerical values of p and S as
a function of w/w,,,, [® is the Hartree expansion parameter

[Eq. (5.18)] and
wmax = l/q’

(5.20)

max

(5.22)

is the maximum physical value of w]. These numerical values
were computed from the truncated series in Egs. (5.12)-
(5.17). The subscripts on p and S in Tables II, IV, and V

indicate the orders at which the series were truncated.

Notice that lattices with the same coordination number
(Table III and Table IV) have almost identical entropies and
almost identical densities. Only at extremely high tempera-
tures do they begin to deviate for different models. Math-
ematically the reason for this is simple: Models have a uni-
versal (as far as g is concerned) Hartree expansion to order

w*:

o = ln( ! ) —lgw + igw* + (nonuniversal).
1 —gw

(5.23)

Because the Hartree series at second order is already a good
approximation models with the same ¢ have almost identical
properties. Furthermore in higher orders, they will have
many identical Feynman graphs. In fact for lattices without
triangles subgraphs, Eq. (5.23) is universal to third order

it =)o+

+ igo* + (nonuniversal).

(5.24)

Next, notice that  is a good approximation to the den-
sity, p. For the simple quadratic and tetrahedral lattices, for
the planar triangular, simple cubic, and body-centered cubic
lattices and for the face-centered cubic lattice, p and w never

TABLE III. The density, p, and the entropy, S, of the simple quadratic and tetrahedral dimer lattice models.

Simple Quadratic Lattice

Tetrahedral Lattice

= w Pis Sis Pis Sis
wmﬂx
0.1 0025 0.025534345332921949 4 (15)  0.116814864054067036 + (37)  0.02553353977813695063 + (60) 0.1168118264806264350 + (21)
0.2 0.050 0.05180380074377 + (41) 0.1949643466614 + (12) 0.051790983870680 4 (32) 0.194927214968692 + (84)
0.3 0.075 0.07838101424 + (14) 0.25349328917 4 (39) 0.078318571157 + (17) 0.253349894577 + (34)
04 0.100 0.1049369153 + (85) 0.295353081 + (12) 0.1047525671 + (13) 0.2950219984 + (19)
0.5 0.125 0.13122827 £ (19) 0.32135808 + (17) 0.130819262 + (37) 0.320810503 + (33)
0.6 0.150 0.1570755 + (22) 0.33132011 + (73) 0.15632504 + (52) 0.33064735 £ (16)
0.7 0.175 0.182330 1 (16) 0.3240767 + (45) 0.1811370 4 (42) 0.3235364 4 (13)
0.8 0.200 0.206800 + (73) 0.296955 + (74) 0.205148 + (23) 0.296918 + (23)
0.9 0.225 0.22998 4 (20} 0.24426 + (38) 0.228209 + (71) 0.24440 + (14)
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TABLE 1V. The density and entropy for the dimer models on the triangular and simple cubic lattices.

Planar triangular lattice

Simple cubic lattice

-t w Pio Sio Pz Si2
wmax
0.1 & 0.01689214299601 + (89) 0.0841945595015 + (36) 0.0169006865736503 + (31) 0.084231124247639 + (12)
0.2 % 0.03405266733 + (74) 0.1422176561 + (23) 0.034114158049 4 (10) 0.142428661957 + (32)
0.3 & 0.051266315 + (34) 0.187111775 4 (85) 0.0514487921 + (10) 0.1876342661 + (27)
0.4 & 0.06838822 + (49) 0.22104537 + (94) 0.068760241 + (27) 0.221940351 4 (51)
0.5 & 0.0853296 + (35) 0.2446703 + (49) 0.08594040 + (31) 0.24589635 + (42)
0.6 5 0.102041 + (16) 0.257883 4 (14) 0.1029054 +- (21) 0.25930907 + (66)
0.7 & 0.118500 + (54) 0.259825 + (17) 0.1195810 4- (93) 0.2612807 + (20)
0.8 & 0.13470 4 (13) 0.248409 + (39) 0.135880 + (29) 0.249809 + (13)
0.9 & 0.21841 4 (16) 0.151661 + (57) 0.220254 4 (63)

0.15069 + (20)

differ by more than about 5%, 3%, and 1%. The reason for
this is simple. Equation (5.20) implies that

p = nmineni, ), (5.25)
where x and x' are nearest neighbors. In the Hartree
approximation

p=2(1.1] ) ) =0. (5.26)

In other words, w is the Hartree approximation to the densi-
ty. From this point of view the Hartree series has a more
physical flavor: it is an expansion in a parameter which is
approximately the density.

Tables II, III, IV, and V have error estimates. The un-
certainty is in the last two figures, so that, for example, the sq
lattice at @ = 0.225 has p,5 = 0.22998 + 0.00020. These er-
rors are set to the contribution of the last order. Doing this
work only when the numerical coefficient of the maximum
power of @ is not unnaturally small. This turns our to be the
case for all the models considered. Since the Hartree series
seem to converge, this is a rough but reasonable measure of
the error. As a check, the exactly solvable one-dimensional
dimer model can be used. Its Hartree expansion to 16th or-
deris

Ly =n(1/(1 - 20) — 0 + {0* + ° — jo* — 1}o°
+ l§(06 + 2%7 _ 4‘%&)8 _ 7_;0)9 + 12%(0]0 + 22*5120)11

— 380" — 714" + 12240" + 2284
- 402116(016 + o

Table VI displays the approximated p,,, the exact p, the ap-
proximated S, and the exact S. The same error estimate
method was used. As can be seen, the exact results always
fall within the “error bar” region. In fact, estimated errors
are roughly five times actual errors. For the one-dimensional
model this is a conservative method of estimating errors.

Tables III, IV, and V show excellent accuracy. In 90%
of the physical region (as measured by w) the density and
entropy are at least computed t0 0.1% for all models. For the
bee and fec lattices the minimal accuracy is about five deci-
mal places. It is only for dense systems (i.e. 90% maximal
dimer density) that errors are even of the above stated size.
For example, at 10% maximal dimer density, results for the
six models are accurate to an estimated 17, 18, 11, 14, 14, and
11 decimal places. As expected at low dimer densities best
accuracy is achieved for those models for which the series
has been computed to the most orders whereas at high densi-
ties best accuracy occurs for models with the highest q.

The general dimer model is an unsolvable model; it is an
interacting fermionic field theory. No analytic or exact
mathematical expressions exist for the free energy, density,
entropy, etc. In this section a “physicist’s solution” has been

TABLE V. The density and entropy for the dimer models on the bee and fec lattices.

Body-centered cubic lattice
P2 Si2

Face-centered cubic lattice
Ps S

0.1 0.0126308078545463 + (13)
0.2 0.0254353696746 + (42)
0.3 0.03830861920 + (44)

0.4 0.051173247 + (11)

0.5 0.06397071 + (13)

0.6 0.07665304. + (75)

0.7 0.0891737 + (38)

0.8 0.101475 + (12)

0.9 0.113467 + (23)

0.0666064413803685 + (54)
0.113584413678 + (14)
0:1508592102 + (12)
0.180052915 + (24)
0.20157738 + (21)
0.21524997 + (92)
0.2203287 + (19)
0.2152042 + (20)

0.196182 + (19)

0.0083890254360 + (42)
0.01684367298 + (88)
0.025312649 + (18)
0.03376250 + (14)
0.04217243 + (67)
0.0505306 + (22)
0.0588309 1 (53)
0.067070 + (10)
0.075243 + (12)

0.047655678485 + (20)
0.0821056143 + (34)
0.110062846 + (59)
0.13266446 + (39)
0.1502187 + (15)
0.1626165 + (36)
0.1693450 + (60)
0.1692448 + (59)
0.1595724 + (42)
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TABLE VI. A comparison of the exact density and entropy to the Hartree estimated density and entropy for the one-dimensional dimer model.

t w Pis Pexact slé Sexacl
wmux
0.1 0.05 0.0522332644055048897 + (81) 0.0522332644055048890 0.202159043168350649 + (23) 0.202159043168350647
0.2 0.10 0.10776772972370 + (43) 0.10776772972363 0.32877414039132 + (83) 0.32877414039119
03 0.15 0.16476080022 + (23) 0.16476080017 0.41476557223 + (30) 0.41476557217
0.4 0.20 0.221456997 + (18) 0.221456993 0.464874051 + (13) 0.464874048
0.5 0.25 0.27639331 + (50) 0.27639320 0.481211845 4 (94) 0.481211825
0.6 0.30 0.3285028 + (70) 0.3285014 0.4652904 + (25) 0.4652909
0.7 0.35 0.377125 + (58) 0.377115 0.417789 4 (58) 0.417798
0.8 0.40 0.42195 + (31) 0.42191 0.33720 & (53) 0.33726
0.9 0.45 0.46291 + (97) 0.46284 0.2158 1+ (25) 0.2159

obtained, that is, expressions accurate to four or five decimal
places in the entire physical region. This is a significant
achievement. In effect, the Hartree series has “solved” an
important class of unsolvable models.

VI. CONCLUSION

For the dimer model the Hartree approximation has the
following physical interpretation. Consider a particular
dimer configuration. Erase the bonds. What remains is a
collection of monomers. It is reasonable that a dimer system
can be approximated by a monomer one. As seen from Eq.
(4.6) the Hartree approximation is an attempt to find a good
monomer approximation. This, in fact, is the basis for many
approximation schemes: to find a quadratic action (or a sotv-
able system) which approximates an unsolvable model. In
general, it requires ingenuity to find the right perturbing
model. The relevant degrees of freedom must be extracted.
But once found, a few correction orders yields the physics of
an unsolved model. This is what has been done with the
dimer model.

These papers have demonstrated the power of anticom-
muting variables. Models, which are solvable, are trivially
solved. For models which are unsolvable there are powerful
approximation methods. I have chosen simple but interest-
ing models to exemplify the techniques. However, the anti-
commuting variable method is applicable to a wide range of
systems. Whenever there is a constraint that objects cannot
overlap (be it polygons, polymers, or surfaces) the anticom-
muting variables will be useful.

Although new results have been obtained, much more
can be done: the Ising model in three dimensions has been
expressed in anticommuting variable form and is thus ame-
nable to new approximation schemes. Results for general
ferroelectric vertex models and Ising type models will be
forthcoming.*%7-® Additional results for dimer and polymer
systems will also be published.* This new research area is
still in its incipience. Many more models can be treated.
Many more techniques can be developed. The most impor-
tant progress can be made in the area of critical phenom-
enon. What is needed is an adaptation of renormalization
group methods. In short, this body of work is a small piece of
what can be done with anticommuting variables.
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A classical geometrical interpretation of the ghosts fields is presented. BRS rules follow from the
Cartan-Maurer fibration theorem. The statistics of ghosts are explained and the effective
quantum Lagrangian is derived without factorizing the volume of the gauge group. Topologically

nontrivial ghost configurations are defined.

1. INTRODUCTION

Because of gauge invariance, the classical Yang-Mills
Lagrangian does not define a propagator for the gauge field."
Using the path integral formulation of quantum field theory,
Faddeev and Popov? attributed this effect to the overcount-
ing of gauge equivalent configurations. By fixing the gauge,
Feynman diagrams are generated but unitarity is lost® unless
additional quantum fields are introduced: the ghost parti-
cles. However, the effective Lagrangian still supports a glo-
bal invariance of a new kind, the nilpotent BRS transforma-
tion,* which by itself implies the renormalizability of the
theory.?® The geometrical meaning of this symmetry has
already been partly explained’-® but the picture is here
completed.

Yang-Mills gauge theories are naturally described as
geometrical theories over a principal bundle % . Now, in Sec.
3, it is shown that the independent mathematical field of the
theory, the connection 1 form o, actually describes at the
same time both the Yang—Mills gauge particle and the Fad-
deev-Popov ghost particle. With respect to a section, i.e., a
gauge being chosen, the connection actually splits into the
sum of two components: the gauge field ¢ which is horizon-
tal and the ghost field y which is normal to the section. By
assumption, the ghost does not contribute to the description
of motions tangent to the section. The exterior differential
over ¥ of afunction also splits, and its component normal to
the section is recognized as the BRS operator. Further, the
Cartan—Maurer structural theorem, which states the com-
patibility of the connection with the fibration, implies the
BRS transformation rules of the gauge and ghost fields.
Moreover, the ghost does not contribute to the curvature 2
form (field strength) and may be thus eliminated from the
description of the classical theory.

Section 4 is devoted to the study of gauge transforma-
tions. The identification of the infinitesimal active gauge
transformations, generated by moving the section, with the
passive gauge transformations, generated by relabeling the
coordinates in the fiber, is shown possible only if the matter
fields satisfy their own BRS transformation law as a con-
straint. Under those ordinary transformations the ghost is
invariant. Another kind of gauge transformation may how-
ever be defined such that the ghost field becomes no longer
trivial. By relaxing slightly the axiom of local triviality,
modifications of the topology of the fiber bundle are then
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allowed in a way that seems adapted to the construction of
the quantum theory and the study of soliton configurations.
In Sec. 5, the construction of the effective Lagrangian
by using the generating functional is revisited. No infinite
constant has to be extracted, as the differential of the volume
element of the group is actually lifted into the effective La-
grangian in the form of the ghost. The nongeometric trans-
formation of the antighost, a Lagrange multiplier, is not re-
covered. However, the proof of renormalizability is not
altered by the noninvariance of the effective Lagrangian, as
one usually cancels the antighost variation via its equation of
motion. On the contrary, the renormalized BRS operator is
shown, as geometry suggests, not to act on the antighost.
Despite its formal character, this study may have var-
ious applications. At the local level, the statistics of the ghost
are simply those of a classical 1 form; and the relation of the
BRS operator with gauge transformations is made explicit.
At the classical global level, nontrivial topologies of the fiber
bundle may be studied by including nontrivial configura-
tions of the ghost field, or by working directly with the gauge

Fiber

Section

> $ o
"
O Ox

FIG. 1. The gho.. and the gauge field: The single lines represent a local
coordinate system of a principal fiber bundle of base space-time. The double
lines are 1 forms. The connection of the principal bundle o is assumed to be
vertical. Its contravariant components @ and y are recognized, respectively,
as the Yang—Mills gauge field and the Faddeev—Popov ghost form.
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independent globally defined connection @ whose interpre-
tation as the sum of the ghost and gauge field is provided
here, thus overcoming the obstruction to the use of a global
section. Finally, the formulation of Yang-Mills theory over
the fiber bundle itself and the precise understanding of the
geometrical role of the ghost field provides a link towards the
new promising approach to gravity: the soft group
manifold.’

2. THE PRINCIPAL FIBER BUNDLE

A principal fiber bundle (¥, %, I, 9, -)'*'" is the true
arena of a pure Yang-Mills theory.'? The fiber bundle %
and base space & are ¥ ~ manifolds. The projection I is a
% = mapping of ¥ onto & . The point - denotes the action of
the (graded) Lie group & in % . The motions are assumed to
preserve the fiber:

nm: -4,

G FXIGHF,

Vue¥, Vac¥, I (u-a) = I (u).
The motions represent the group:

Yue¥, Va,be¥, (u-a)b = u-(ab).

The last multiplication is the group operation. Further, the
space is locally trivial, i.e., any point x of the base space
(space-time) possesses a neighborhood ¥, such that an iso-
morphism ¢ exists between /7 '(¥, ) and the direct product
V. X %:

'V )-V. x99,

u— (1T (), (W),

r(u-a) = r(u)a.

The relevance of this axiom in physics will be further
analyzed in Sec. 4. The point operation induces a map ~
from the generators, y of the gauge group into Killing vector
fields  which span the space tangent to the fibers. The point
being a representation of &, ~ is an isomorphism of Lie
algebras, from the gauge algebra & onto the Killing algebra
structured by the Poisson bracket:

~ A >F,

Y-Y

(VY] = [FF Tes.

These Killing vector fields are called vertical. However,
no horizontal vectors are yet specified. Rather than to give a
metricon ¥ (Kaluza—Klein theory), it is weaker to define an
o/ -valued vertical 1 form w: the connection (Yang-Mills
theory). © maps vectors of ¥, on «:

w:F A,

v—vde = o@) = o' ()Y,.

The symbol 1 denotes the contraction of vectors with
forms. The components o' are just ordinary 1 forms and are
defined with respect to a basis y, of .. The kernel of  then
defines a subspace H of ¥ called horizontal:

heHC .5  Sw(h) =0.

The 2 form of curvature is defined as
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1 =do + }[ew].

To be meaningful, this structure must be compatible with the
vertical motions, and it is assumed that the restriction of the
connection to the fiber is the pull back of the left invariant 1
forms of the gauge group:

VYeod, Yo =Y.

Moreover, the Lie derivative of the connection with re-
spect to vertical vector fields is constrained by the equivar-
iance condition

Lyo=—[Ywl=+[0)]

We use the sign convention that, when contracting a p
form with vectors, one must contract from the inside to get a
plus sign (a convention adapted to supergroups):

V' lvdo Ao’ = o@)e’'(V) — o@)eo'(v),

1¥1[w,0) = [Y0),

[w.0] =[0'Y,&Y]= —dANSEY,.

The Lie derivative is a natural extension of the ordinary
derivation; identical to the former when acting on functions,
it is defined as the Poisson bracket when acting on vector
fields:

Yove#,, L =[v]ps.

For Killing vector fields we get
LxY =X ]es = [X,Y].

The Lie derivative obeys the Liebnitz rule
VpeF*.Z ,(v'1p) = (L ) 1p +v'1.ZL p.

For Killing vector fields we get

Lx(Ydo)=[X,Y]do + Y1.L 0

= [XY]+(¥X] =0

The left hand side of this equation, being the derivative
of a constant, vanishes and the two axioms are indeed com-
patible. Further, Lie derivation, exterior differentiation, and
contraction are related:

dwlp)=2L,p—vddp,
yielding

d(Yle)= %30 — ¥J do.

The left hand side again vanished; thus,

Yldo= — [Yo]= — %7.][(0,0)].

Accordingly, the 2 form of curvature {2 is purely
horizontal:

Yie=o.

This very important theorem is known as the Cartan—
Maurer structural condition. Over a Lie group, the curva-
ture constructed out of the left invariant 1 forms identically
vanishes, but over a fiber bundle, £2 is horizontal because the

connection is only subject to the equivariance condition

along each fiber, the fibers over different points being
independent.

Because 1 forms anticommute, the connection fulfils
the Jacobi identity in the form

[(0,[&),(0]] =0.
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The Bianchi identity follows:
DN =d02 + [w2]=0.

The efficiency of the notations of exterior calculus is
apparent in the simple aspect of these two identities.

3. PHYSICAL INTERPRETATION

In Yang-Mills theory, the base space & is identified
with space time and & is of course the gauge group. A gauge
choice is a one to one map 3, called a section, of # into % :

SB—F,
Vxe# (X (x)) = x.

No global section exists if the topology of .% is nontri-
vial (monopoles). However, local triviality ensures the exis-
tence of a local section 3, and it is possible to choose a local
coordinate system in .%¥ adapted to the section as follows:
Let ' be coordinates in the fiber and x* be the lift in 3 of the
coordinates of the base space. Thus, the vector ay,. is tangent
to the fiber and vertical, whereas the vector d,,. is tangent to
the section but neither vertical nor horizontal. The 1 forms
dy', dx* span ¥ * and one may decompose the connection1
form on this cobasis:

o=y dy+ ¢, dx".
The vertical connection form o splits into two compo-

nents that will be later identified as the gauge and the ghost
field of the quantum field theory. The gauge field

P =g, dx*
=d,lg=0
may be called horizontal, because all the vertical Killing vec-
tors belong to its kernel. The ghost field

X =x:ay
=d.dy =0

may be called normal to 3 as the vectors tangent to 2 belong
to its kernel. It is recalled that » was assumed to be vertical,
defining the horizonal vectors as those belonging to its ker-
nel. The decomposition of w is presented in the picture. In
the same manner, the exterior differential df of a O form f
may be written as

df =sf+ bf,

where 5 and b are defined as
sf=4a,fdy, bf=3,. fdx"

The fundamental rule of cohomology then implies
b>=sb+bs=5*=0.

5, here defined as the exterior differential normal to the
section, is nilpotent and will be identified with the BRS oper-
ator and the letter s stands for the name of Stora, whereas b is
a horizontal operator and the letter b stands for base space or
for the name of Becchi. (The author is sorry for A. Rouet.) b
can also be viewed as the pullback of d onto the base space by
the section 3

> 1'(d_f) =2 *(bf))
I*sf)=0.
On the other hand, choosing the local trivialization 7
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which maps the section 2 onto the identity of the group
VxeZ, r(x)=1g,

The ghost form y appears as the pull back onto .% * of the

Cartan left invariant form of the Lie group.

With respect to the section 2, the 2 form of curvature
breaks into three pieces:

2 =15, dy,\ dy/ + ¥,dy), dx* + 1, dx*, dx".

£ is evaluated by expanding 2 in terms of its compo-
nents and picking the terms with two dy:

E=sy +ilxxl
¥ and @ are the terms indy , dx and dx, dx in the
same expansion:

V=sp+by+ilxel+IlexDd
=s5@ + by + [p,x] = s + By,

P =bp+ilop]
The evaluation of ¥ uses the fact that a skew Lie bracket
acting on anticommuting 1 forms defines a symmetric oper-
ation. By the Cartan—-Maurer structural theorem, which fol-
lows from the equivariance condition, curvature is purely
horizontal. Thus,

E=¥=0.
The curvature is completely specified once ¢ and by are

known over a section . y is an auxiliary field which satisfies
the constraints

E=SX+5[X1X]=0,
V=sp+ By=0.

The equations may be recognized as the Becchi-Rouet—
Stora transformations of the quantum field theory, justifying
the identification of y as the Faddeev—Popov ghost field.
Accordingly, the ghost field has a classical meaning but may
be excluded from local problems. It must not be considered
as a genuine quantum entity. Its so-called wrong statistics
are now explained. Customarily, one works with the compo-
nents @, of @ but does not decompose the 1 form y which
therefore anticommutes with itself and with the exterior dif-
ferentials b and s. The ghost is not a Fermion; it is a Bose 1
form and commutes with any Fermi function. By example,
in quantum supergravity, the ghost for the local translations
commutes with the spin 3/2 gauge field of supersymmetry.
The fields of this model are thus doubly graded'® by ghost
and Fermi number. The associated Z X Z* sign rules for
closed loops are necessary for proving unitarity.

4. GAUGE TRANSFORMATIONS

According to our definitions, an infinitesimal gauge
transformation of parameter 4 ‘(x*) is induced by moving
from one section X to a neighboring section 2 ’. In the coordi-
nates adapted to 2, the equations of £ and X'’ are

Z:y' =0,

Ty = —A0H).

The x* coordinates, lifted from the base, are used both
inX and 2, and the y' may be chosen such that over 2, their
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tangent vectors dy’ are the Killing vectors j,. The parameters
A ' are defined only over the section 3 but we may extend
them in an arbitrary way as fields over the whole of 7 :

A=Ay,

A7 0) = A4 '(x#).

Using the linear map ~ from the Lie algebra .« onto
the Killing vector fields

we may use A ' to define a vertical vector field A as
A= 2"y Fixp).

The connection over X ' is deduced from its value over
by adding the Lie derivative:

Lrw=Aldo+d(Alw)
= — [Adow] +dA
=dA + [w,4 ] = DA.

The component in dx(dy) of this equation is the gauge

transformation law of the gauge (ghost) field

S,p=BA=bA+ [@pA],

S,x=8SA=sA+[yA].

Moving the section Z, an active transformation, is in-
deed identical to relabeling the coordinates y* in the fiber, a
passive transformation. When the condition SA = 0 is met,

the ghost which is the pullback of the left invariant Cartan
form over the group is indeed invariant, and the gauge trans-
formation parametrized by A corresponds to a passive left
translation in the group. More generally, if a matter field
belonging to any representation with matrices 7,4 of the
gauge group is defined by a set f # of real valued functions
over the principal bundle itself, the active and passive gauge
transformations will coincide only if these functions satisfy
the BRS constraint

Sf4=0,

osf =~y fP

This usual concept of a gauge transformation may be
generalized. The gauge parameter A itself does not necessar-
ily fulfill the above condition. When SA does not vanish, we
shall speak of a ghost transformation. y remains a pure
gauge field and the Cartan-Maurer-Becchi-Rouet-Stora
conditions are not affected; however, the ghost is no longer
invariant. Restricting our attention to a single fiber, we see
that this active transformation can be compensated for by a
general transformation of the group coordinates y. The
ghost plays along the fiber the role of the vielbein of general
relativity.

The restriction of a ghost transformation to a single
fiber is a map from the gauge group onto itself. If this map is
not diffecomorphic to the identity, the ghost acquires a topo-
logical charge and is no longer the global pullback of the
group left invariant forms, but a trivialization isomorphism
still holds locally from a neighborhood of any point in # to
the product of a neighborhood in % of the projection of that
point by a neighborhood of the identity in &

Yue¥, 3t V':‘—»V';f(u) X VZ,
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This local version of the trivialization axiom seems, on
the other hand, very well adapted to the construction of a
quantum theory in which the local Maurer—Cartan BRS
constraint is easily imposed, whereas it is very difficult to
include the global topological condition on the ghost re-
quired by the usual axiom. (The same difficulty is met in Ref.
9 in which the dynamics impose spontaneous fibration of the
group manifold, but only locally.) As a result, even if a global
section X exists, the fiber bundle endowed with this restrict-
ed structure does not necessarily have the topology of the
direct product I X & and the quantum theory may include
in a natural way a number of soliton configurations.**

In the framework of conventional fiber bundles, the
Gribov-Singer problem may also be overcome by working
directly with the connection w, the sum of the ghost and
gauge field, which is gauge independent and globally defined
over 7.

5. THE FADDEEV-POPOV EFFECTIVE LAGRANGIAN

It remains to be shown that our definition of the ghost
field coincides with the usual one.? The Lagrangian in Yang—
Mills theory is defined in terms of the curvature 2 form as

L =0N'N20,.
The trace is with respect to the Killing metric of the
gauge group and the asterisk denotes the Hodge adjoint of

the 2 form of curvature with respect to a given metric in the
Base space:

N =102"° dx*Adx”,

W=, e, dxP \ dx°.

Whenever the BRS conditions are satisfied, the Lagran-
gian is horizontal, does not depend on the ghost field, and is
gauge invariant. By patching local sections it is thus possible
to integrate .% over the base space & . The quantum theory
is then constructed by summing over all configurations of

the connection satisfying the BRS constraint and the gener-
ating functional of the Green’s functions is defined as

W= f I Dotep)SBRS)e 7

However, as noted by Faddeev and Popov, gauge equiv-
alent configurations must not be overcounted. Thus, it is
supposed that, at least locally, a set of constraints I (g )
exists which is satisfied only once in every gauge equivalence
class (ghost transformations are not involved here since 3
does not depend on y ):

Tip)=0.

As one integrates over all possible w, one also integrates
along the gauge classes. This is equivalent, however, to inte-
grating over a moving section with fixed w and this addition-

al contribution is canceled by using the Dirac measure asso-
ciated with the constraints:

J'H8(2’)/\d2‘= 1.

The determinant of the constraints is hidden in the exte-
rior product. 3 ' = 0 defines a section X in % . 43 'is normal
to this section and may be expressed in the adapted coordi-
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nates as s3 %
d¥i|; =sX|5.

At this stage, our analysis will differ from the original
work of Faddeev and Popov. The volume of the fiber will not
be factorized out of the functional integral but the Dirac
function and 1 form s3 * will be lifted into the Lagrangian by
use of two Lagrange multipliers: a Bose field o; and a Grass-
man multiplier 7, anticommuting with s:

6= J’ [ doe™ >,
a ~ insZ’ é j;ﬂ e—in,sl".
n=0 l

sTi=i—e
M,

This last expression is well defined despite the noninte-
grated differential form appearing in the exponent as it may
always be linearized by performing the Berezin integration
over 7,-77; behaves as a vertical vector but is not a vector
because 7,53 ' must not be considered as a scalar. According
to Bernshtein and Leites,'” it is an integral form. The effec-
tive functional integral may now be written as

W= f T2 'm0t +1Lx)

—iff+a;£’+17,s£‘

X&8(sp!, — B,x)e

The last term in the Lagrangian may be transformed
using the BRS structural condition
62 @ i= — 62_ij.

5p’ 5p’

The Faddeev-Popov effective Lagrangian has thus
been exactly recovered. Because 77 and y anticommute, a
minus sign must, in the perturbation expansion, be associat-
ed to each closed ghost antighost loop. In the usual ap-
proach?, an additional integration over the ghost variables
together with an integration over the volume of the group are
generated. However, these 2 corrections cancel one another
because the volume element of the fiber is simply the exterior
products of the ghost forms,

J[[ [dyldc = J H cdc’ = 1.

The exterior differential of the Lagrange multipliers
naturally vanishes; thus,

sy = —ilvxl, s¢= — By,
SO, =SN; = 0, Sgeﬂ- = 0’,»S2 i.

s3i=

In this approach the effective Lagrangian is not BRS
invariant because we have not recovered the nongeometric
variation of the antighost. The study of the renormalizability
of the theory is however not affected. Indeed the BRS-Ward
identity must usually be completed by the equation of mo-
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tion of the antighost precisely in order to compensate for its
nongeometrical contribution to the former.

Moreover, a detailed analysis'® shows that the renor-
malized BRS operator follows the above prescriptions and
does not transform the antighost.

6. CONCLUSION

Differential geometry has provided us with a better un-
derstanding of the nature of the quantum gauge theories. In
Sec. 3, the Faddeev—Popov ghost has been reinterpreted as
the component of the connection 1 form normal to the sec-
tion in the principal fiber bundle, and the BRS operator as
the corresponding part of the exterior differential. The BRS
transformation rules of the ghost and gauge field then follow
from the Cartan~Maurer structural theorem which states
the existence of a fibration. Under ordinary gauge transfor-
mations, the ghost is shown in Sec. 4 to be invariant, but a
more general type of transformation is defined which is re-
lated to solitons. In Sec. 5, the effective Lagrangian with
ghosts and gauge fixing term is obtained without factorizing
an infinite constant out of the generating functional. In this
picture of the Lagrangian is not BRS invariant, but this does
not spoil the discussion of renormalizability in which one
usually uses the equation of motion of the antighost to cancel
its nongeometric variation. This presentation should find ap-
plications in the study of solitons and the group manifold
approach to quantum gravity.
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Gauge symmetry and its breakdown: The example of a BCS superconductor
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The mathematical structure of an infinitely extended BCS super-conductor is re-examined in the
light of the theory of bundle representations. The role of the homotopy group in the BCS model is
clarified. The precise characterization of the constant gauge transformation in terms of a principal
fiber bundle (with discrete fiber and group} is pointed out.

In the limit of infinite volume, the BCS theory of super-
conductivity' provides an exactly soluble’ model wherein
the phenomenon of spontaneous symmetry breakdown oc-
curs explicitly; the symmetry that gets broken being the
gauge invariance.® The concomitant degeneracy of the
ground state is such that it can be labeled either (1) by a
continuous parameter a, 0 <@ < 27 or (2) by a discrete inte-
ger-valued parameter n, n =0, + 1, + 2.... The particle
number (physically, the number of Cooper pairs) is unsharp
in states corresponding to the first way of labeling the
ground state and is sharp in states that correspond to the
second way. The representation of the algebra generated by
the (smeared) fields is irreducible in the unsharp states and is
reducible in the sharp states. These facts were established in
a classic analysis of the BCS model performed by Haag* in
1962.

Recent developments®~’ in the theory of bundle repre-
sentations have provided us with an elegant technique
through which to describe the phenomenon of spontaneous
breakdown of a continuous symmetry. It is well known that
when spontaneous breakdown occurs, the symmetry oper-
ation cannot be implemented via (continuous) unitary opera-
tors in a Hilbert space.® In the Araki-Haag framework it
means that the symmetry is locally, but not globally, unitari-
ly implementable. The method of bundle representations
goes a step further and gives us a precise prescription for
globally implementing the broken symmetry operations®:
the latter are implemented as bundle maps on a suitably con-
structed Hilbert bundle (a fiber bundle whose fiber is a Hil-
bert space) based on an appropriately chosen homogeneous
space. This method was developed by Borchers and Sen® and
by Sen® originally for the purpose of describing relativity
groups in an infinite medium, where the boost operations
*“get broken”. Later the method was applied to the breaking
of internal symmetries.” In view of the foregoing develop-
merts it seems worthwhile to re-examine the BCS model in
the framework of bundle representations. In the process, ad-
ditional insight is gained on known results whose intuitive
content becomes easily visualizable, and the general features
of gauge symmetry breaking begin to emerge. Specifically,
we prove the following results:

(1) The space of the states of unsharp particle number is
a Hilbert bundle based on the circle S '. Gauge transforma-
tions are implemented on the bundle space via bundle maps.

(2) The Hilbert space of states with sharp particle num-
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ber (which may also be viewed as Hilbert bundle based on
the discrete space of integers) provides a unitary representa-
tion of the homotopy group 7,(S ")—the fundamental group
of the circle. The “topological quantum number” associated
with 7,(S ') provides a superselection rule, whose existence
accounts for the reducibility of the representation of the al-
gebra generated by the smeared fields.

(3) The Hilbert space of states with sharp particle num-
ber is related to the bundle space of states with unsharp num-
ber via the standard mathematical procedure of forming di-
rect integrals, in the sense of von Neumann.'®

(4) The origin of the homotopy group is traced to the
mathematical structure of (constant) gauge transforma-
tions. Precisely, this structure is that of a principal fiber bun-
dle based on the circle $' ' and with a structure group 7,(S *).

At the risk of repetition, we wish to recall some basic
notations. The field ¥, (x)(¥*(x)) destroys (creates) an elec-
tron of spin r (r = 1,2) at the spatial point x. The anticommu-
tation relations

{¥,(x),¥,(x)} =0, M
{'pr(x)"l':(xl)] = 5,,5(): - xl)9 (la)
together with the form
HV) = + [ 416wt + s’ +2)
X, (xVW(z,2") dx dx' dz dz’ 2)

for the interaction Hamiltonian defines the model. The func-
tion v(z,2") characterizes the interaction. All quantities are
defined at one instant of time, taken as ¢ = 0. The limit
V— o of infinite volume is taken at the very beginning. Let
¥(f), ¥*(f)denote the weighted average of #(x), ¥*(x) with
respect to square integrable functions f(x) of position. Let .S
denote the algebra generated by ¥(f), ¢*(f) [for all such
f(x)] and let R be the Von Neumann algbera generated by S.
So much for notation.
The presence of a superconducting phase is heralded by

the two-point correlation function

$.(2) = (a|$(x)¢(0)|a)
= explia)gy(2), ©))
where ¢(z) is a real function not identically zero, and |a) the
ground state. The structure of the corresponding state space,
according to Haag,* is this: for each value of a, there is a
separable Hilbert space H,,; all H,,’s are exact copies of each
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other and thus of some H; linear combinations and inner
products are not defined between states that sit over distinct
values of a. It is evident that these properties define a Hilbert
bundle based on the circle (0<a < 27) and with fiber H (H,,
is the fiber over ). In fact, it is a product bundle (equivalent,
in the group of the bundle, to a product bundie). Let B denote
the bundle space. An element beB can be written as

b = (a,¢), where ¢cH. Under a gauge transformation, the '

field behave as

Y-y expliB]; ¢*—y* exp[ — iB] C))
and Eq. (1) is unchanged. Thus {4) is an automorphism of
algebra R. The pair (8,a), acR, is an example of the general
object (G,4 }—A is some algebra and G a group of automor-
phism of A—whose bundle representations have been con-
structed elsewhere,'" using a cocycle technique. For the pre-
sent case, the general bundle representation formula of Ref.
11 reads

Ba)a.$) = (@ +2B, [Dr_4(@)]é), &)

where 74(a) is the gauge transform of @ and D is a symmetric
representation of R (the concrete c*-algebra). Equation (5)
shows that gauge transformation is implemented on B as a
bundle map. The bundle map acts as a left translation on the
base space and acts on the fiber through the cocycle. It now
follows rapidly that the (above) bundle maps falls into ho-
motopy classes; the associated group being the fundamental
group m,(S ") of the circle.!? The significance of the homo-
topy group becomes more transparent on the states of sharp
particle number.

The states of sharp particle number are those for which
the expectation value of every gauge-variant quantity van-
ishes and the transformations (4) reduces to the identity map
(on every physical observable). Thus the gauge transforma-
tion (4) is implemented unitarily (although trivially!) on
these states. Let K denote the space of these states. We thus
expect the passage from the bundle space B to the space K to
mimic the standard procedure of forming direct integrals,
which is used in the theory of induced representations'* of
locally compact groups since the inducing construction does
just that i.e., provides a means of constructing unitary repre-
sentations from bundle representations. Of course, here we
are not representing a group but a more general object (G4 ),
but that does not matter. Let beB, b = (a,¢ ) as before. Then
(a,¢ )¢, defines a cross-section of the Hilbert bundle. Let
(¢.,0.) = ($,4), denote the norm in H,,. Define now a new
norm [ ] by the rule

661= [ b4 ‘j—“, ©)
¥ia

where da/2m is the Haar measure on the circle. It is now a
well-known fact'? that with respect to the above [ ], the ¢ ’s
constitute a linear space equipped with the polarization iden-
tity, and hence with an inner product, and is complete in the
norm; thus it is a Hilbert space. Let K denote this space. Let
|42 ) be a cyclic state (ground state) of K. From (6) we
compute

@@= [ (ajo) 22 1. @
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Thus |2 ) is a normalized state. An inner product of two
vectors in K is related to that in H, again by an integral of the
form (6). This implies that

(2[4 O)2) = f " (el O)a) da

= ¢o(2) J; " explia] =0. ®

Note that Eq. (3) has been used at the second step of the
above derivation. It is now a simple matter to prove that

(2 [¢*x, ) *(x, ) p1) ¥y )2} =0, (9)
whenever m #n, since any such expectation value as avove
can be decomposed* into sums of products of the basic two
point functions and ({2 |,(z)¢,(0)|£2 ) will appear as a factor
in every term in the summation. As for quantities for which
m = n, Eq. (6) gives
(2 |y ) g* o, ) o) ) 12)

= (a|*(x,)p*x, )P 1)y )l) (10)
since the quantity is independent of a (gauge invariant).
Equations (9) and (10) are the defining relations* for the space
K. Thus we have proved that K = K and hence X is obtained
from B via the direct integral (6).

The homotopy group appears in a different avatar in the
space K. Let Ube the generator of 7,(S '). Then the following
statements are entirely obvious: I) U commutes with S and
thus with every element of R, II) U does not annihilate |12 ),
I1I) the group (S '} is unitarily implemented on K. We thus
have the string of ground states

12,,) =U"|2), n=0, £1, £2-- (11)

obtained by applying the elements of the homotopy group to
|£2 ). All these are degenerate since U commutes with the
Hamiltonian (2). Moreover, {£2,, ) must be orthogonal to
|£2,,, ) if m=n, since this is the statement of the superselec-
tion rule associated with the conservation of the “topological
quantum number” arising from the homotopy group. The
space K contains the string of Hilbert spaces H,,, with H,,
arising from |12, ). Thus X consists of the collection of all
coherent sectors associated with our superselection rule. In
other words, the representation of the algebra R on K must
be reducible. To conclude the task of showing the connection
with Haag’s treatment, we finally write down the explicit
form of U, which is

U=¢5 ' im < [ttt + e (12

The physical meaning of U and thus of the topological quan-
tum number # is now quite clear. One remark: we are free to
look upon the Hilbert space K as a Hilbert bundle based on
the discrete space Z of integers (Z is equipped with the dis-
crete topology). We note, in the passing, that the degeneracy
structure of the ground states in X is very similar to that of
the vacua in Yang-Mills theories.'* In fact, they are math-
ematically identical [the groups (S ') and 75(S ?) are iso-
morphic]. This fact seems to have gone unappreciated in the
literature.'*

We ask: what general features of gauge transformation
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emerge from the foregoing analysis of the BCS model? The
answer is contained in the following two remarks.

A) Gauge transformation is a very special kind of a
“symmetry”, in that, it is a nontrivial automorphism only of
the algebra of field operators [e.g., of Eq. (1)] but not of the
algebra of observables (identity map for the latter). This
means that we have at our disposal two distinct but equiv-
alent ways of describing the situation. If our states are con-
structed via the expectation values of physical observables,
then the symmetry is there but is trivial. We can begin to talk
about the symmetry nontrivially, only when our states are so
constructed that they correspond to nonvanishing expecta-
tion values of not only physical observables but also of un-
physical, gauge-variant quantities. In the latter event, gauge
symmetry, of necessity, is broken. Thus the breakdown of
gauge symmetry is a concept which is dependent on the
choice of language. However, all is not lost, since the mem-
ory of symmetry breakdown persists in the form of the ho-
motopy group. This should be a general feature of all theor-
ies, including nonabelian (constant) gauge theories.

B) The gauge transformation (4) is a covering map p:
E 'S 'fromtherealline (£ ") tothecircle, given explicitly as

C = explia}, (13)

where a ranges over the reals and Cis on the unit circle. Now
it is a standard mathematical result that a covering map ad-
mits a bundle structure with a discrete fiber.' In fact, the
bundle structure corresponding to (13) is a principal fiber
bundle whose base space is S ' and with fiber and the group
7(S"); E ' is the bundle space. Thus the bundleis [E’, p, S !,
7,(S Y, 7,(S ). If we forget about the bundle structure and
look only at the base space [asa U (1) group], we are bound to
lose information. In problems where the homotopy group
plays a role, this loss of information is not desirable.

After explaining the principal fiber bundle character-
ization of gauge transformations of the second kind. Wu and
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Yang'® remarked, “all gauge fields are thus based on geome-
try”. Our analysis shows that the same is true for a gauge
transformation of the first kind.
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The result that a pseudovector can be associated with a real third order skew-symmetric matrix
has been used for establishing some properties of the proper vectors of real third order matrices. It
turns out that the pseudovector associated with the skew-symmetric part of such matrices
characterizes some interesting properties of proper vectors, such as the question of their

orthogonality.

INTRODUCTION

The purpose of this paper is to establish some properties
of proper vectors of real square matrices of order three, for
the case when all the three proper values are real. This work
is motivated by the problem of the analysis of stress, wherein
the real proper values and proper vectors of the transpose of
the stress matrix are, respectively, the principal stresses and
the principal directions of stress.’ In the general polar case in
which one or more of internal spin, couple stresses or body
moments exist, the stress matrix is not symmetric.

It is well known that all the proper values of a real sym-
metric matrix are real and that there exists at least one set of
mutually orthogonal proper vectors. When the proper val-
ues are distinct, the corresponding proper vectors are mutu-
ally orthogonal: However, in general, the proper values and
proper vectors of a real matrix are complex. In this paper
only real proper values and real proper vectors are
considered.

Let M be a real square matrix of order three. The sym-
metric part M %, the skew-symmetric part M*, and the de-
viatoric part D of M, are then defined by M ¥ = (M + M7),
M* =M — M7") and D = M — {(trM)I. The pseudo vec-
tor, m , associated with the skew-symmetric matrix, M, is
defined by

0 my —m, m,
MA = — My 0 m, , My = 1m,
m, —m, 0 ms

and, for all vectors, n has the property that
M“n=nXm,, 0))

where nXm, is the vector product of n and m,,. It is this
result, which only holds for real third order matrices, that
makes it possible to establish the properties of proper vectors
discussed in this paper.

M and D have the same proper vectors. If A and v are,
respectively, the proper values of M and D, corresponding to
the same proper vector, then 4 = v + § trM. Thus 4 is real if
and only if v is real. The condition that D have three real
proper values is that all the three roots of the characteristic
equation det(D — vI) = 0 be real. The conditions for the
proper values to be real are then characterized by the follow-
ing well-known result.
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Proposition 1: For a real third order square matrix, M,
only one proper value is real when ¢ = tr’D? —54 det’D
<0. When ¢ >0, all the three proper values are real and
distinct. When ¢ = 0, all the proper values are real and are
given by 2v, — v, — v, where v = (} detD)">.

BASIC RESULTS

It is assumed that all the three proper numbers of M are
real and that m, #0. Let n, and n, be two distinct proper
vectors corresponding, respectively, to the proper numbers
A, and A,, so that Mn, = A,n, and Mn, = 4,n,. It then fol-
lows from these two equations and Eq. (1) that

(A2 — A)n{n, = 2n{M"n,

= 2n{(n,Xm,) = 2[n,,n,m, ].

Now the scalar triple product [n,n,,m , ] vanishes if and only
ifn,, n,, and m, are coplanar. Hence,

Proposition 2: If n, and n, are two distinct proper vec-
tors of M corresponding, respectively, to the proper values
A,and A,, then (A, — A,)n’n, = Oifand only if m, is a linear
combination of n; and n,.

Also, if 4, = A, = A, and n, and n, are two different
proper vectors corresponding to the repeated proper value
Ao then it follows that [n,,n,,m, ] = 0. Hence,

Proposition 3: If M has two distinct proper vectors cor-
responding to the same (repeated) proper value, so that every
vector in their plane is a proper vector, then m,, is also a
proper vector and lies in this plane.

DISTINCT PROPER VALUES

When ¢ > 0, the three proper values of M are real and
distinct.

Corollary 4: Two proper vectors of M corresponding to
distinct proper values are orthogonal if and only if the pseu-
dovector, m,, lies in the plane of the proper vectors.

Corollary 5: If all the three proper values are distinct
then, at most, one of the proper vectors is orthogonal to the
other two. A proper vector n, is orthogonal to the other two
proper vectors, n, and n,, if and only if n, is parallel tom,,
that is, if and only if m is that proper vector.
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Remarks: If follows that if all the proper values are dis-
tinct, then the three proper vectors are mutually orthogonal
if and only if m, = 0, that is, when M is symmetric.

The results of this section are illustrated by the matrix

A a3 a
M = 0 /12 al (2)
0 0 4,

which has the three distinct proper values, A,, 4,, and 4,
The corresponding proper vectors are, respectively.

1 —a,
n = 10|, m= |4 —4,],
|0 0

rax% — a4, — 43)
n; = —a i, —4,)
(A, — A3)(4; — 43)

None of these proper vectors are orthogonal whena,, a,
and a, are nonzero, and m, does not lie in any one of the
planes determined by (n,,n,), (n,,n,) and (n;,n,). If a, =0,
then n, is orthogonal to n, but neither of them is orthogonal
to n,. In this case, m, lies in the plane of n, and n, but is not
along either one of them. Finally, if a, = 0 and a; = 0, then
n, is orthogonal to both n, and n;, but n, is not orthogonal to
n;, and m, is along n,.

TWO PROPER VALUES EQUAL

When ¢ = 0 but detD#0, two of the proper values are

equal and different from the third one. Let 4,#4, =4,

= A,. Then there are two possibilities: (i) either there is only
one proper vector, N, corresponding to the repeated proper
value A, or (ii) all the proper vectors in a plane are proper
vectors corresponding to A,. It then follows from Proposi-
tions 2 and 3 that the following results hold.

Corollary 6: If corresponding to a repeated root
Ao = A, = A;#A, there exists only one proper vector, n, of
M, then M has only two proper vectors, nyand n,, wheren, is
the proper vector associated with the proper value 4,. Fur-
ther, n, and n, are orthogonal if and only if m, lies in their
plane.

Corollary 7: If M has two distinct proper vectors, n, and
n,;, which correspond to the same repeated proper values,
Ag = A, = A;5# A, sothat every vector in their planeis also a
proper vector corresponding to Ao, then m is also a proper
vector which lies in this plane. Further, m, is orthogonal to
n,, the proper vector associated with 4,.

Remarks: As an example, consider the matrix in Eq. (2)
with A, =A; = A,#A,. Then, as long as a,#0, it only has
the two proper vectorsn, = (1 0 O)andn, = (— a4, — 4,
0) which correspond, respectively, to the proper values A,
and 4,. These two vectors are orthogonal only when a, =0,
in which case, m, lies in the plane of n, and n,. However,
whena, =0, n, = (1 0 0)is the proper vector correspond-
ing to 1, and every vector which is orthogonal to
n= (1, — A, a, a,)is a proper vector corresponding to the
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repeated proper value A,. Furthermore, m,, is orthogonal to
n l .

ALL THREE PROPER VALUES EQUAL

When ¢ = 0 and detD = 0, all the three proper values
are equal, and the only possibilities are then given in Corol-
lary 8.

Corollary 8: If all the three proper values of M are equal,
then either (i) there is only one proper vector, or (ii) all the
vectors in a plane are proper vectors and m,, is also a proper
vector which lies in this plane.

This result is illustrated by the matrix in Eq. (2) with
Ay =24, =243 =24, If a,#0 and a;#0 then the only proper
vector corresponding to the repeated proper value A, is n,
(1 0 0). However, ifa, = 0, then all the vectors in the plane
normalton = (0 a5 a,) are proper vectors, and m, also lies
in this plane.

CONCLUDING REMARKS

When the three proper values are real and distinct, M
has only three proper vectors which, in general, are not or-
thogonal. Two of the proper vectors are orthogonal when
m,, lies in their plane. If m,, is itself a proper vector, then it is
orthogonal to the other two proper vectors, which are not
orthogonal.

When two of the proper values are equal and different
from the third proper value, then there are two cases. (i) If
there is only one proper vector associated with the repeated
proper value, then M has only two proper vectors, the sec-
ond one corresponding to the distinct proper value. These
two proper vectors are orthogonal only when m, lies in their
plane. (ii) If M has more than one proper vector associated
with the repeated proper value, then all the vectors in a plane
are proper vectors and this plane also contains the vector
m,, . In addition to the proper vectors in this plane, there is an
additional proper vector, corresponding to the distinct prop-
er value, which does not lie in this plane and which is orthog-
onal tom,.

Finally, when all the three proper values are equal, then
there are two cases: (i) either M has only one proper vector or
(ii) all the vectors in a plane are proper vectors and m, also
lies in this plane.

Given a real third order matrix M, only one real proper
vector exists when only one of the proper values is real, the
other two proper vectors being complex. However, only one
proper vector can exist even when all the proper values are
real and equal. M can have just two proper vectors only
when two of its proper values are equal and different from
the third one. It has only three proper vectors when the three
proper values are distinct. All the proper vectors may com-
prise the vectors in a plane, this being possible only when all
the proper values of M are equal. In the last possibility, all
the vectors in a plane are proper vectors and a vector, not in
this plane, is also a proper vector. This is possible only when
two proper values are equal and different from the third.

'V. K. Stokes, “On the Analysis of Asymmetric Stress,” J. Appl. Mech. 39,
1133-6 (1972).
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Bloch electrons in a magnetic field—reduction to one dimension?
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A reduction to one dimension of the above problem, found by Schellnhuber and Obermair for a
special model lattice, is shown to be valid for all lattices without restriction. As was the case in
their problem, the field must be rational. If the rational number is the reciprocal of an integer a
single equation results. This condition is well adapted to the study of fields of practically
attainable magnitude. If the rational number is of the form ¢/p a system of ¢ coupled equations is

obtained.

1. INTRODUCTION

Schellnhuber,! and Schellnhuber and Obermair? have
recently adapted to low fields the method introduced by
Rauh, Wannier,and Obermair (RWO)’ to solve the quantum
problem of a crystalline electron in a magnetic field. They
did this for a set of particular cases where the periodic poten-
tial has the simplest possible nontrivial form and the rational
number attached to the field is the reciprocal of an integer p.
The essentially new step was the reduction to a Schrodinger-
like equation in one variable only. It is the purpose of this
paper to show that the restriction to a simple potential is not
necessary: all periodic potentials down to triclinic symmetry
allow this type of reduction for e/l rational fields. The reduc-
tion arises fairly directly from the structure of the Landau
functions in Cartesian coordinates.

2. SPECIAL CASE: THE RECIPROCAL OF THE
RATIONAL NUMBER IS AN INTEGER

It was shown earlier® that rationality requires the mag-
netic field to be parallel to a lattice vector ¢ which we take
along the z direction of a Cartesian system of axes. We are
then compelled to lay the x axis parallel to one of the recipro-
cal lattice vectors a* which are perpendicular to ¢; this is
needed to get a minimal representation of the magnetic
translation group.> We therefore write the three basis vec-
tors of the crystal lattice in the form

a=ia, +ja, +ka, (1a)
b= ib, + kb,, (1b)
c= ke . (1¢)

Equation (1) imposes no restriction on the symmetry or
lack of symmetry of the crystal. a,, b,, and ¢ must be differ-
ent from zero; their product is the volume of the unit cell.
The only bounding parallelogram of the cell traversed by
magnetic flux is the one generated by a and b. The reciprocal
vectors of (1) are

a* = ii, (2a)
aX
a

b= — i, (2b)
ab, b,

“This work was supported by the National Science Foundation.
"Permanent address: Physics Department, University of Oregon, Eugene,
OR 97403,
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. ab, —ab, b, 1
c*——-l—-ay—c———.]byc-i—k?. (2¢c)
The potential is triply periodic
Vix+a,p+a,z+a,)=V(xp2), (3a)
Vix, y+b,z+b,)="V(xy2) (3b)
Vix, ¥, z+¢) =Vixya2). (3¢)

It has a Fourier expansion involving the vectors (2):

. 1
Vixyz) = wm €Xp|2 1
0= 3, e i1

Lnm

—n % +maybz_byaz>x
a.b, a.b,c

+(n—1——m bz) +m 12” 4
b, b,c Y c ' X

It will come out as usual that the potential has just a band
splitting function along the z direction where the large ener-
gy term #°k 2/2m is controlling. We need, therefore, the po-
tential (4) only for m = 0 and write it in the form

[V(X,)’,Z)]m=o =f— V(X,y), (53)
2m

Vixy) =3 w,(x)

a
Xexp[2m‘( —n2
a.b,

w,(x)= %2"1 2 Vimo exp[2m‘l aix] , (5¢)

X

1

w,{x +a,) =w,{x). {5d)

For the reason given above, we write the Schrédinger
equation immediately without its z-dependence. It then
reads in the Landau gauge

Y = *Y/Ix* + FY/Ay* — iaxdy/dy

—a®x* — V (xpp. (6)
Here V(x,y) is defined in (Sb) and « is equal to
a = eH /fic. (7
Without the potential term a solution would be
¥=h(x —xo) e, (8)
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where A is a Hermite function and x, an arbitrary displace-
ment. The introduction of the periodic potential will force us
to discard the Hermite functions, and to pay attention to
rationality. On the other hand, the coupling of the y expo-
nential and the x displacement can be retained. It is the
structurally decisive element for the contemplated
simplification.

To bring in the integer p we introduce the flux ¢
through a unit cell, expressed in units of the flux quantum

6 = (e/hcHa,b, = 1/p. i
This yields with {7)
a =2m/pa,b,. (10)

We take 9 as a Fourier series in p, as follows:

b= S Jfulx—plu+ma,)

m= — e

Xexp[27ri[vm v mP i +m) 1” T
2b, b,
The exact form written down here needs, strictly speaking,
no justification; it will justify itself during the derivation.
The rationale for all these terms may be found in my paper
on quantum numbers.* Two quantum numbers, # and v,
appear in (11); they are fractions. The quadratic exponential
takes care of nonrectangular lattices. The displacement in
the argument of £,, respects (8). It will be one of the results of
the derivation that there should be no index m on f. No
attention has been paid to the normalization of ¢ as we do
not intend to take matrix elements.

Substitution of (11) and (10) into (6) yields

Ky = +Zm exp[Zm’{vm
_pay 2 Y
E;y‘(.u‘*'m) +(#+m)by”
d? 47
X Z;;fm(x—P(#’*'m)ax)’;)z—axz—byz

X{x —plp + mia.Vf,.(x — p{p + ma.)

— Vi) fmlx —p(p + m)ax)]' (12)

Special attention must be paid to the term containing the
potential. From (5b) and (12)

potential term = — ' exp [Zm' [vm

pay 2 LA
~2by(/t+m) +ip+mp ”

»

a
x N expl| 2mi{ —n 2 nL”
; XP[ m{ abx+ b

X W, (X)f (x — plut + mia).

To restore to this expression the character of a Fourier series
in y we substitute

m—m — n,
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(1t +mP—(u+m)P* —2n(p +m)+n?,
which yields

potential term = — > exp[Zm‘ {vm

__pa, 2 Ea
E(ﬂﬂn) +(#+M)by”

a
XS exp|2mii — van — n—2
2 p[ { a.b,

Pey
X(x —plp +ma;) —5=n ”

Xwn(x)fm ‘_,,(x _p(lu +m— n)ax)'
Writing (12) as an equation
(Z — €y =0, ' (13)

and returning to it the potential term in the fo: m just ob-
tained we get

, pa, 2 L
; exp[2m{vm - -Z-Iz(y +mP+(u+ m)by”
4
p2ax2by2
X (x = plp + mla,)f,(x — p(p + ma,)

[~ n
— Y exp| —2mifvn +n
n a.b,

d2
X d_x—z'fm(x _p(:u' +m)ax) -

X(x —plu +m)a,)+’;—l‘}n2}] (14

y

Xwn(x)fm—n(x ——p(/,l/ +m— ”)ax)

- efm('x _P(:u + m)ax)] =0.

Equation (14) is a Fourier series in y which vanishes. It can
only do so if every Fourier coefficient vanishes. If we consid-
er the mth Fourier coefficient we see that, except for w,, (x), x
always occurs in the combination x — p( u + m)a,. So if we
set
x—plp + ma,—x
we get the simpler form
dfnlx) 4

dx? pais?

XS x)

~ > w,(x + pua,) f. _ (x + pna,)

. a pa
Xexp| — 2mi{vn + n—2—x + —ynz]]
p[ { a.b, | 26,
= €f,,(x). (15)
Here (5b) has produced the final simplification: the disap-
pearance of m from the equation.

The equations are now all alike except for the appear-
ance of m in the index of f- This would still permit an expo-
nential dependence of f,, on m; however we have anticipated
this in {11) by introducing the exponential exp[27ivmn]. f,,
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does, therefore, not depend on its index and we end up with

dd{C b _ p:zi X*f(x) — ¥ w,(x + pua,) f(x + pna,)

¥

a a
Xexp[ - 2m’{vn + 2 x +p—1n2” ~eflx), (16)
a.b, 2b,
which is the desired equation. It becomes Schellnhuber’s!
working equation (B58) if we seta, =0, a, = b,, and
Wylx) = 2¥, cos2mx/a,,
wyx) =w_,(x) =V,

with all other w’s equal to zero. His variable x equals
(v/2m)/(V/'p) a times the variable x used here.

Schellnhuber,! and Schellnhuber and Obermair? have
shown that the Ritz method is the proper way to solve (16).
To reach practical situations, p must be made very large,
between 100 and 1000. In connection with such a situation,
one wishes to ask what boundary conditions are to be associ-
ated with Eq. {16). This question has no answer in principle
because f(x) is not a wave function, but an auxiliary function
permitting us to construct the wave function, using {11). Pro-
fessor Obermair’® pointed out to me, however, that it is very
likely that the solution of (16) converges like a Gaussian. The
reason is that the two first terms will dominate in the equa-
tion for large x. This leads to the alternative of a square
exponential increase or decrease. Since an increase is out of
the question only the possibility of a decrease remains.

3. EXTENSION TO ALL RATIONAL FIELDS

The extension of the preceding derivation to a general
rational field departs from the preceding text at Eq. (9) which
is to be replaced by

¢ = q/p; q, p integers prime to each other. (17)
Thereupon p is to be replaced by p/g in all subsequent formu-
las up to Eq. (15). In Eq. (15), the argument of w,, reads now
x+(p/glp + mhp,. (18)
When g = 1, Eq. (5b} applies and m can be dropped. With
g # 1, this reasoning does not work: m remains in the equa-
tion and the text subsequent to (15) is not correct. However,

it is not totally invalid: the equation m + 1 is different from
the equation 7, but the equation m + g is not. The Floquet
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argument used thus remains valid for an advance by ¢ steps.
In Eq. (16) f,,(x) has to retain its index, but only modulo g.
The single Eq. (16) becomes therefore a system of ¢ coupled
equations. They look essentially like (15), with the argument
of w, modified as discussed above and the index of f,, taken
modulo g.

We have thus shown that for all rational fields the
Schrédinger equation is reducible to a one-dimensional
problem. The problem is a single difference-differential
equation if the flux ¢ is the reciprocal of an integer. For
¢ =g/p it is a system of a g coupled equations.

The work of Schellnhuber and Obermair’- deals entire-
ly with the single equation arising for ¢ = 1. There are sever-
al reasons why this should remain so for some time. First of
all, ¢ is very small for practicaliy attainable fieids and there-
fore the choice ¢ = 1/p leaves us plenty of options. Secondly,
the complications of the energy spectrum occurring between
¢ =1/pand ¢ = 1/(p + 1) were carefully analyzed by Hof-
stadter.>” He called such an interval a cel/ and the contents
of such a cell are covered by the nesting theorem he suggest-
ed. Thirdly, even Eq. (16)is fairly hard to solve. The method
available is the Ritz method; with this method progress is
made by gradually guessing at structural features of the
wave function; this is a cumbersome process. Extension of
the Ritz method to equation systems is probably possible,
but the guessing would become painfully slow.
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The quality factor [Q ] for the E-plane strip source antenna is minimized with respect to a class of
aperture functions for which the [Q ] converges. A complete basis for the above class of functions is
constructed for the first time and this basis is used to minimize the above mentioned [Q ]. The
functions which minimize the above [Q ] turn out to be doubly orthogonal and are used to
implement a constrained aperture synthesis procedure. New results concerning the maximum
bandwidth (or minimum [Q@ ]) of the E-plane strip source antenna are given.

I. INTRODUCTION

Many investigations'~ have dealt with the problem of
defining a suitable quality factor Q for antennas. Later,
many of these quality factors have been used as a constraint
parameter in an antenna source synthesis procedure.*® Col-
lin and Rothschild* and also Rhodes® have defined the Q of
an antenna system operated at resonance as the ratio
20W, ., /P, where W__, isthe greater of the electric and mag-
netic energy in the reactive field of the antenna and P is the
radiated power of the system. The Q is an important param-
eter because it is a measure of the energy stored in the near
field of the antenna and because it is inversely proportional
to the bandwidth of the system.

In the definition of the Q a great difficulty which arises
is due to the fact that the wavenumber integrands which
describe the electric and magnetic energy densities in the
evanescent or invisible radiation regions turn out to exhibit a
strong singularity at the wavenumbers where
k=(k,>+k,?)"? = w/C = ko (This circle in the k, ,k,
wavenumber plane defines the boundary between the visible
and invisible radiation ranges.} The strong singularity in
turn causes the integrals describing the electric and magnetic
energies W, to diverge to infinity.

Rhodes has attempted to resolve this difficulty® by re-
moving the singular portions of the divergent integrals and
defining a new set of what he terms observable electric and
magnetic energies< W, > and <W_, > based on the conver-
gent terms of the original energy integrals. Rhodes provided
a physical basis for this redefinition by noting that: (1) the
removal of the singular terms in the above energy integrals
would not cause a corresponding change in the bandwidth of
the system (BWea 1/Q ), and that (2) the electric and magnetic
field components which made up the singular terms did not
contribute to the complex Poynting power at the aperture
and for this reason the singular terms were not physically
meaningful. A synthesis procedure for the E-plane strip
source antenna was based on these observable stored ener-
gies. These observable stored energies however have been
criticized in Refs. 5 and 6 as not being unique and therefore
not related to the bandwidth of the system.

Collin and Rothschild* have further observed that the
energy integrals are, however, not divergent for all aperture
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distributions. They have shown that for those aperture dis-
tributions whose pattern space factor F (k ) (or Fourier trans-
form of the aperture distribution) vanishes at the point

k = kg, not only is the Q convergent but it is also proportion-
al to the bandwidth of the antenna system when the Q is
large. However, due to the fact that W, does diverge for
those aperture functions for which F (k) # 0, Collin,® has dis-
counted the above @ as being physically unmeaningful.

. This investigation will be directed at the second prob-
lem mentioned at the beginning of the Introduction, namely
the development of a Q constrained synthesis procedure. At
the present time no Q constrained synthesis procedure has
been developed for the above mentioned Q = 20 W, ., /P**
due mainly to the divergence of this Q for certain aperture
distributions. A synthesis procedure based on this Q may,
however, be constructed if the class of allowable aperture
distributions for the synthesis procedure is restricted to that
class for which F (k) = 0. Ifa synthesis procedureis based on
this restricted class of functions then the Q will be conver-
gent and also inversely proportional to the physically mea-
surable parameter, namely the bandwidth. In this case it will
not be necessary to discount the Q as physically unmeaning-
ful as did Collin® since the Q converges, nor will be necessary
to redefine the Q by removing certain terms as did Rhodes.®

This investigation will construct synthesis procedure
for the one-dimensional E-plane strip source antenna using
the above mentioned Q [see Eq. (1) of this paper]. Previously
Rhodes has presented a synthesis procedure® for this anten-
na with the (#* — 1)~ term removed.

The investigation will be divided into three parts. The
first part will construct a complete set of aperture functions
which will: (1) satisfy the proper physical boundary condi-
tions in the aperture, and will (2) span the space of all aper-
turefunctions whose pattern space factor F (k ) vanishes at the
point k = k,. The second part will be concerned with mini-
mizing the quality factor of Eq. (1) with respect to the above
mentioned functions. The purpose of this will be to construct
a set of doubly orthogonal functions as in Ref. 9, which may
be used to implement an antenna source synthesis proce-
dure, which is the third part. Also the minimum value of the
above quality factor will be given which will give for the first
time the true maximum bandwidth of the E-plane strip
source antenna.
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TABLE I. Minimum quality factor for the E-plane strip source antenna.

Q
< o 22 @, s

(;.l T 0.211710 4 04 0.212460 + 07
iq
-21 0.419030-02  0.162736 + 00 0.351848 4+ 01 (0.708036 + 02
3.
021! 0.417781-02  '0.162279 + 01 0.350823 + 01 0.705678 + 02
2.0 0.363281-03  0.167662-01  0.371560 +- 00 0.606426 + 01
n
~2= 0.105174-04  0.630705-03  0.173314-01  0.296167 + 00
3w 0.509426-06  0.369508-04  0.123749-02  0.250867-01
651 0.392025-15  0.157452-12

il. ANALYSIS

The E-plane strip source antenna consists of an infinite
strip of width @ embedded in a conducting screen with the
electric field polarized in the direction normal to the aper-
ture edge. Since the electric energy for this antenna is always
greater than the magnetic, the Quality factor for this antenna
is given by:

WwW,
ei= P -
_ S (02— D7 4 4 — 1)~ ) d
Sy (=) V2 F (u)® du
G\(F)
where F(u) = §' ,f(t)e/ dt . (2)

In this expression F () represents the far field pattern space
factor, f (¢ ) is a function which is proportional to the electric
field in the aperture, t = 2X /a is a normalized aperture vari-
able, u = k. /k, is a normalized wavenumber, and
¢ = ma/A = kya/2 electrical length of the aperture. W, and
Pin this expression may be found in Ref. 8, Egs. (3.37b) and
{3.5) respectively after setting k, = 0, F, = 0, and after mak-
ing a change of variables. The region |u| > 1 represents the
reactive field or invisible region and |u|<1 the visible radi-
ation region. Rhodes’ observable electric energy is obtained
if the term proportional to (u” — 1) ~ %2 is omitted in Eq. (1).
The first part of this paper will deal with the minimiza-
tion of Eq. (1) with respect to the restricted class of aperture
functions in L ? [ — 1,1] that (i) satisfies the correct physical
boundary conditions in the aperture (Ref. 8, pp. 34-50)
namely that

FO)] e 21 =0, G)
and (ii} satisfies the condition that F(u)is zeroat u = I and
u = — 1, namely that

1

Fl+1)=0= fltletidr. 4)
—1

The second condition ensures the convergence of Eq. (1) and
is equivalent to the statement that every f(r ) that meets (i)
and (ii) is orthogonal to cosct and sincr. It may be shown that
the class of functions which satisfy (i) and (ii) in L [ — 1,1]
forms a complete (in the sense of Cauchy} and therefore
closed vector subspace which we shall call V.
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To carry out the aforementioned minimization we must
first find a set of functions which form a total basis for the
vector subspace V. To this end we first note that a complete
(in the sense of a total basis) set of functions which satisfy the
boundary conditions (i) are given by the functions

4, = l c?skt, k‘ 0,2,4, , 5

sinkt, k=1,3,5,-
where k = (k + 1)7/2). We also note that the Fourier trans-
form of the above functions which will be useful later is given
by
1

$ilu) = i e’ dt

_— Zkcoscu , k=024,
.__jk (Cu)z -—I(—z (6)
71)22.’531‘52‘_, k=1,35.
cuf —k

The second step in creating a total basis for V is to con-
struct a set of functions {4, } <, _, from appropriate linear
combinations of the functions ¢, in Eq. (5). These linear
combinations will be chosen in such a way that each 4, will
satisfy condition (ii}, each &, will be orthogonal to
By _ 1Ry _ 2,+hg, and each A, will be normalized to unity.
The functions h, for which k = 0,2,4,-. will be even func-
tions constructed from the even ¢, functions and the func-
tions A, for which k = 1,3,5,... will be odd functions con-
structed from the odd ¢, functions. In this construction two
different cases occur, namely the case when c#(k + 1)7/2,
k =0,1,2,..- and the case when ¢ = (k + 1) 7 /2 for some par-
ticular integer k.

In the first case when ¢# (k + 1}z /2, k = 0,1,2,-- the
series that results for each h, is given by

k12

helt)= 3 "aixdit) (7

i=0,1
and the series for its associated Fourier transform, call it /,,
is given by

.
9
|

' \ t
s ' [

i
—_d Lt r

FIG. 1. Radiation approximation of an ideal cosecant radiation pattern
with Q = 10 and @ = 2.54 for the E-plane strip source antenna.
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Hi="S a,o). 8

i=0,1

The primed summation in (7) and (8) means summation over
the even or odd values of / according to whether & is even or
odd. The coefficients a;, which ensure that A, satisfies con-
ditions (i) and (ii) are derived in Appendix A.

In the second case if ¢ = (k, + 1)7 /2 and k, = 0,2,4,--,
then A, is given by

h,=¢., k=0.2,..,k,—2,

hy =@p,qs k=koky+2,.., 9)
and the &, for k = 1,3,5 are determined from Appendix A. If
in the second case ¢ = (ky + 1)7 /2and ky = 1,3,5,--- then 4,
is given by

hk = ¢k7 k = 1’395,'“k0 - 29

hk = ¢k +20 k= kO’ko + 2, (10)
and the A, for k = 0,2,4,--- are determined from Appendix
A. In other words, in the second case a total basis for Vis
found by simply eliminating the ¢, function from Eq. (5).
The functions H, for the second case found from the Fourier
transform of (9) and (10).

1il. DOUBLY ORTHOGONAL FUNCTIONS

By using the theory in Ref. 9 the set of functions {4, (¢ }}
may be used to construct a set of doubly orthogonal
functions

FAGESD WP WA (1)
Fu)= §' X, H), (12)

i=0,1
from the extremal functions of the functional [Q] of Eq. (1).
The set of coefficients X, are derived from the matrix
equation

[GllX]=Q[G)]Xx], (13)
where
G, = 1 (1—u’~'?H* H, du, (14)

Gk = f [(@? - 1)-1/2‘*‘5(“2" 1)=*7]
Ju)>1
XH* H, du. (15)

The matrices [G,] and [G,] are Hermitian and positive
definite and the matrix elements are zero whenever k ' is even
or k is odd or vice versa.

The functions F, satisfy the double orthogonality
relations

f (@ —1)="2 4 Y — 1)~ >*|F%F, du
Jul > 1

= QN5 (16)
1
[ u-w-FsF au=ns,,, (17)
-1

where N, is a positive normalization constant.
The eigenvalues Q, (cJal/BW are shown as a function
of ¢, the electrical length of the antenna in Table 1. Harwell
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subroutine EA 12 AD was used to solve the eigenvalue Eq.
(13) on an IBM 360-158 computer. The matrices [G,] and
[G,] were truncated at values of k = 49.

It is interesting and also an excellent verification of the
numerical procedures used here that the Q for the 1.5005I1
case (using the &, functions of Appendix A) compares so
closely with the Q for the 1.5 7 case [{using Eq. (9)] despite
the fact that totally different bases were used in each case.
This also seems to indicate that the minimum Q is not sensi-
tive to the aperture width when the aperture width assumes
integral or half integral values of the wavelength.

IV. SYNTHESIS PROCEDURE

We will now be concerned with using the £, functionsin
a constraint synthesis procedure. The synthesis procedure
will consist of the minimization of a least-square error func-
tional of the form

€= fl (1 —u?)~2|F(u) ——ﬁ(u)|"du

+1[GoAF) — @x G\(F)], (18)
where G,(F) and G,(F) are the functionals of Eq. (1). In this
equation F is an ideal, desired far-field radiation pattern
which is to be approximated, F is the radiation pattern ap-
proximation given by Eq. (2), Q is a prescribed value of the
Q (or BW ) to which the approximate pattern F (u)is to corre-
spond, € represents the error between the ideal and approxi-
mate radiation patterns, and u is a Lagrange multiplier. This
equation forms the basis of a constraint procedure which was
first given by Rhodes® and later applied by him to the E-
plane strip source antenna based on his observable energies.
This equation has also been used in Ref. 10 for the H-plane
strip source antenna.

The minimization of € is accomplished by expanding
F (u) in a series of the doubly orthogonal functions F, of Egs.
{16) and (17) and then varying € with respect to each of the
coefficients in this series. The double orthogonality proper-
ties of the functions F, reduce Eq. (18) to a simple sum of the
squares of the coefficients of the series of F which can then be
minimized easily. The details of the minimization are given
in Refs. 8 and 10 and are not repeated here.

Figure 1 illustrates the success of this procedure when
applied to an ideal cosecant pattern with ¢ = 2.5 and
Or = 10.

V. CONCLUSION

The minimization of the quality factor of the E-plane
strip source antenna has been found for the first time with
respect to the restricted class of aperture functions ¥ in
L *[ — 1,1] which (i) vanish at the aperture edges, and (ii)
whose pattern space factor vanishes at the boundary of the
visible and invisible radiation ranges. The minimization was
performed by constructing a total basis {4, ] for ¥, express-
ing the quality factor functional [Q ] in a matrix quadratic
form with respect to this basis, and then minimizing the qua-
dratic form. By using the associated matrix eigenvectors, a
set of doubly orthogonal functions was contructed and these
doubly orthogonal functions were used as a set of basis func-
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tions with which a constrained aperture synthesis procedure
was implemented.

In conclusion, this author believes that the minimum
quality factor which was obtained by minimizing Eq. (1) with
respect to the functions in ¥ is also the minimum quality
factor that would be obtained if Eq. (1) was minimized with
respect to all functions in L *[ — 1,1]. This conclusion is
reached since any function which is a member of L *[ — 1,1]
and not a member of ¥ would make the [0 ] of Eq. (1) infinite.

APPENDIX A

We will derive the coefficients a; , for the even A, func-
tions first and later only state results for the odd A, func-

tions. Leth$,h 5 and H,H$,- be the unnormalized se-
ries given by
ho=do+ ) Ai,d (A1)
i=1
Hi=@0+ 3 4,0, n=123-. (A2)

=1
The coefficient 4, , is chosen so that H{(1) = 0 or

A, = — P(1)/Dy(1). (A3)

The coefficient 4, , and 4, , are chosensothat {'_ Ak S dt
= (h$,h5) =0and H5(1) = 0, which implies that
A, = —1/4,, and
2 2
PR RS H I Ad)
’ Do(1)24(1)
To proceed further we note that for n>3 the conditions
(he,he) =0, fori=1,.., n—2leads to the conclusion
(after use of the orthogonal properties of the ¢, functions)
that

Al,n =A1,n_1 =-=A,,,
Ay, =A2,n—1 = =4,;,
: (AS)
A, 2n=A4, 2,1 n>3.
This then implies that the series for 4 ¢ may be given by
h€_¢0+ 2A11+l¢21+Ann¢2n' (A6)

i=1
Let us suppose that the coefficientsof 45 _,, 25 _,,..., A,
have all been found for n>3. Then to determine the coeffi-
cients of /1 ;, we need only determine 4, _, , and 4, , as
A;; ., fori=1,..,n — 2areknown. By using the condition
(he,he_ ) =0and H:(1) = 0and alittle algebraic manip-
ulation we find for n>3.

n—2
Ain= - —— 1+ T az] (a7
An-l,n—~1 i=1
<)) —
An"== 1 { 2n—2( [1+ Ai,‘.,_l
’ An—ln—l P, (1) .=1
] as

As can be seen Egs. (A7) and (A8) provide a simple
recursion relation for which the coefficients of 4, _ ; , and
A, ,, may be found for any order n>3. Equation (AS5) gives
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the remaining coeflicients for order n. We also note that
since @, (1)7#0if c#(k + 1)I1/2 [as can be seen from Eq. (6)]
that this implies that 4, ,,4, ,,4,, #0. This in conjunction
with the fact that all of the &, (1) #£0, implies that 4, , #0 for
all i and k.

The coefficients for the odd &, functions may be found
ifweleth$,h9, - and H H?Y,.. be the unnormalized series
given by

hS =¢+ 2 B b1
i=1

H)=9, + Y Bin®yiii n=123, (A9)
i=1
and we apply the conditions H (1) =0and (h%,h% =0,
i=1,..., n — 1 to these series. The analysis is similar to the
even case and the coefficients are found to be given by the
equations

B, =— D, (1)/P4(1),
Bl,z = - 1/B1,1 s (A10)
By, = — [@4(1) + B, , P5(1)]/P4(1) .
For n>3
Bl,n =B1,n—1 = =B1,29
Bz,n = BZ,n-— p == Bz,a;
Bn—2,n =an2,n—l’
1
Bn—— n =TT T 1 B” s
b Bn—ln——l [ +121 +1]
B,,'n - 1 [ ¢2n~1 ]
Bn—ln—l 2n+1(1)
X[l + Z B Li+ 1 +Bn—ln—1]
i=1
In the above expressions we note that all of the ratios
&, (1)/Ps(1) and D, _,(1)/P,, . (1) for n = 1,2,-.. are real

since @, is purely imaginary for n = 1,3,5,

If we normalize the coefficients 4, and B, ,, and also
reorder the indices to conform with Eq. (7) we find for
n=123..

Aoan -2 = /s, ,

@ion-2 =Ai,n/sn = 1’29'"” »

@an =1y,

Ay 12n 1 =Bi,n/rn i=12,n,
where

/2
we[e 302]
i=1

and

, = [1 + 3 B,%"]‘”.

i=1
The above scheme has been used to generate numerical-
ly all the coefficients up to A, (¢ ) for many values of c. The
scheme is very stable and satisfies condition (ii) and the orth-
ogonality requirement very accurately.
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ERRATA

Erratum: On the coupling of self-conjugate systems with SL(3,7) symmetry

[J. Math. Phys. 20, 1615 (1979)]

J. A. Castilho Alcaras
Instituto de Fisica Teorica, Sdo Paulo, Brasil

L. C. Biedenharn

Department of Physics, Duke University, Durham, North Carolina 27706
(Received 22 July 1980; accepted for publication 31 July 1980)

{1) In Eq. (2.1) the first commutator is between J; and
Iy

{2) In the definition of JUT in the second of Egs. (2.3)
there is an overall factor of 6 missing on the right-
hand side.

(3) In Eq. (2.5), on the left-hand side the bra SO(2) label
is M’ and the last ket on the right-hand side must be
J'M’).

(4) In Eq. (2.6) the first factor under the square root
should read: (2e + 1).

(5) In Eq. (2.19) under the square root symbol one
should have (27 + 1).

(6) In the second of Egs. (2.21) (the last equation on page

1617) the first factor in the denominator should be
(2J -+ 1) (not 2J + 3 as printed) while in the third
equation (top of page 1618) the complete numerator
under the square root should be 2(2J)(2J + 2).
(7) In Eq. (2.22), the first ket on the right-hand side
should read: [O,; J,M,).
(8) In Eq. (2.23): ¥; should be replaced by u.
(9) In Eq. (2.24): Delete the first ket on the right-hand
side. The sum is over a.
(10) In Eq. (2.31) for /*,, there is an overall minus sign
missing; for f*,, , , a left parenthesis is missing in
the factorial appearing in the numerator.

Erratum: Five-term WKBJ approximation

[J. Math. Phys. 21, 90 (1980)]

R. N. Kesarwani

Department of Mathematics, University of Ottawa, Ottawa, Canada KIN 9B4

Y. P. Varshni

Department of Physics, University of Ottawa, Ottawa, Canada KIN 9B4

P. 91, Eq. (10): In the expression for /s, the second term
in the first integrand should read 2065V "2V “ ¥ instead of

2065V "2V,
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