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Formulas for the evaluation of all U(N) integrals are derived. Tables display the results for 
integrands involving up to six U's and six U t,s. The complete pole structure of De Wit-'t Hooft 
anomalies is unveiled. The effects of 1/N2 corrections and De Wit-'t Hooft anomalies on two­
dimensional U(N) lattice gauge theories in the strong coupling 1/N expansion is discussed. 

I. INTRODUCTION 

This paper derives a set offormulas which immediately 
allow the evaluation ofU(N) group integrals. These formu­
las have intrinsic mathematical value. But not only are they 
interesting from a mathematical standpoint, they are valu­
able from a physics standpoint. A theory of strong interac­
tions has been proposed: quantum chromodynamics (QeD). 
It is in qualitative agreement with the general features of 
strong interactions. There appear to be no other theories 
having these qualities. QeD is unique in having asymptotic 
freedom and the possibilities of quark confinement. Howev­
er, in QeD it is extremely difficult to calculate except in 
selected high energy processes. A proposed calculational 
method is to put the theory on a lattice. Immediately, the 
problem of doing group integrations arises. Therefore, this 
paper's integral formulas are valuable to anyone attempting 
to compute QeD on a lattice. Furthermore, this study of the 
U(N) integral reveals many interesting phenomena some of 
which may lead to new computational methods. 

In addition to U(N) integrals the 1/N expansion and the 
De Wit-'t Hooft anomalies l are studied. Much of Sec. II is 
spent defining the notation. A general formula for U(N) inte­
grals is derived. The answer [Eq. (2.10)] is expressed in terms 
of the characters of the permutation groups (aU of which are 
known in closed form2

). Hence all U(N) integrals are known. 
This is an important result because the integrals appear in 
strong coupling lattice gauge theories. 

Section III derives a set of recursion relations for the 
U(N) integrals. 

Section IV discusses the De Wit-'t Hooft anomalies. 
The U(N) integrals behave nonanalytically in N. For inte­
grals involving n U's and nUt's analytic expressions exist 
for N>n. When extrapolated to N < n, poles appear and in­
validate the formulas. These poles are known as the De Wit­
't Hooft anomalies. Section IV gives a complete description 
of the pole structure. Amazingly, not only do simple poles 
appear in N but for n large enough poles of arbitrary high 
order appear. 

Section V explains a procedure for extrapolating N>n 
results to N < n so that no anomalies occur. In other words, a 
correct method of handling the anomalies is found. Thus, 
Sec. II results can be applied to the N < n case. 

Section VI contains a set of tables displaying the inte­
grals up to n = 6 for all N. These tables are for theorists 
performing lattice strong coupling expansions. 

Section VII contains simple algebraic formulas for the 
U(2) coefficients. 

Section VIII discusses the generating function for U(N) 
integrals. 

Section IX focuses on the two-dimensional lattice 
gauge theory. This is a solvable model in which large Nand 
De Wit-'t Hooft anomalies can be analyzed exactly. It is 
shown that large N strong coupling expansions are bad be­
cause of the anomalies. For 1/gZ N small, large N is a reason­
able approximation to finite N but 1/ N 2 corrections cannot 
and do not improve on this. For l/gZ N sufficiently large, 1/ N 
strong coupling expansions give erroneous results. 

The analysis of this paper suggests two trends of 
thought. There seems to be a connection between large N 
and the permutation groups. These groups naturally arise 
when doing U(N) integrals and they may play an important 
role in higher dimensions. The interplay of the permutation 
groups with large N deserves more consideration and might 
uncover a deeper relation. 

Secondly, the De Wit-'t Hooft poles are extremely im­
portant for finite N. They hamper the extrapolation oflarge 
N to finite N. From this point of view they are an annoyance. 
a barrier to be overcome. I believe the situation should be 
looked at differently. Instead of being considered destruc­
tive, they should be considered as an interesting theoretical 
phenomenon to be taken advantage of. One should ask how 
can they be put to good use to obtain finite N results; how can 
new approximation schemes be found (can some sort of pole 
dominance of integrals be made?) These ideas beckon more 
attention. 

II. THE U(N) INTEGRAL 

The problem is to compute 

IN ='fdU Ui, Ui' ... Ui"U*.i'U*j, ... U*.i" (2.1) 
n I, IJ I,. m l mJ mIl' 

for U(N). The group measure in Eq. (2.1) is the right and left 
invariant normalized (f d U == 1) Haar measure. 2 Throughout 
this paperUil==U~, (U~mj==U~, capitalNistheNofU(N), 
and lower case n refers to the number ofU's and U t's in Eq. 
(2.1). Of course, integrals are zero unless the number of U's 
is equal to the number of U t·s. 

Because the U(N) measure is invariant under multipli­
cation from the right [d (VU) = d U]. each is index must con­
tract with aj, index (likewise for I and m indices). Hence Eq. 
(2.1) must be of the form 
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(2.2) 

where l:u
A 

means to sum over all permutations, U A , of the 
integers 1,2, ... , n. CUA,UB(N) are coefficients which depend 
on U A and uB • Knowledge of these coefficients is equivalent 
to knowing all the U(N) integrals. The main result of this 
section is a formula [Eqs. (2.10), (2.11), and (2.12)] for 
CuA,un(N) in terms of the characters of Sn' the permutation 
group on n objects. 

Another way of expressing U(N) integrals is to multiply 
Eq. (2.1) by (AI)I,i, (A2)1,I,···(Anki

n 
(Btlj,m, (Bztm,· .. (Bnkm" 

and sum over all indices: 

I~{(A,B)) = fdUTrAIUTrAzU ... TrAnU 

(2.3) 

where Tr stands for trace. Equation (2.3) must be of the form 

I~{(A,B)) = ~ L L gn(/h Iz, ... , 1m) C\~L.'/m 
parillions U A Un n! 

1 •• /l.···.lm 
()fl1 

X [Tr(AuAII) Bu,mA uA(2) Bu,.(z) ... AUA(/,)Bu"(I,))] 

X [Tr(AuAII, + I) Bu,.(l, + I) ... A"A(/' + 1,)Bu"(I, + I,))] 

X ... X [Tr(AuAII, + 1,+'" + Im_ ,+ I)Bu"(l, + 1,+ ... + Im _ 1 + I) 

... AuA1n ) BU,.(nd ]. (2.4) 

In Eq. (2.4) and throughout this paper a partition of n is a set 
of integers II' Iz, ... , 1m such that II + Iz + ... + 1m = nand 

partitions 

means to sum over II, 12 , ... , 1m (and m) with the constraints 
that n>/I>/2>···>lm > 1 and 11 + 12 + ... + 1m = n. For a 
partition, II' 12, ... , 1m the right-hand side ofEq. (2.4) has the 
following structure: there is a trace of a product of II (AB )'s, 
times the trace of a product of 12 (AB )'s etc. Summing over 
the permutations, 0' A and 0' B' generates all possible terms 
with the same trace structure.gn (II' 12, ... , 1m )In! [given in Eq. 
(2.5) below) insures that each distinct term on the right-hand 
side ofEq. (2.4) occurs precisely once (summing over all UA 
and 0' B leads to duplication). Sometimes it is convenient to 
adopt an alternative expression of a partition.2 Let a I be the 
number of l'sin (/1' 12, ... , 1m); leta2 be the number of2'sin (II' 
12, ... , 1m); etc, Use the standard2 abbreviation 

fP = (/, I, ... , I). 
pi's 

Then (ai' a2' ... , an) means (/1,/2, ... , 1m) = (la" 2a
" ••• , na

,,) 

[some of the a I 's will be zero indicating the absence of I from 
(11,/2, ... , 1m)). Furthermore, II + 12 + ... Im = n implies 
a l + 2a2 + 3a3 + ... + nan = n. The notation is the same 
as in Ref. 2. In terms of the a's 

(2.5) 

In Eq. (2.5) and throughout this paper adopt the notations 
a = (ai' a2' ... , an) and 1 = (/1,/2, ... , 1m) and the conventions 
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gn(ll' 12, ... , 1m} =g"(l) =g"(a) = (aI' a2' ... a") and 
CI"I, .... IJN) = CI(N) = CaIN) = CI".,z"., .... "u..{N) when the 
partition associated with I notation corresponds to the one 
associated with a notation. 

Equation (2.4) may look complicated with its vast array 
of indices but it is actually quite simple. For example, 

f dU TrAIUTrBIUt = CI(N)TrAIBh 

f d U TrA I UTrA2 UTrB I UtTrB2 ut 

= CI,(N)(TrAIBITrA2B2 + TrA IB2TrA 2B J) 

+ C2(N)(TrAIBIA2B2 + TrAIBzA2BI)' (2.6) 

Contact can be made between the matrix index formu­
lation [Eqs. (2.1) and (2.2)) and the trace formulation [Eqs. 
(2.3) and (2.4)). The following is true: the coefficients, 
CUA,UB(N) in Eq. (2.2) depend only on the conjugacy class3 of 
0' A 00' ii I. Reca1l3 that a permutation can be uniquely speci­
fied by exhibiting its cycles and that two permutations are in 
the same conjugacy class if they have the same cycle struc­
ture (i.e. they leave the same number of objects invariant (1-
cycles), they have the same number of 2-cycles, 3-cycles, 
etc.}. There is a one-to-one correspondence between cycle 
structures (and hence conjugacy classes) and partitions. Let 
a I' a2' ... , an be the number of I-cycles, 2-cycles, ... , n-cycles 
in UA 0uii I. Then 

(2.7) 

Equation (2.7) relates the coefficients in Eq. (2.2) with those 
in Eq. (2.4) and bridges the two formulations. 

To derive a set of equations for the C's, choose two 

permutations u~ and UB, set il = ju~III' i2 = ju~12)' ... , in 
= juAln) , II = m uBlI ) , Iz = m uBlZ) , .. " In = m uBln) in Eq. (2.2) 

and sum over all indices. What results is 

where 

flu, 0") = # of cycles in 0'-1 0 0", (2.9) 

(that is, if 0'-1 0 0" has a cycle structure corresponding to (ai' 
a 2, ... , an), thenf(u, 0") = a l + a z + ... + an). 

For n<NEqs. (2.8) are sufficient to determine the Cu u 

uniquely: A, II 

CUA,UB(N) = LXr(UAOuii I)Xr(e)lnlf,.(N). (2.10) 

Here l:r is a sum over all irreducible representations of the 
permutation group Sn' Xr(u) is the character of 0' in the rth 
representation, X rIel [see Eq. (2.11)] is the character of the 
identity element, andfr(N), a polynomial in N of order n 
vanishing at certain integers, is specified below in Eq. (2.12). 
The proof of Eq. (2.10) is presented in Appendix A. Recall 
that there is a one-to-one correspondence between conju­
gacy classes and irreducible representations so that a repre­
sentation, r, of Sn can be characterized by an ordered parti­
tion (AI' .1.2 , ... , Am) (with .1. 1>.1.2> ... >Am) of n in the 
standard manner.z A formulaz for Xr(e) is 

XiJ".A, .... ,A
m

) (e) = n! Il(Ai - Aj + j - WIl(Ai + m - i)l. (2.11) 
i<i I 
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Finally f, (N lis 
m 

f()"').""',).m) (N) = II (N + Aj - i)!/(N - i)l 
;= 1 

= [N(N + 1)···(N +A 1 - 1)] 

X [(N - l)(N)(N + 1) ... (N +A2 - 2)] 

X [(N - m)(N - m + 1).··(N + Am - m)l (2.12) 

Because all the characters of Sn are known (in terms of the 
Frobenius generating function? Eqs. (2.10) and (2.11) repre­
sent a complete solution. They allow the quick calculation of 

any CI"I" ... ,1m (N). For example, if U A ou;; I = e then one need 
only to substitute Eqs. (2,11) and (2.12) to obtain C1n(N). As 
another example, consider Cn (N). Let u be an n cycle. From 
the Frobenius generating function one deduces thatXlq,p 
(u) = ( - l)q and for other representations X (u) = O. Equa­
tion (2.11) gives 

Xtq.p(e) = (n -I)!/q!(p -I)! 

(wherep + q = n). Thus 

C (N) = ~nf ( -1)q (n - 1)! ~ 
n n!q=o q!(n - q -I)! N 

[ 1 1 I] 
X N+l . N+2 ... N+n-q-I 

X[N~1 N~2 '" N~q]' (2.13) 

from which one concludes 

(_1)"-1 (n -I)!(n -I)! 

N(N Z -1)(N 2 -4)-.· (N Z 
- (n -If) n 

n-I 1 1 1 1 X2:-- . 
q=oq! q! (n-q-l)! (n-q-l)! 

(2.14) 

All coefficients, C1 (N), can be calculated in the above 
manner. 

III. RECURSION RELATIONS 

This section presents a complete set of recursion equa­
tions relating the C r's to the C ~ - 1 'So For clarity a super­
script. n, has been appended to the C. 's (i.e. C ~ are the coeffi­
cients for I;:'>. The recursion relations provide an alternative 
method of computation. This method was used, for example, 
in Ref. 4. For small n there is little difference in computa­
tional complexity between the two methods; for large n, 
however, the use of character tables is much more efficient. 

Recursion relations can be generated in the following 
manner: Take the integral in Eq. (2.3) and replace A nand B n 

by A. Y A nand B nA. Y and sum over y (here the A. Yare the N 2 

generators of the Lie algebra ofU(N); they satisfy l:y(A 1)ij 
(A. 1)lm = Ojmojl)' The left-hand side ofEq. (2.4) becomes 

1':_. ({A,B DTrAnBn, (3.1) 

while a variety of terms depending on the trace structure are 
generated on the right-hand side. Here is a summary of what 
can happen under An~A YAn and Bn~BnA. Y: 

(a)lnvariantProcesses: Terms such as TrAnXBn become 
NTrAnXBn and are simply multiplied by a factor of N. Here 
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X stands for any matrix product of A 's and B 's and by fiat 
includes the case, X = the identity matrix, for which TrA n 
Bn~NTrAnBn also. 

(b) Fission Processes: Terms such as TrXAn YBn break 
into two trace terms (fission). i.e., TrYAnXBn~TrYTrAnXBn' 
Here X and Yare arbitrary matrix products of A 's and B 's 
and X may also be just the identity matrix. 

(c) Fusion Processes: Terms such as TrAnXTrYBn, in 
which A" and Bn appear in different traces, fuse into a single 
trace: TrAnXTrYBn~TrYBnAnX. 
Collecting all terms of the form (TrAnBn) X (something) and 
comparing to Eq. (3.1) results in the following recursion 
relations: 

cn-I -Ncn 
1 •• 11 ••••• 1'" - 11 ,/;, ••.•• 1",.1 

+ f (/s)C7",/, ,,/,+1,1,,, •. '/,,,. (3.2) 
5=1 

where (I}> 12 , ... , 1m) is a partition of n - 1. No particular 
ordering is assumed for the Is's and for convenience C7" .. ,/." 
is chosen to be symmetric in the Is indices. The first term of 
the right-hand side of Eq. (3.2) comes from invariant pro­
cesses whereas the second term comes from fission pro­
cesses. Fusion processes do not contribute because they can­
not lead to a (TrAnBn) X (something) structure. 

All terms not of the form (TrA n Bn) X (something) must 
sum to zero and lead to the following consistency conditions: 

1,- • 

o = N C 1 .. 1' •.. .lm + L C I, - 1,1, .• lm.1 
1=1 

m 

+ 2: (Is) C 7. + 1,,1, •... ,1, •.• l m ' 

s=1 

(3.3) 

where (/1,/2, ... , 1m) is any unordered partition of n for which 
I. > 2. The "hat" over Is indicates the absence of that index 
symbol. The three terms in Eq. (3.3) are generated respec­
tively by invariant, fusion, and fission processes. 

Equations (3.3) and (3.2) are the main result of this sec­
tion. They are a complete set which uniquely determine the 
en's in terms of the C n - 1>s. 

IV. THE DE WIT -'t HOOFT ANOMALIES 

In a letter, I De Wit and 't Hooft found poles in a certain 
subset of diagrams at integer values of N when attempting to 
do U(N) integrals in lattice gauge theory calculations. In par­
ticular, they found in low orders poles at N = 1 and N = 2. 
This phenomenon made it impossible to write the contribu­
tion of a high temperature (strong coupling) graph for arbi­
trary N. Separate formulas were needed for N = 1 and 
N = 2. This anomalous behavior in N, they argued, presents 
a serious barrier to performing strong coupling liN expan­
sions and prevents such expansions from approximating fin­
ite values of N. This nonanalytic behavior casts doubt wheth­
er strong coupling large N expansions are relevant. This 
section studies the nature of the De Wit-'t Hooft anomaly. A 
complete description of the anomaly wiIl be given. It will be 
shown that the situation is much worse: not only do simple 
poles occur at all integers, but poles of arbitrarily high order. 

The pole structure is easily analyzed using Eqs. (2.10) 
and (2.12). In fact poles are due to thef,.(N) which vanish at 
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integer values and appear in the denominator of Eq. (2.10). 
Define D" (N) to be the common denominator of the 
e~(N)'s. Using the results of Sec. II: 

D1(N)=N, 

DlN) = N(N 2 
- I), 

D3(N) =N(N 2 -1)(N 2 -4), 

DiN) = N 2(N 2 -1)(N 2 -4)(N 2 -9), 

Ds(N) = N 2(N 2 -1)(N 2 -4)(N 2 -9)(N 2 -16), 

D6(N) = N 2(N 2 _1)2(N 2 -4)(N 2 -9)(N 2 -16)(N 2 -25). 

(4.1) 

A double pole at N = 1 first occurs when N = 6, i.e. in inte­
grations involving six U's and six Ut,s. In general 

"-I 

D"(N) = Nm, II (N 2 - s2r', (4.2) 
s= 1 

where 

ms = The biggest integer such that ms(ms + s)<n. 
(4.3) 

Equations (4.2) and (4.3) imply that the e~(N) coefficients 
will eventually have poles at all integers to arbitrary high 
powers. As an example, for U(3) no poles occur in C ~(3) for 
n = 1,2, and 3; simple poles occur for n = 4-9; double poles 
occur for n = 10--17, triple poles for n = 18-27, etc. In gen­
eral a pole of order f will first occur at N when f (f + N) = n. 

If De Wit and 't Hooft are correct about the nonextra­
polation oflarge N to finite N in strong coupling 1/ N expan­
sions then the results of this section imply the situation is 
infinitely worse. 

V.FINITEN 

For N < n the coefficients C ~(N) are infinite. This is due 
to the poles in N at the integers - (n - I) to (n - I). These 
singularities are the De Wit-'t Hooft anomalies discussed in 
the last section. Of course, the integral in Eq. (2.1) is well 
defined and always finite. The source of difficulty is the lack 
of independence of the index structures in Eq. (2.2) (see Eq. 
(5.2) below]. Similarly, in the trace formalism not all the 
trace structures in Eq. (2.4) are independent [see Eq. (5.3) 
below]. Because an overly determined set oftensor struc­
tures is being used it is natural that singularities occur. 
Hence the formalism of Sec. II appears invalidated for N < n. 
However, Eqs. (2.2) and (2.4), as well as the solution [Eq. 
(2.10)] still work in the following sense: 

ForN xNmatricesM1,M2, ... ,M" andN <nasymme­
trized trace of n matrices, [I." Tr(Mo(l)Mo(2) ... Mo("))] can be 
written as sums of products oftraces ofless than n matrices. 
Examples are: 

TrMIM2 = TrMJTrM2, for N = 1, 

TrM,M2M3 + TrMIM~2 = TrMJM 2 TrM3 

+ TrM~3TrM) + TrM3MjTrM2 

- TrMITrM2TrM3' for N = 2 or N = 1. (5.1) 

When this happens in Eq. (2.4) terms involving traces of 
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more than N matrices can be regrouped into terms involving 
traces less than or equal to N matrices. The e's then combine 
and all poles cancel. Hence by expressing dependent tensor 
structures in terms of an independent set, a nonsingular for­
malism with finite coefficients results. 

Call the process of decomposing a trace into products of 
smaller traces a decay process. The goal is to obtain all decay 
processes. Consider the completely antisymmetric delta 
function on n indices: 

(5.2) 

for which the indices, is andj" take the values 1, 2, ... , N. If 
N < n, antisymmetry in thej,'s implies fj ~:;:::~:: = O. Multiply 
Eq. (5.2) by (MI);,j, (M2)iJ, •.• (M");,j" and sum over all indi­
ces. The following trace identities are generated and repre­
sent a complete set of decay processes: 

partitions 

PI,Ph ·,Pmof n 

X I,(TrMo(l)Mo(2) ... Mo(p,»(TrMo(p, + I) • •• Mo(p, +p,» 

" 
X···X(TrMo(p,+p.+ .. p", ,+I) ... Mo(n»=O, (5.3) 

for N < n, where g" (PI' P2' ... , Pm )/n! [see Eq. (2.5)] serves 
the same purpose as in Eq. (2.4), namely to insure that each 
distinct term on the right-hand side of Eq. (5.3) appears 
once. In Eq. (5.3) 

sign(p\7P2' ... ,Pm)= IT (- l)P; + I. (5.4) 
;= 1 

Equation (5.3) has the following structure: a trace of a prod­
uct of PI M's times a trace ofa product ofp2M's etc. Equa­
tions (5.1) are examples ofEq. (5.3). 

Regrouping traces according to the decay processes of 
Eq. (5.3) modifies the ets as follows: 

C ;"P" ... ,P""/,,[,, .. ,lq (N )-C ;"P" ... 'P."[,,/,, ... ,[q (N) 

g"(/I,12, ... , Iq)g[ (PI,P2' .. ·,Pm) + ' 
gn(PI'P2' · .. ,Pm' 12, 13, ... , lq)(/J - I}! 

X( - W'sign(PI,P2' ".,Pm)C'l"/,, .. ,l)N), (5.5) 

where I) = PI + P2 + ... + Pm,l) mustbegreaterthanN, the 
g's are defined in Eq. (2.5), and (II' 12, ... , Iq) form a partition of 
n whereas (PI,P2' ... ,Pm ) form a partition of I). Equation (5.5) 
can be thought of as the process in which (/1' /2' ... , Iq) decays 
into (PJ,P2' .. ·,Pm' 12, 13, ... , Iq). 

When N < n, keep doing Eq. (5.4) until all the I; in 
C nN) are less than or equal to N. Then this generates a set of 
C ~(N)'s (which shall be denoted C fiN)) without poles in N 
and Eq. (2.4) is valid if one sums only over those partitions (f l , 

/2' ... , 1m) of n such that allis are less than or equal to N. 
For example, if n = N + 1 then C~(~)I-o and 

C ~~:,~ ... ,p," = Cp"P".,Pm (N) 

+ (- It(fI/ - If'+ I)CN + dN). (5.6) 

The decay processes in Eq. (5.5) can be combined with 
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TABLE I. Table of d~. 

~ 2 3 4 5 

3 24 
4 240 2160 
5 1440 15120 161280 
6 30240 967680 21772800 435456000 

the invariant, fusion, and fission processes of Sec. III to yield 
recursion relations for C~(N). For example, for U(2) 

C~~~?. = 2(1 + I)C~~~?." + m(/- m +2)C~(~1,1'" , 

- !m(m -1)(m -2) C~<;~,I""" (5.7) 

for t~o and m~O. 

o = C~(2?,I'" ,1 + (1 +2 m + /)C~~~?, 

m(m -1) CU(2) (5.8) + 2 2',1'· " 

for I> I, m>O, and the last term is absent if m = O. Section 
VII presents the solution to these equations yielding in 
closed form the C ~~:!:s. 

VI. THE INTEGRAL TABLES 

This section computes all U(N) integrals up to n = 6 (i.e .• 
six U's and six U t's) and displays the results in Tables II-VI. 
These tables will be particularly useful in strong coupling 
expansions oflattice U(N) gauge theories and other lattice 
U(N) field theories. Enough information is contained in these 
tables to do computations to at least twelfth order [i.e. , 
(l/g2N)1.2]. 

For N>n, integrals were computed using Eq. (2.10). For 
N < n the "decay" reduction process of Sec. V were carried 
out. 

In reference to Tables II-VI, the C~(NI's have been 
written in fractional form, (numerator)l(denominator). The 
numerators are the entries in the tables. The denominators, 
denoted by d ~, are given in Table I for N < n and are equal to 
Dn (N) [Eq. (4.1)] for N>n. In general, for N < n, the d ~ 
would be defined as 

d~ = [X((N +st']Nmo[)J11(N -stJ (6.1) 

where the ms are given in Eq. (4.3). Hence l/d~ is lIDn(N) 
with the poles at n - 1, n - 2, ... , N + 1, N removed. d ~ 
naturally arises in carrying out the decay processes. The 

TABLE II. The C~(N)'S for n = 2. 

D2(N)C~(N) 

D2(N)C~(N) 

N>2 

N 
-1 
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TABLE III. The C~(N)'S for n = 3. 

N=2 N;.3 

dfC~,1N) 4 N 2_2 
dNCU(S) 

J 1.2 -I -N 
dfC~(N) 0 2 

C~(N),s are written in fractional form to avoid the unpleas­
ant appearance of ratio's of large numbers. 

For n = I, 

C1(N) = C~(N) = liN. (6.2) 

For n = 2-6, the d ~C ~(N)'S are displayed in Tables 11-
VI. 

VII. THE U(2) INTEGRALS 

When N = 1 there is a single coefficient for each n: 

C~.(I), and C~~I) = lin!. The first nontrivial case is U(2). 
The U(2) integrals can be computed by writing the measure 
and integrand in terms of the four parameters needed to de­
scribe U(2): three SU(2) angles and one U(I) phase. Explicit 
integration then gives 

C U (2) _ m!( -I)' 
1 .... 2' - (n + I)! 

n-U 1 

X L 1'1« _ )/2)'« _ )/2 _ 1 )'2«n - r)/2 - ') , r = 0.2.4 .... if n is even • n r . n r . 
r = 1.3.5 .... if n is odd 

(7.1) 

where n = m + 2/. These coefficients represent the complete 
solution to Eqs. (5.7) and (5.8) and the U(2) integral. 

Table VII summarized the U(2) coefficients up to 
n = 12. To avoid ratios oflarge fractions (n + I)! C~S21, is 
shown. Columns one, two, and three specify n, m, and 1 (of 
course n = m + 21) and column four displays 
(n + I)! C~S~l" 

VIII. THE GENERATING FUNCTION 

This section studies the generating function 

/(AB) = JduexP[P'TrAU +p'TrBUt], (8.1) 

where A and B are arbitrary matrices. / (AB ) is a function 
only of the invariants TrAB, TrABAB, '" Such an integral is 
interesting for several reasons: 

TABLE IV. The C ~(N )'s for n = 4. 

N=2 N=3 N>4 

d:C~(N) 17 55 N 4 _8N2 +6 
d:C~~~) -3 -18 _N3+4N 

d:C~\N) 0 7 2N2 -3 
d:C'!(N) I N 2 +6 
d:C~(N) 0 0 -5N 
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TABLE V. The C~(~)'s for n = 5. 

N=2 N=3 N=4 N>5 

d;C~:IN) 37 151 384 N S 
_ 20N 3 + 78N 

d'C"IN) 
5 1'.2 -5 -38 -130 - N 4 + 14N2 -24 

d ~·C ~~~:~ ) 0 10 64 2N 3 -18N 
dNClI'N) 

5 \.2' 32 N'-2N 
d"ClIIN) 

5 \.4 0 0 -26 -5N 2 +24 
d;'C~\") 0 -2 -2 _2N2 -24 
d5\'C~J(.\') 0 0 0 14N 

(a) It appears as an intermediate integration in lattice 
U(N) gauge theories and other lattice U(N) field theories. 
For example, the calculation of I (AB) would be the first step 
of a real space renormalization program in which a set oflink 
variables were integrated out. This integral also arises in oth­
er approximation methods such as that of Ref. 4. 

(b) Often simple integrals [such as Eq. (S.l)] are studied 
to gain insight into higher dimensional field theories. For 
example, similar one variable integrals can be used to count 
the number of Feynman graphs. 

(c) When A equals B equals I, the identity matrix, the 
integral in Eq. (S.l) becomes the vacuum functional for the 
two-dimensional lattice U(N) gauge theory5.6 and is exactly 
solvable for all N,6 In this model.B' = 1!g2, where g is the 
gauge field coupling constant. Thus I (AB ) contains as a sub­
case an interesting model. 

(d) Knowledge of I (AB ) is commensurate to knowledge 
of all the integrals in Eq. (2.1): differentiating I (AB) with 

respect to A :: ,A ;:' ... , A;::, BJ:n, , B~" ... , B;;,,, and setting 
A = B = 0 yields Eq. (2.1). This is why I(AB) is called the 
generating function. 

In general 

I(AB) = exp{N2n~1 (fJ~2n 

x 
ul,u.z, .... u" 

U 1 +2a l + ". + nail = n 

(8.2) 

TABLE VI. The C~'N)'S for n = 6. 

N=2 N=3 N==4 

d~C~.IN) 246 3498 17890 
d~C~':~) -27 -726 - 5024 
d~C~.)~) 0 144 2044 
d~C~i.~,) 4 118 986 
d~C~,(Z) 0 0 - 586 
dNClI(NI 

I) 1,2,3 0 - 36 -149 
d~C~I{') 0 0 0 
d~C~.IN) -1 -2 - 288 
d NCU'N) 

6 2,4 0 0 94 
d~C'/.INI 0 18 22 
d~C~IN) 0 0 0 
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where.B =.B 'IN ( = 1!g2Nfor gauge models) is the real ex­
pansion parameter and (aI' a 2 , ... , an) (with some as = 0) 
represents the partition ofn of the form (la" 2a " ... , na

,,). The 
N 2 in front of the sum indicates that for largeN the "vacuum 
energy" is proportional to N 2

, that is, the coefficients, 
C ~ (N), satisfy 

C~(N)N(2n-2)~onst + O(1/N2), (S.3) 
as N~ 00 • The superscript, c, on C ~ (N) stands for connected 
part. The C ~ (N) can be recursively related to the C ~(N), are 
the analogs of the contribution from connected Feynman 
graphs, and appear in the exponent because connected vacu­
um bubbles exponentiate. 

For n = 1 and N = 2 

C~(N) = 1, 

C~,(N) = 1!(N 2 -1), 

C~(N) = -1!(N 2 -1). (S.4) 

Tables VIII, IX, and X display the results for n = 3,4, and 5. 
After the completion of this work, another manuscript by 
Bars appeared which also obtains the generating function to 
.B 10.7 

IX. DISCUSSION OF LARGE N AND DE WIT -'t HOOFT 
ANOMALIES IN TWO-DIMENSIONAL LATTICE U(N) 
GAUGE THEORIES 

The two-dimensional U(N) lattice gauge theory is ex­
actly solvable for all N finite6 or infinite.5

.
6 This provides a 

framework in which questions about large N and De Wit­
't Hooft anomalies can be answered. Consider large N first. 
Reference 6 has thoroughly analyzed the large Nbehavior, 
so only the impact on strong coupling expansions will be 
discussed. LetI N (.B) = I (AB) [Eq. (S.1)] for A = B = the 
identity matrix. Define 

rN(.B) = (1!N 2)lnIN(.B) = f .B 2ncn(N), 
n = 1 

roo (.B) = lim rN(.B), 
N--+oo 

(9.1) 

and 

rp.N(.B) = f .B 2ncn (N). (9.2) 
,.,=1 

N=5 N>6 

69562 N 8 _ 41N 6 + 458N 4 1258N2 + 240 
- 21850 - N7 + 33N s - 254N 3 + 342N 

11182 2N 6 
- 51N 4 + 229N 2 

- 60 
6722 N 6 

- 19N 4 + 58N 2 - 160 
- 5750 - 5N s + 93N 3 

- 208N 
- 2650 - 2N s + 5N 3 + 1I7N 

2352 14N4 - 154N 2 + 140 
-450 _ N S _ N 3 - 358N 

142 5N 4 + 75N 2 + 40 
52 4N4 + 116N 2 - 360 

0 - 42N 3 + 42N 
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TABLE VII. The C~121'S up to n = 12. 

n m (n + 1)!CY~:;, 

1 0 

2 0 2 
2 

0 -1 

3 0 4 
3 

-1 

4 0 81/2 
4 2 1 -11/2 

0 2 1/2 

5 0 181/2 
5 3 1 - 21/2 

1 2 1/2 

6 0 41 
4 1 - 41/2 

6 
2 2 2/3 
0 3 - 1/6 

7 0 92 
5 1 - 81/2 

7 
3 2 1 
1 3 - 1/6 

8 0 2083/8 
6 1 - 165/8 

8 4 2 15/8 
2 3 - 5/24 
0 4 1/24 

n m (n+ II!Cy!':;, 

9 0 4753/8 
7 1 - 33 5/8 

9 5 2 219/24 
3 3 - 7/24 
I 4 1/24 

10 0 10903/4 
8 1 - 68 3/8 
6 2 5 

10 
4 3 - 53/120 
2 4 1/20 
0 5 - 1/120 

II 0 25141/2 
9 1 - 1423/8 
7 2 91/4 

11 
5 3 - 17/24 
3 4 1/15 

5 - 1/120 

12 0 58195/16 
10 I -3007/16 
8 2 179/16 

12 6 3 -13/16 
4 4 23/240 
2 5 -71720 
0 6 1/720 

Equation (9.1) defines Cn (N). r N(fJ) is the vacuum energy 
density per degree of freedom for the two-dimensional U(N) 
lattice gauge theory. rp,N( fJ) is the strong coupling approxi­
mation to r N( fJ) to pth order. Take the large Nlimit ofEq. 
(9.2); write cn (N) as 

cn(N) = 1: cn,m(lIN2t. (9.3) 
m=O 
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TABLE VIII. The C~(N)'s for n = 3. 

N=2 N>3 

CHN) 
2 8 
3 (N 2 

- I)(N 2 
- 4) 

Cf,2(N) 
I -12 
2 (N 2 _ I)(N 2 - 4) 

q(N) 0 
4 

(N 2 
_ I)(N 2 

- 4) 

As long asp <N no anomalies occur, Cn (N) is a ratio of poly­
nomials in N and the expansion in Eq. (9.3) can be done. 
Large N replaces the coefficients cn (N) in rp•N by cn,o ofEq. 
(9.3): 

rp,oo (fJ) = f fJ 2ncn.o• (9.4) 
n=l 

Equation (9.4) is the strong coupling large N approximation 
to pth order. For sufficiently large fJ (fJ > D the series in Eq. 
(9.4) does not converge to roo (fJ) in Eq. (9.2) asp-oo. In 
other words 

lim ( lim rp,N(fJ»)"" lim (limrp.N(fJ»)=r 00 (fJ) (9.5) 
p--oo N_<XI N-oo p--oo 

for fJ>!. This is deduced from the large N results of Refs. 5 
and 6 and the fJ expansion of r [see Eq. (9.10)]. What does 
Eq. (9.5) say about strong coupling large N calculations? 
rp,N is what one computes in the strong coupling lattice ex­
pansion to order p. In the large N limit, rp,oo is obtained and 
is a bad approximation (for sufficiently large fJ) to the exact 
large Nlimit [the right-hand side ofEq. (9.5)]. One is ulti­
mately interested in weak coupling (in g and hence large fJ) 
so that a continuum limit can be taken. The large N strong 
coupling expansions give erroneous results in precisely the 
most interesting region. Thus strong coupling liN expan­
sions are of virtually no value. This does not mean that the 
liN expansion fails; it means that if liN expansions are to 
succeed that they must be done nonperturbatively in p. 

Roughly what is going wrong can be seen in Sec. VIII. 
The liN 2 corrections in the C~ (N) get big as n gets big. For 
example, consider C ~ (N) which is just N (n - 1)! times 
Cn(Nl [Eq. (2.14)]. The ratio of the leading contribution of 
C~(N) to the lIN 2 correction is precisely 

Correction to C ~ (N) in large N 

= Ctllm2)/N2-n3/N2. (9.6) 

Other connected coefficients seem to have similar correc­
tions. The liN 2 corrections become uncontrollably large as 
n increases. 8 Even for n < N, 1/ N 2 corrections grow like N if 
n is close to N. Of course nth order corrections are important 
only if p is sufficiently large. This explains Eq. (9.5). Of 
course, De Wit-'t Hooft anomalies enter in the right-hand 
side ofEq. (9.5) but are absent from the left-hand-side and 
also ruin large N. These two effects are intimately related 
since the reason for Eq. (9.6) is a tower of poles in Nat 
- (n - 1) through (n - 1). 
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TABLE IX. The C~(N)'s for n = 4. 

N=2 N=3 N>4 

C;.(N) 
7 171 144N2 -216 -
15 320 (N 2 _ 1)2(N2 _ 4)(N 2 _ 9) 

C;",(N) 
I III -288N 2 +432 

15 160 (N 2 _1)2(N 2 _4)(N 2 -9) 

q,(N) 0 I 120 --
6 (N 2 -1)(N2 -4)(N 2 -9) 

Q,2(N) 
17 -11 54N 2 -126 --
60 320 (N 2 _1)2(N 2 -4)(N 2 - 9) 

0 0 -30 q(N) 
(N 2 -1)(N 2 _4)(N 2 -9) 

Now consider the effect of De Wit-'t Hooft anomalies 
on the strong coupling expansion. One's attitude might be as 
follows: the connected coefficients, C f(N), are ratios of poly­
nomials in N. They have poles at N = 1,2, ... , (n -1) and a 
completely different set of C f(N )'s must be used for N < n. 
However, by expanding in a power series in 1/N 2

, terminat­
ing it after several orders, and extrapolating to N < n, the 
connected coefficients become finite. One might hope that 
via this extrapolation strong coupling contributions com­
bine to give reasonable results and that 1/ N corrections im­
prove on this, thereby bypassing the De Wit-'t Hooft prob­
lem. It will be shown that this does not happen. Define 

r(l) ({3) - _1_ .f.. {3 2nc (97) 
p,,", - (N 2)1 n?t n,I' • 

r ~~~ ({3) is the 1 th contribution in the 1/ N 2 strong coupling 
expansion. For {3 sufficiently large r ~~~ ({3) is a bad ap­
proximation to exact results. One might hope that the 1/ N 2 

correction, r ~~~ ({3), rectifies the situation (for {3 > !) both 
for finite and infinite N and improve results for {3 < !. 
Amazingly 

r~~(oo)=O forall/;;;.1. (9.8) 

In the two-dimensional model in a strong coupling expan­
sion all 1/ N 2 corrections are zero. It is impossible to bridge 
the gap between infinite N results and finite N results. Al­
though a strong coupling 1/ N expansion is a reasonable ap-

TABLE X. The C~(N)'s for n = 5. 

N=2 N=3 N=4 

62 51 - 304 
C;.(N) 

45 140 945 

Ch(N) 
28 -9 110 - - -
9 56 189 

11 -194 
C;',J(N) 0 --

168 945 
3 -17 - 33 

q,2,(N) --
2 56 280 

0 0 
I 

q,.(N) 
24 

q,(N) 0 
17 41 - --
168 3780 

q(N) 0 0 0 
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proximation for {3 < ~, there is no way to improve on this by 
taking into account 1/ N 2 corrections. In higher dimensions, 
Eq. (9.8) does not hold and some improvement can be ob­
tained by treating 1/N 2 corrections; however, many contri­
butions are still ruined by trying to extrapolate due to the De 
Wit-'t Hooft anomalies. 

Equation (9.8) is proved by using the definitions of 
Ct (N) andfr(N) in Appendix A. The contribution in nth 
order [obtained by expanding the exponent in Eq. (8.1) and 
picking out the term proportional to ({3 '2t1 is (for n < N) 

Jd U ({3 'fn (trUntrUtr 
n!n! 
( {3')2n 

=--
n!n! L gn (a)n!C

a 
(N )N a , + a, + ... + a" 

parllhom, 

alOa1.···.a" 
u, + 2(1, + ... + na,,= n 

= ({3 ')2n L C (CT)N [Iu) 

n! a 

= ({3')2n LL Xr (e)Xr (CT)N[iu) 

n! u r n!fr 

= ({3'f
n[L Xr(e)Xr(e)]. 

n! r n! 
(9.9) 

The term in brackets is 1. The nth contribution is just the 
exponentiation of the first order contribution: r ~~~ ({3) = 
{32 for all p and r ~~ ({3) = 0 for all p and 1;;;.1. The first 

N>5 

4224N2 - 13824 

(N 2 - i)'(N 2 - ~(N2 - 9Jk6
2 

- 16) 
- 10560 2 + 34 

(N 2 - II'(N 2 - 4l(N 2 - 9)(N 2 - 16) 
4800N - 9600 

(N 2 _ II'(N 2 - 'V(N 2 - 9)(N 2 - 16) 
4320N - 18720 

(N 2 _ 1)2(N2 _ 4;(N 2 - 9)(N 2 - 16) 
- 680 

(N 2 
_ I)(N 2 - 4W2 

- 9~2 - 16) 
_ 1440 2 + 62 

(N 2 _ II'(N 2 - 4)(N 2 - 9)(N 2 - 16) 
336 

(N 2 _ I)(N 2 - 4)(N 2 - 9)(N 2 - 16) 
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contribution to rp•N ( P) beyond {32 occurs when the first 
anomaly appears (i.e. atp = N + I): 

rN(p) = p 2 + ! Qp(N) {32n. (9.10) 
p=N+1 

For finite N, the exact high temperature expansion begins 
with a p 2 term but the next term does not appear until the 
(N + l)th order in P 2. This explains the statement in Ref. 6 
after Eq. (50). Equation (9.10) shows why all 1IN 2 correc­
tions vanish as N-+ ~ and shows how the De Wit-'t Hooft 
anomalies ruin a 1IN 2 strong coupling approximation. 
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APPENDIX A 

The proof of Eq. (2.10) given below is due to Frits 
Beukers. Let A., p" V, 0', and r be permutations and let e be the 
identity permutation. DenoteF (0') = N f(a) where/(u) is the 
number of cycles in u. Let lJa,e be the delta function of Sn, 
that is 

8 ={lifu=e . 
a,e 0 otherwise 

Important ingredients in the proof are: 
(a) Uniqueness of the solution, Ca"a,. ofEq. (2.10); 
(b) F(u) = F(TOuOr- I), 

F(er l
) = F(u); 

(c) Orthogonality relations for the characters of Sn: 

Dr(u-IoP,I.X,.,(u) = n(l) lJr,.,X,.,(Jl). 
a xre 

Equation (2.8) reads 

"iC!-',vF(uoJl-I)F(TOV-I) = F(UOT- 1
). (AI) 

p"v 

It is easy to see that C!-'OA.."oA. also satisfies Eq. (AI) by plug­
ging it in, changing summations to Jl-p,0A. -I and V--W°A, -t, 
and using (b) above. Uniqueness [(a) above] implies C!-'.v 
= C!-'OA..VOA. so that C!-"v is a function of p,0v- I, which will be 
denoted by C(pOv- I). Take Eq' (AI), shift the summation 
variable p to pOv, and set T = e to get an equation for C (p) 

(A2) 
!-',v 

Equation (A2) can be satisfied if 

"iC(p,)F(UOv-IOp-l) = lJuov',e' (A3) 
p. 

and by uniqueness this must be the solution. The new equa­
tion to solve is 

IC(p,)F(uOp-l) = lJ",e' (A4) 
p. 
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It immediately follows from (A4) that C(p) = C(TOpOT- 1
) 

and C( p) = C( p-I). C( Jl) is ac1ass function. Equation (A4) 
is a group convolution of class functions and therefore dia­
gonalizes by group Fourier transform, i.e. by writing all class 
functions in character expansions: 

C(p) = "iCrXr(Jl), 
r 

F(UOJl-l) = LF"X,,(UOp,-I), (AS) 
1" 

lJa,e = L c5rXr(u). 
r 

Here Cr , F" lJr represent the Fourier components of C, F, 
and lJ. Plug Eqs. (AS) into Eq. (A4) and use orthogonality 
[(c) above]: 

nt 
"LCrFr --Xr(u) = "LlJ,X,(u), (A6) 
,X,(e) , 

or 

Cr = lJ,//,., 

where by definition 

/,. = F,n!lX,(e). 

(A7) 

(A 8) 

F, andlJ, are determined by taking the inverse Fourier trans­
form of Eqs. (AS): 

I 
lJr = - Xr(e), 

n! 
1 

Fr = - IXr(u)F(u). 
n! " 

Summarizing, 

Xr(e) 
C(u) = "L--X,(u), 

r n'/r 

/,. = I Xr(u)F(u). 
a Xr(e) 

(A9) 

(A 10) 

(All) 

Equation (AIO) is precisely Eq. (2.10). The author has 
guessed the solution ofEq. (All), namely that/,. is given by 
Eq. (2.12). This has been verified up to n = 7 but a general 
proof of Eq. (2.12) is laci-:!ng. 
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The integrable evolution equations imbeddable in SU (2) are shown to have two gauge equivalent 
forms; the AKNS form, and a spin form for which the field is a three-dimensional vector of unit 
length. These equations are the compatibility conditions for the existence of a bilocal Lie group in 
two distinct frames of reference. These frames are associated with moving bases on surfaces 
formed by the motion of the strings introduced by Lamb. Both forms of the evolution equation are 
derivable from a locality assumption for the generators of the bilocal Lie group. The assumption is 
sufficient to distinguish between integrable and nonintegrable systems imbedded in SU (2). 

The interpretation of soliton equations as the compati­
bility condition for the existence of a Lie groupl suggests at 
the same time a direction in which one might be able to 
extend the structure these equations manifest to higher di­
mensions and a cohesive perspective for interpreting the in­
sufficiently understood aspects of these equations in two di­
mensions. The latter set of concerns is of interest in its own 
right. The equivalence of the nonlinear Schrodinger equa­
tion and the continuum limit of the classical Heisenberg 
chain,2 two systems shown independently3.4 to be integrable 
by inverse scattering methods and of independent interest as 
descriptions of apparently diverse physical systems, is an 
example of what we regard as an insufficiently well under­
stood aspect of two particular soliton equations. We will 
show, making use of the Lie group perspective that this 
equivalence is in fact a general feature of a class of soliton 
equations [those that can be imbedded in SU (2)]. That is, 
that the equations have two forms, a "¢ form," in terms of a 
complex field, which is the familiar form for most of the 
historically important examples, and an "s form," in terms 
of a unit vector on a sphere S(x,t ). 

The two forms of the equation correspond to the com­
patibility conditions for the existence of a group manifold 
expressed in two different bases. These bases arise naturally 
in giving the structure of the equations a geometrical inter­
pretation. The spin vector is the tangent in the space direc­
tion of a particular one of a family of surfaces associated with 
each solution of the equations. The S form of the equation is 
associated with a coordinate system fixed in the three dimen­
sional space in which the surface is imbedded. The ¢ form is 
associated with a coordinate system whose orientation is de­
termined by the tangent curve on the surface in the x direc­
tion and a free parameter that is the eigenvalue of the inverse 
scattering method. 

The S form may be constructed from the I/! form by an 
algorithm that we will present in the case that they are evolu­
tion equations, i.e. 

(0.1) 

We conjecture that there is a spin equation for all the equa­
tions that can be imbedded in SU (2), even those, such as the 

sine-Gordon equation which are not evolution equations, 
and, indeed there is such an equation for the sine-Gordon 
example. This turns out to be the same equation derived 
previously by Pohlmeyer.5 After completing this work, we 
became aware that Zakharov and Taktajan6 had obtained 
the transformation given by our algorithm for the particular 
case of the nonlinear Schrodinger equation and Heisenberg 
model. 

We show in addition that a certain locality condition 
suffices to distinguish between integrable and nonintegrable 
equations imbeddable in SU (2), and suffices, furthermore, 
to produce the associated linear operator in the case that 
they are integrable. The "squared eigenfunctions" of the lin­
ear problem have a natural geometric interpretation here. 

The Hamiltonian structure of the equations is also in­
teresting. If Hn is a sequence of conserved densities, corre­
sponding to a hierarchy of integrable equations in their ¢ 
form, so that the nth equation of motion is 

a¢ . Hn +2 
- = -1---
at a¢· 

then the corresponding spin equation is 

as _ S I>Hn 
at - X I>S ' 

where Hn is the nth conserved density of the ¢ form of the 
equation, expressed in terms of S (and the nth conserved 
density of the S form as well). 

We begin in Sec. I with a review of the connection be­
tween the geometrical interpretation of the soliton equations 
and the significance of the equations as the compatibility 
conditions for the existence of a bilocal Lie group. The con­
struction that defines S(x) is given, and the relationship to 
the work of Lamb? on the motion of strings, and the later 
work by Lund8 and Sym and Corones9 is made explicit. 

Section II shows how one may construct the "s form" 
given the linear problem of the "I/! form." 

Section III gives the construction of the linear problem 
for a given evolution equation, and gives a criterion by which 
one can decide if the equation has an inverse scattering the­
ory or not. The example of the modified KdV equation is 
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worked out in detail. A method of calculating the S form of 
the equations directly is given. 

Section IV discusses the sine-Gordon example and its 
spin equivalent, and makes contact with the work of 
Pohlmeyer. 

Section V discusses the relation between the Hamilton­
ian structures of the two equations. 

I. GEOMETRICAL INTERPRETATION 

Suppose we have a surface in R 3, parametrized by co­
ordinates (s,t ), where ds is taken to be the arc length along a 
coordinate curve for fixed t. That is a vector function X(s,t ) 
such that Id XI dsl = 1. Each coordinate curve for fixed t 
may be regarded as the position of a space curve, and the 
surface regarded as the locus of the curve as it moves in time. 
At each point of this space curve, we can define the Serret­
Frenet basis, i.e., an orthonormal coordinate system in R 3, 

determined by the three unit vectors t, D, b. 

t= ax 
- as' 

D==K - 1 ~:, K = I : I, 
b = tXD. 

The torsion of the curve is defined by 

ab 
-=-m 
as 

from which it follows that 

~ =7b-Kt. 
as 

(l.1a) 

(l.1b) 

(l.1c) 

(1.2) 

(1.3) 

(1.lb), (1.2), (1.3) are called the Serret-Frenet equations, 
and give the evolution of the basis vectors as one moves along 
the curve in terms of two functions K and 7, the curvature 
and torsion at each point. 

If we pick two points (so,to) (s,t), then evidently there is 
a unique rotation that takes us from the Serret-Frenet basis 
at (so,to) to the Serret-Frenet basis at (s,t ). Denote this ab­
stract element of the rotation group by g(s,t; so,to). Ifwe pick 
a third point (s',t '), then the rotation that takes the basis at 
(so,to) into that at (s',t ') must be the same as that which is 
obtained by first transforming to (s,t ) and then transforming 
to (s' ,t '), i.e., 

g(s',t '; so,to) = g(s',t '; s,t) g(s,t; so,to). (1.4) 

This must be true for every point (s,t ) and defines bilocal Lie 
group, here the rotation group in three dimensions, intro­
duced by Corones, Markovski, and Rizov l (see Fig. 1). 

We now imagine specifying not the surface, but the gen­
erators of the group at each point (s,t ) K and 7' for instance 
can be used to parametrize the generator in the s direction, 
and there will be two additional functions that will specify 
the generator in the t direction. To be specific, we will repre­
sentg as an element ofSU (2), two-dimensional unitary ma­
trices with trace 1. 

Then g(s,t; so,to) can be obtained by integrating 

gs (s,t; so,to) = A (s,t ) g(s,t; so,to) g(so,to; so,to) = I, 

g, (s,t; so,to) = B (s,t) g(s,t; so,to), (1.5) 
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g(SI,t'; s,t) 

t I 

FIG. I. A surface defines a bilocal Lie group and vice versa g(s,t; so,to} 
rotates the basis at so,to into the basis at s,t. 

where A (s,t) and B (s,t ) are elements of the Lie algebra of 
SU (2) i.e. can be represented as linear combinations of the 
2 X 2 anti-Hermitian matrices a j they satisfy 

[a;.a j ] = Ejjkak· (1.6) 

.Specifically, a representation for the a j is 

a l = d ~ 1 ~]. a2 = d~ ~], a 3 = ~ [~ 

and 

A (s,t) = .2: A,(s,t)a;. B (s,t) = 2: Bj(s,t )a;. 
t= 1 ;= I 

(1.8) 

where theA;. B j are real functions. 

We will write expressions such as (1. 8) that map a vector 
field into the Lie algebra as A = A-a. To obtain the inverse 
mapping, we observe that 

a~ = -1/41, 

aja j = - a ja;. i=/=j, 

so that 

Aj = -4Tr (Aa;}. 

We note that 

AB + BA = - !A·B 

and 

AXB-a = [A,B]. 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

The specification of two vector fields A(s,t) B(s,t) then 
serves to defineg, and, one may show, a surface that is associ­
~ted with g. Of course, one must be able to simultaneously 
mtegrate both equations, that is, they must be compatible, so 
we are not free to choose A and B arbitrarily. The compati­
bility condition is simply 

ag ag 
asat = at as' (1.13) 

which implies 

(1.14) 
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If A and B satisfy (1.14), then one can obtain a g which has A 
and B as its generators. 1 

The known soliton equations can all be written in the 
form (1.14), for perhaps a different group, where A and Bare 
parametrized by the field, perhaps complex, that satisfies the 
soliton equation. That is, 

A (s,t) = A (t/J,t/J*,t/Js,t/J~,t/Jss"') 

and similarly for B, and then (1.14) is equivalent to the soli­
ton equation for f/!{s,t). This is what we mean by imbedding 
the soliton equation in a group. 

We think it is important to point out that equations that 
are not soliton equations can also be put in this form. In fact, 
if we regard the surface as being traced out by a moving space 
curve, as in the work of Lamb, then it is clear that we will 
obtain a surface whatever the equation of motion for the 
curve, while only rather special types of equations of motion· 
produce solitons. What makes these equations special is 
their relationship with a free parameter in the theory, the 
eigenvalue of earlier works. 

The role of this parameter is not well understood in the 
present context. We will here introduce it in an ad hoc fash­
ion by defining A to be of the form3 

A (s,t) = A-az - (i/2)f/!{s,t )a - + (i/2)t/J*(s,t )a + , 

(1.15) 

where a ± = ax ± ia y' This is almost the most general form 
for A, we have only restricted the coefficient of az to be a 
constant, independent of x and t. t/J will be closely related 
with K and T in a manner we shall see shortly. Ifwe want to 
represent the most general equation of motion for the space 
curve, we can parametrize B as 7 

B (s,t) = R (s,t)az + (i/2)r(s,t)a - - (i/2)r*(s,t)a + , 

(1.16) 

where r(s,t ) = rl t/J 1, and the bracket I 1 denotes "a func­
tional of." The compatibility conditions together with the 
commutation relations for the a j imply the two equations 

R s = (i/2)[ rt/J* - t/Jr*], 

t/J, +rx -iA-r-it/JR =0. 

(1.17a) 

(1.17b) 

[The third equation given by (1.14) is the complex conjugate 
of(1.17b).] (1.17a) determinesR, molulo an integration con­
stant, in terms of t/J, and (1.17b) is an equation of motion for 
t/J. rmay also depend uponA-, and it is one of the remarkable 
feature of soliton equations that the dependence on A- cancels 
out of (1.l7b) with an appropriate choice of the integration 
constant in (1. 17a), and the A- dependence of r. We do not, 
however, need A- at all to describe an arbitrary motion of the 
space curve, and if we set A- = 0 and let r be an arbitrary 
functional of t/J, we can still obtain the equation of motion for 
t/J that will generate the surface determined by the choice of 
r. It is not therefore, the ability to imbed equations of motion 
as the compatibility conditions for the existence of a surface 
that is the distinguishing feature of soliton equations, but 
rather the existence of a family of surfaces, corresponding to 
different values of the free parameter, all having the same 
equation of motion for the compatibility condition. 
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Lamb7 gives various choices for the functional r that 
lead to different known soliton equations and we refer the 
reader to his paper for examples. 

We will now show the connection between t/J and K and 
T. (t/J in fact turns out to be the same function as defined by 
Lamb). 

Consider a coordinate system fixed at (so,to)' Then g(s,t; 
so,to) provides the transformation of a vector, v, in this co­
ordinate system to one in the rotated frame, v', by 

v' = gvg -I, (1.18) 

where v = voa, v' = v'oa. For the tangent vector t(s,t ) pre­
viously introduced, we require that t' = i, i.e., g describes a 
transformation to a basis where the z axis coincides with the 
i axis of the Serret-Frenet basis. Then 

t (s,t ) = g - I(S,t; so,to)azg(s,t; so, to)· 

We define also 

(1.19) 

N ± (s,t ) = g - I(S,t; so,to)a ± g(s,t; so,to)' (1.20) 

The vectors associated with t, !(N + + N -), !i[N -
- N + ] form an orthonormal basis and, as elements of the 

Lie algebra, these matrices satisfy the same commutation 
relations as do the ajO i.e., 

[t,N±] = +iN±, [N+,N-] =2it. (1.21) 

This basis differs from the Serret-Frenet basis only by a 
space dependent rotation about t. The magnitude of this ro­
tation is determined by T and A-. To make the identification 
complete, note that we have 

ts =g-l[az,gsg-l]g=g-l[az,A]g 

= H t/JN + + t/J* N - ], (1.22a) 

N s± =g-I[a±,gsg-I]= ±iA-N± -{;}t. (1.22b) 

While the Serret-Frenet equations imply 

ts =KD, 

(1.23) 

![n ± lb] = =FiT[n ± lb] -Kt. 

(1.23) and (1.22) are equivalent if we make the identification 

t/J(s,t) = K(S,t )exp{ - if': [T(S',t) + A- ] dS'}, 

N ± (s,t) = [n(st) ± lb(s,t )]ou 

X exp{ ± i E:: [(s',t) + A- ] dS'}, 

t (s,t ) = t(s,t loa. (1.24) 

(1.24) differs from Lamb's work only in that A- is called - To 
there. The transformation that maps the Serret-Frenet basis 
at (so,to) onto the Serret-Frenet basis at (s,t ) is generated by 

A '(s,t ) = [ - r(s,t )az + K(S,t )a y ]. (1.25) 

The two generators are related by a gauge transformation. 
That is, if g(s, to; so,to) is the solution of (1.5) with the A of 
(1.15), and g'(s,to; so,to) is the solution of (1.5) with the A ' of 
(1.25) then 

g'(s,to; so,to) = g I(S,to; so,to) g(s,to; so,to), 
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with 

gl(s,to; so,to) = exp{ - f::~ [7'(s',to) + A Jaz dS'} 
(1.26) 

and A ' and A are related by 

A '(s,t) =gl,sgl-I +gIAg1 -
1

• (1.27) 

II. EXISTENCE OF INTEGRABLE SPIN EQUATIONS 

We have seen that associated with each soliton equation 
that can be imbedded in SU (2) there is a family of surfaces, 
characterized by the eigenvalue parameter A. The wavefunc­
tion t/I that satisfies the soliton equation parametrizes the 
generators of the bilocal Lie group associated with the sur­
face and determines directly the infinitesimal rotation angle 
in a basis closely associated with the Serret-Frenet basis. We 
wish to show now how to construct the equivalent spin 
equation. 

For evolution equations, that is, equations of the form 
(0.1), this construction is an algorithm, and leads to spin 
equations of the form 

as , aB - =SXK(SS ... ) = -(SS ... ) at ' x ax' x , 
(2.1) 

where we will determine K I and B explicitly in terms of K. 
For the sine-Gordon equation, 

a2t/1 - = sin t/I (2.2) 
axat 

there is an equivalent spin equation with the spin vector" 
identified in a similar way, although there is no algorithm for 
obtaining it. (We will call the variables of the previous sec­
tion x henceforth.) 

We define 

S (x,t) = go -1(X,t ;xo,to)azgo(x,t ;xo,to), (2.3) 

where 

go,x (x,!; xo,to) = [ - (i/2)¢(x,t )a - + (i/2)t/I*(x,t )a + ] 

xgo(x,t; xo,to) (2.4) 
and 

go(xo,(o;xo,to) = I. 

That is, S(x,t ) is the tangent vector to the surface generated 
with the parameter A = 0, and with the tangent vector t at 
xo,to oriented along the z direction in a basis fixed in R 3• 

The Serret-Frenet equations, in the form (1.22) with 
A = o become 

Sx = Ht/lN + t/I*N + J. 

Since 

(N + )2 = (N -)2 = 0, 

while 

[N + N - + N - N + ] = - I, 

(2.5) 

Also 

Sxx = Ht/lx N - + t/I:N + J -1t/lj 2S, (2.7) 

[Sx'Sxx] = + (i/2)[t/I:t/I - t/lxt/l*]S= - K2rS (2.8) 

and sinceS 2 = - i, 
(2.9) 

(2.6) and (2.9) are Lakshamanan's equations2 relating Sand 
t/I. They permit the inversion of (2.3), (2.4) to obtain t/I in 
terms of S. For the nonlinear Schrodinger equation, Laksh­
manan was able to use them to show the equivalence of the 
soliton equation in the t/I form and the equation in its S form, 
the Heisenberg chain, by direct substitution. This procedure 
requires that one know the spin equation thought to be 
equivalent to the equation in its t/I form, and is not suitable 
for determining the spin equation. It also does not reveal the 
connection between the linear problems of the two forms of 
the equation, which in fact are related by a gauge 
transformation. 

From (2.4) we have 

as -I [ -I J Tt = go az,go.1 go g. (2.10) 

But 

gO.1 go - 1 = B (t/I.A = 0) = B(t/I.A = O)'a, 

where by B (t/I.A) we mean a matrix of the form 1.16. Hence 

as = [S,go-IB(t/I.A=O)go] = [S,K'!S)], (2.11) 
at 

whereK [ S J is obtained by using the Lakshmanan equations 
to eliminate t/I in (2.4). 

(2.11) shows in principle that there is an S form of the 
equations, although the means of calculating K I (S I is so far 
purely formal. Furthermore, there is no reason to suspect 
that K'(S,Sx ... ) will be a local function of S, i.e., involve only 
S and its derivatives. In fact, it appears that this is only the 
case if the original equation was a soliton equation, although 
one could in principle construct B as a functional of S, using 
the Lakshmanan equations, for any evolution equation. This 
locality requirement is tied up with the in variance of the 
form of the equation to a choice of A in ways that are not 
clear to us at the moment. 

(2.11) may also be interpreted as the compatibility con­
ditions for the existence of a surface, in a frame related to 
that in which we have expressed the generator (1.15) (which 
we will call the t/I frame) by a gauge transformation. Specifi­
cally, let g(A ) be the solution of (1.5) with (1.15) and a com­
patible expression for B, and let go be defined as in (1.24). 
Then we introducegl defined by 

(2.12) 

From (1.26) and (1.27) appropriately reinterpreted we find 
that 

(2.13) 

where S is defined by (2.3). This is the form of the linear 
eigenvalue problem used by Takhtajan4 to integrate the Hei-

(2.6) senberg chain. We will refer to the frame obtained by apply-
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FIG. 2. Relationship between the elements go,g and the surfaces generated 
with A = 0 and A 'f0. The moving frames are at the same distance, mea­
sured along their respective surfaces, from the fixed frame. 

ing go-I to the t/J frame as the S frame. Geometrically, if we 
have the two surfaces defined by the generators of (1.15) and 
(2.4), i.e. one for nonzero A, one for A = 0, then 
go-I (x,t; so,to) takes the t/J frame at any point t, for the sur­
face with A = 0, back to a fixed frame at xo,to' When applied 
to the t/J frame for the A :;;6 0 surface at x,t, it returns the frame 
to one which is rotated from the fixed frame at xo,to by an 
amount that is determined by A, and S(x,t ) along the curve 
between Xo and x (see Fig. 2). The generator for time transla­
tions associated with (2.13) is given by 

B (S,A) =go -I [B (t/J,A) - B (t/J,A = O)]go' 

The compatibility condition (1.14) becomes 

A ~~ - aB ~~,A) + A [S,B (S,A )] = O. 

From (2.11) it follows that 

aB(S,A) =A [S,go-IB(t/J,A)goJ. 
ax 

(2.14) 

(2.15) 

(2.16) 

If the equation in its t/J form is an evolution equation, then 
B (S,A ) will bea polynomial inA beginning withA, as we will 
show later, so that 

(2.17) 

The highest power of A is equal to the order of the highest 
derivative appearing in the evolution equation. The equation 
of motion (2.11) can also be written as 

as = aBI , (2.18) 
at ax 

where (2.15) implies 

aBn = [S Bn - 1 ] n""l 
ax ' ," 

(2.19) 

if we define Bo to be go -I B (t/J,A = O)go. 
The vector associated with B I by the mapping (1.10) has 

the further property that it is the tangent in the t direction to 
the surface generated when A = O. To see this, observe that 
(2.18) is equivalent to 

i. ax on = .i.. ax on = arB)) 
at ax ax at ax 

(2.20) 
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Therefore 
ax 
- on = B I + C (t ). 
ax 

(2.21) 

We will see later that B I always involves at least one deriva­
tive of S, and for the problem we are considering, S -+ a z as 
x -+ - 00. Evaluating C (t ) at x -+ - 00, we see that it is 
zero if we assume that ax/at = 0 at x -+ - 00, that is, that 
the end of our space curve is fixed in the reference frame we 
are considering. This seems sufficiently general for the 
boundary conditions we are considering, and we have then 

ax 
- on = B I • (2.22) 
ax 

It is satisfying that the transformation of the "t/J form" into 
the "s form" of the equation also produces explicitly the 
information needed to construct the surface. 

We do not yet have a self contained spin equation, since 
go and B (t/J,A ) are given in terms of t/J;. with A = O. 

To actually construct the spin equation for an arbitrary 
evolution equation requires that we first construct the ap­
propriate linear operator B (t/J,A). 

III. CONSTRUCTION OF INTEGRABLE SPIN 
EQUATIONS 

Given a nonlinear evolution equation thought to be a 
soliton equation, the problem of finding the linear operators 
associated with it has generally been solved by guesswork 
and intuition. As pointed out by Corones,9 if one assumes 
that the equation will be the compatibility conditions for the 
existence of a bilocal Lie group, then one can construct A and 
B if one knows, or thinks one knows, the group the equation 
corresponds to, by a procedure that appears to work general­
ly. If one assumes that the group is SU (2), and one has 
chosen A to be in the form (1.15) one can in fact derive all 
possible integrable evolution equations associated with SU 
(2) and A in the form (1.15), from a simple locality condition 
on B. The locality condition, which states that B can only be 
a function of t/J and its derivatives at a given point, and can­
not depend upon an integral of t/J over a region seems to us to 
be a necessary condition for the system to be integrable. For 
if B evaluated at + 00 depended upon the values of t/J for all 
x, then the scattering data would not evolve simply in time 
with a frequency depending only on A, and no decomposi­
tion into action angle variables labeled by A would be 
possible. 

In any event, we show here that the locality condition 
implies that the most general evolution equation, having a 
given linear dispersion relation, imbeddable in SU (2), with A 
given by ( 1.15), is of the AKNS 10 form. Furthermore, the B 
associated with a particular equation is provided automati­
cally by the procedure we use to show this. 

If g is any solution of 

gx =Ag, 

and we wish to find a B such that 

At - Bx + [A,B 1 = 0 

we can represent B as 

B=gB~ -I. 

(3.1) 

(3.2) 

(3.3) 
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Then 

Bx = [A,B] +gBo,xg- 1
, 

If 3,2 holds, then 

Bo(x,t ) = Bo(xo,t ) + (X g - lA ,g dx, 
Lo 

which is the result in AKNS, Now in the case we are 
considering 

A i¢ i¢*+ = - - a- + - a , 2 ' 2 1 

and 
i i 

g - IA g = - - .1. N - + - .1. N + 
1 2 '1'1 2 '1'1 

(3.4) 

(3.5) 

(3,6) 

(3.7) 

if we take for g the solution which is the identity at xo,to' If ¢, 
satisfies an evolution equation, then ¢, = K (¢,¢x'¢xxO' .. ). 
Using the generalized Serret-Frenet equations (1.22), we 
can integrate (3.5) by parts repeatedly. If the equation is a 
soliton equation, we conjecture that the integration can be 
done completely and Bo will be of the form 

Bo = P (¢,¢x "',A )N + + P *(¢.¢x ··.;A.)N -
+ R (¢,¢ .... ,A )t, (3.8) 

where the P,R are polynomial functions of their arguments. 
Or stated differently, we assume that 

- !i¢, N - + ~i¢, *N + = ~ [P(¢.¢x·"A)N­
ax 

+ P *(¢'¢x· .. A)N + + R (¢,¢x'''A)t ]. (3.9) 

Using 1.22 we find that the left hand side of (3.9) is equiv­
alent to 

[ ap -iAP+!R¢]N- +[ap* +iAP*+~¢*]N+ 
ax ax' 

+ [ ~: - P¢* - P*¢ Jt. (3.10) 

Since N ±,f are linearly independent matrices, (and corre­
spond to an orthogonal basis of vectors) we have 

aR =P¢* +P*¢ (3.11) 
ax 

or 

R = R ( - 00) + f: 00 (P¢* + P *¢) dx. (3.12) 

Assuming that ¢ vanishes at x = - 00, R ( - 00) is deter­
mined by the linear dispersion relation. For, iffor sufficient­
ly small ¢ ex: eiAx 

¢, = if} (A )¢, 

the the left-hand side of (3.9) is 

n(A)!(¢N - + ¢*N +)=n(A)~ 
ax 

(3.13) 

(3.14) 

and (3.9) can be satisfied by choosing R ( - 00) = n (A). 
The two remaining equations that come from identify­

ing the components of N ± on the right- and left-hand sides 
of (3.9) can be written as 
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where 

(3.16) 

Let us assume that n (A ) = C NA N. Then the solution of 
(3.15) for (;.) is of the form 

(3.17) 

where 

(3.18) 

and 

(3.19) 

i.e. 

(3.20) 

The term independent of A leads to the equation of motion 

(3.21) 

For an arbitrary polynomial dispersion relations it is easy to 
see that this generalizes to 

(3.22) 

which is, with the definition (3.15), the AKNS equation ap­
propriate to the special case we are considering. The expres­
sions for P,P * generalize simply to the linear combinations of 
the expressions for each power of A appearing in the disper­
sion relation. AKNS derived these equations by considering 
the equations of motion for certain squared eigenfunctions. 
The relation between their method and ours can be seen by 
noting that if we denote the elements of g by 

~l) 
cp' 

2 

(3,23) 

then the elements of N ±,f are quadratic products of the 
elements of g. Since the entries in the matrices correspond to 
components of the vectors associated with these matrices, 
the squared eigenfunctions can be thought of as the compo­
nents of the basis vectors of the frame moving along the 
surface, in a fixed frame. For instance, if we integrate the 
equation for t x in (1.15), and eliminate f from the remaining 
equations, we obtain 

.y {N + (X)} = AIN + (X)} + i( ¢az 
). 

N -(x) N -(x) ¢*az 

(3.24) 

This is nothing but the evolution equation for the basis 
vectors in the moving frame, with the condition that 
t (- 00) = a z • We observe that 
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(3.25) 

and hence the generalized Serret-Frenet equations (1.15) 
imply the eigenvalue equation 

(3.26) 

which, with slight changes of notation, is the starting point 
for the AKNS derivation of the form of the soliton equa­
tions. One may obtain the other evolution equations for dif­
ferent products of the rpi' such as appear in Flaschka and 
Newell I I by taking appropriate components of the equations 
(1.15), rewritten in the form (3.24). 

Returning to our main theme, we see that we have suc­
ceeded in characterizing the possible integrable equations 
imbeddable in SU (2), with our choice of A, as well as obtain­
ing the compatible expression for B. For, from (3.5) and (3.3) 
we see that 

(3.27) 

It is not obvious that P,P * ,R are in fact polynomials in t/! 
and its derivatives, since L is an integrodifferential operator, 
but this is the case. We do not have any proof ofthis for the 
moment, but observe that it can be shown by direct calcula­
tion for the lowest few terms. For instance, taking 

n (J. ) = + J. 3, (3.28) 

leads to the modified KdV equation, for which 

and for which 

P3 - !it/!, P2 = - t/!x, PI = + F(t/!xx + 1I2ItPl ztP)· 
(3.30) 

Defining R n by 

we find, using (3.12) and (3.16) 

R3 = 1, R z = 0, RI = _ !1t/!12, 
Ro = 0/2)[ t/!x t/!. - t/!x tP]· 

(3.31) 

(3.32) 

Having obtained B (t/!,)., ) for the general evolution equa­
tion, we can obtain B (S,)., ) from (2.14), and the equivalent 
spin equation follows from either (2.18) or (2.11), which we 
rewrite as 

as 
- = [S,Bo(tP,)., = 0)]. at (3.33) 

Of course, one has Bo expressed in terms of tP, and one 
wants it in terms of S. BiS,)" = 0) is actually a simple func­
tional of S in this case, and in the general case. It is rather 
easy to see how to do this, for our particular example. 
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We have, (since t = S when J. = 0) 

Bo(tP,O) = BitPxx + !iltPI 2tP]N - + ! C.c. J 

+ 1i(tPx tP* - tP* x tP)S. 
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(3.34) 

From (2.7) 

Sxxx = [!tPxx - !ltPI 2tP]N - + ! C.c. J 

- 3/2 [tPx tP* + tPx tP ]S. (3.35) 

The term with the highest derivative in (3.20) can therefore 
be represented as, making use of(1.21) 

(3.36) 

Inasmuch as it is only the coefficients of N ± that detemine 
the equation of motion, we have only to correct for the incor­
rect coefficient of ItPI 2 tP in (3.36) to obtain the desired spin 
equivalent of Bo(tP,O). 

Using (2.5) and (2.7), we have 

[Sx ,Sxx ] = !iltPl 2tPN - + ! C.c. J + Y[ tPtP· x - tP* x tP* ]S. 
(3.37) 

Thus, using (2.6) as well, 

Bo(tP,O) = + [S,Sxxx] + HSx'Sxx] 
+ {S [Sx,Sxx] + [Sx,Sxx ]S}S. 

(3.38) 

Hence, the equivalent spin equation for the modified KdV 
equation is 

(3.39) 

To convert this back to an equation for the vector S, we note 
that 

[A,B] = AxB-a (3.40) 

from which we conclude that 

~~ = SX[ [SX Sxxx + ~Sx XSxxj I· (3.41) 

Although we have used an apparently ad hoc procedure 
to pass from Bo(tP,O) expressed in terms of tP to its form in 
terms of S for this particular example, the procedure may be 
systematized. We observe that S, Sx, SXSx are an orthogo­
nal basis, and we have 

Sx ± i[S,Sx] = {~·}N ±. (3.42) 

Differentiating once, we have 

Sxx ± i(S,Sxx 1 = {~:}N ± - 1t/!1 2
S. (3.43) 

Since ItPI2 = -4Sx Sx , (3.4) expresses terms of the form 
(~:. )N ± in terms of S and its derivatives. Taking another 

derivative, we see that e~,:')N ± can be expressed in terms of 
S and its derivatives, plus a term that is 

(
t/!* ¢lC' 
¢x¢*f' 

But this can be expressed as for instance 
[tPx N + ,¢N - ], which have both been previously expressed 
in terms of S and its derivatives. Continuing in this way we 
see that we can always express any term of the form an¢N - , 
an¢* N + in terms of S and its derivatives. 

If we assign an index to polynomials in ¢ and ¢* and 
their derivatives, P(¢,¢*,¢x···)' according to how they 
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transform under an ordinary gauge transformation, i.e., and 

¢ __ eia¢, 

¢* __ e - ia¢*, (3.44) 

P(¢,¢*,¢x"') __ ei"ap(¢,¢*,¢x"')' 

then one sees immediately from the specific form of the 
AKNS evolution operator (3.16) that only terms with index 
+ 1 enter the equation for ¢t, -1 for ¢* t . The most gener­

al term that will be needed to express Bo in terms of S and its 
derivatives will be of the form 

(3.45) 

or its complex conjugate, where a + r - {3 - 8 = 1. If 
r>8, we can replace /¢/2.5 by (SxSx).5leaving a term 

(~~~ r( ::: r ¢r-oN - (3.46) 

still to be represented in terms of S and its derivatives. 
If 8 > r, we obtain 

(3.47) 

In the case of (3.46), we can construct the expression by 
commuting a factors of (8"¢/8x")N - , (r - 8) factors of 
¢N - and {3 factors of (8m¢/8xm)N - , alternating factors 
proportional to N - and N + . Since a + (r - 8) = {3 + 1, 

we will have one more N - term than N + term, and the 
result will be proportional to N - . Similarly for (3.47). In all 
cases, we can reduce the terms that appear in the expression 
for Bo(¢,).) arising from an AKNS evolution equation to 
terms involving S and its derivatives. Hence, one can always 
obtain the spin equivalent of an AKNS evolution equation in 
SU (2) by the procedure outlined above. We have, therefore, 
an algorithm for the construction of the spin equivalents. 

The expression for B (S,). ) that is associated with 
A (S,).) = ASisobtainedbysubtractingfromBo(¢,). ) the val­
ue of Bo(¢,). = 0) and converting the remainder to its spin 
equivalent. The equation of motion can be obtained this way 
as well, using (2.18). The result will not be manifestly in the 
form (2.11) however, and it will generally require some ma­
nipulation of the identities that follow from differentiating 
S 2 = -! to put it in that form. For instance, for the modi­
fied KdV equation 

B, = - ~¢xN - - !¢*xN + - ~/¢/2S 

= - [Sxx - 6SxS xS] (3.48) 

as = _ [Sxxx - 6(Sx S xx + SxxSx)S - 6SxSxSx ], at 
(3.49) 

which is not self-evidently the same equation as (3.41). Using 

SSx +SxS=O, 

SSxxx + SxxxS + 3(Sx Sxx + SxxSx) = 0, 

one can, however, transform (3.50) into (3.41). 

(3.50) 

The full expression for B (S,). ) is, for the KdV equation 

B(S')') = -A [Sxx -6SxS xS] -A 2 [S,Sx] +A 3S. 
(3.51) 

For the nonlinear Schrodinger equation [fJ (A ) = A 2] , we 
have from (3.18) 

B, = [ ~ ¢N - - ~ ¢*N +] = [S,Sx], (3.52) 

which leads to the equations for the Heisenberg model, 

as as - = [S,Sxx] or - = SXSxx' at at 
The full expression for B (S,). ) in this case is 

B(S,).)=A [S,Sx] -A 2S=2ASSx _A 2S. 

(3.53) 

(3.54) 

(3.43) is equivalent to the expression for B given by Takta­
jan.4 In fact, we have shown that all the AKNS evolution 
eq~ations that can be imbedded in SU (2) have equivalent 
spin equations with a linear eigenvalue problem in the Tak­
tajan form, i.e., A = AS. 
eigenvalue problem in the Taktajan forms i.e. A = AS. 

We have seen that the assumption of locality in the ¢ 
frame leads directly to the AKNS equations, which may 
then be converted to an S form. The S form may be obtained 
directly by requiring the locality to hold in the S frame. That 
is, we require thatthere exist aB (A ) depending only on Sand 
its derivatives, such that 

(3.55) 

This leads immediately to (2.15) and the relations (2.18) and 
(2.19) for the coefficients Bn defined in (2.17). These recur­
sion relations may be solved for the Bn. We have 

[ 
aBn] Bn - 1 = - s, ax + (S·Bn - 1)S. (3.56) 

Since aBn - 1/ ax has no component in the S direction, we 

TABLE I. The first few elementary tangent vectors in the time direction, and their projections along the tangent in the space direction. 

j 

o 
1 
2 

3 

4 
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Bs j 

s 
- SxSx -SxSx 
- Su - ~(S,'Sx)S 

SX S xxx + ~(Sx'Sx)SXSx 
- (S'Sx XSu)S 
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S'B,, __ ) 

1 
o 
- ~Sx'Sx 

-S'S,xS" 
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have 

a(s·Bn - 1) = S aBn .s. 
ax xX ax (3.57) 

Again, it is not obvious that the right-hand side of(3.57) is in 
fact a perfect derivative, but that does prove to be the case. 
With B N = S, we have for B N _ j' the results shown in the 
first column of Table I. In column two we give the associated 
expression for S·BN _ j' 

IV. SINE-GORDON GEOMETRY 

The sine-Gordon equation is not amenable to being 
cast into a spin equation by the method above as it is not an 
evolution equation. We will treat it here as a special case, and 
show that nevertheless, a spin equation exists, and is in fact 
identical with that already obtained by Pohlmeyer. The deri­
vation will make clear the relationship between the Lie 
group approach and the various geometrical interpretations 
of the equation. 

We begin with the linear problem for a curve of con­
stant torsion, T = - A, and we define the curvature as 
(Jx (x,t). Then t/J can be taken as real and equal to (Jx (x,!), 
and the generator of g in the space direction becomes 

A =Aaz + (Jxay' (4.1) 

In this case, the frame of reference is identical with the Ser­
ret-Frenet frame. 

If the curvature is to satisfy the sine-Gordon equation, 

(JX[ = sin (J, 

then the generator in the time direction must be 

B = -1/A «cos (J)az + (sin (J)ax )' 

Let us define 

S (x,t ) = g - '(x,t )a yg(x,t ), 

(4.2) 

(4.3) 

(4.4) 

where we have suppressed the initial coordinate (xo,to) in the 
definition of g, and otherwise it satisfies (1.5). S is the binor­
mal to the curve in this case, rather than the tangent. 

Then we readily verify that 

Sx =Ag-'axg, 

S[ = -(1/A)g-'(cos(Jax -sin(Jaz)g, 

SxSx = -!A 2, 

S[ S, = - !(1/A 2), 

SXS[ + S[ Sx = !cos (J. 

Thus, for the vector S we have 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

(4.5e) 

S,·Sx = A 2, S[ ·S[ = l/A 2, Sx·S[ = - cos (J. 
(4.6) 

Inasmuch as Sx ,Sf must be perpendicular to S, the relation­
ships between the three vectors and (J is as shown in Fig. 3. 
We have finally, the equation of motion for S, obtained from 
(4.5a) and (4.3) or (4.5b) and (4.1), 

Sx[ = (cos (J)S (4.7) 

or 

Sxt + (Sx ·S, )S = O. (4.8) 
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-S 

FIG. 3. The relationship between the spin vector and its derivatives when if 
satisfies the sine-Gordon equation. 

This equation was first derived by Pohlmeyer from the La­
grangian density 

.2"=as.as_ as.as, 
at at ax ax 

(4.9) 

with the constraint S·S = 1. The (J of his work is 17' - (J of 
ours. 

The parameter A serves to change the lengths of S x' S[ , 
and can be regarded as arising from a lorentz transformation 
of the coordinates. That is, if we define x/ ,t / by 

x_A _'x', t_At', (4.10) 

the linear problem in the primed coordinates reduces to that 
one obtains by setting A = 1 in (4.11) and (4.3). Evidently 
A = 1 has a special role in the problem, analogous to that for 
A = 0 in the case of evolution equations. As in that case also, 
we can obtain the A =1= 1 case by a gauge transformation from 
A=1. 

If we define 

g(A) = g(l)g', 

then a straightforward calculation shows that 

g~ = (1 - A )[S,Sx ]g/, 

g; = (1 -1/A )[S,S[ ]g', 

where 

S = g(l)' 'a yg(l), 

S=g'-'Sg', 

Sx·Sx = S[ ·S[ = 1. 

(4.11) . 

(4.12) 

(4.13) 

g is the coadjoint representation in SU (2) of the elements of 
0(3) denoted as RA by Pohlmeyer. 

(4.12) is analogous to the linear problem ofTaktajan for 
the S form of the equation, for the compatibility equations 
imply that 

Sx, =AS. (4.14) 

But S·S = 1 implies S·Sx, - Sx ·S, and hence we have 
the equation of motion (4.8) as the compatibility condition. 

v. HAMILTONIAN STRUCTURE 

The t/J form of the equation we have been considering 
can be written in terms of a Poisson bracket, ".'2 defined for 
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two functionals of '" as 

{A ['" J,B [ '" I} 1 = 1 dx - -- -'f [aA aB 
a", a",-

aA aB] 
a",- a", 

(5.1) 

and a Hamiltonian Hn such that the nth equation of motion 
is 

"'t = IBn,,,,] = 
.aHn 

-1--. a",- (5.2) 

The Hn are conserved quantities for all the equations that 
are integrable using the linear problem associated with 
(1.15). The lowest few Hn are Hn = SJY ndx, JY1 = 1"'1 2

, 

JY2 = i/2(",x",- - "'x -"'), JY3 = 1 "'x 12 - !1"'1 4
• The first 

two constants yield linear equations when inserted in (5.2). 
Since S is a functional of "', we must have 

as 
- = [Hn,SII' 
at 

(5.3) 

A straightforward calculation, using a result readily ob­
tained by functional differentiation of (1.5) using (1.15), 
shows that 

as (x) = [sex), _ !....N -(X')], x>x', 
at/J(x') 2 

=0, x<x'. (5.4) 

From (5.4) and its conjugate relation, using (5.2), we have 

(5.5) 

which from (3.7) and (3.3) is equivalent to (2.11), and is the 
correct equation of motion for S. 

The constants of the motion can all be expressed in 
terms of spin fields. There is another Poisson bracket defined 
for functionals of a spin degree of freedom from which one 
typically obtains the equations of motion for spin fields in 
physical applications, 

aA aB 
{A ISJ,B [Sj}2 = E jjk --SK' 

aSj aS j 

(5.6) 

As we have seen, the integrand appearing in (5.5) is 
actually a perfect derivative, and the integral can be ex­
pressed entirely in terms ofthe field S and its derivatives atx. 
Remarkably, when this is done, we find that Eq. (5.5) can 
also be written as 

as = [s aH'n -2 .a] 
at 'as ' (5.7) 

whereH'n = CnHn, Cn a constant. (5.7) is equivalent to 

as -iH' 2S1 -s aH'n-2 - - t n-, 2- X . 
at as (5.8) 

That is, for any n > 2, we conjecture that (5.2) and (5.8) are 
the equivalent pair of equations derived previously. We have 
no proof of this at the moment, but show in Table II that it 
holds for the first few densities. (It is well known that H4 
gives the modified KdV equation, and one may check that 
the equations associated with Hs gives the same spin equa­
tion as H' 3 by observing that (5.8) can also be obtained from 

2713 J. Math. Phys., Vol. 21, No. 12, December 1980 

TABLE II. The first few conserved densities in their 1/1 and S fonn. The spin 
equation of motion are a Sf at = S x (aH' nf as). 

Hn H'n 

I'W - ~Sx·Sx 
(i/2)(l/Jx 0I/J -I/Ix I/J*HS·Sx XSxx 

MI4 - II/Jx 12 !S"·S,, - i(Sx·Sj 

aH'nfas 

Sxx 

SXSxxx + !sx XSxx 

S"" +5( Sx·Sxx)SXSx 

+ ~(Sx·sx)SXSxx 

theBN _ j of Table I using Eq. (2.18), and the results agree 
with Table II. 

Comparing Tables I and II, we make one further con­
jecture, that the SoBn are to within a mUltiplicative constant 
and a divergence, the conserved densities. If true, this would 
provide a simple geometric interpretation for the constants 
of the motion. 

VI. EXTENSIONS 

Some of the results presented here have extensions to 
more general settings. The requirement of locality as a 
means of constructing the B operators has a natural general­
ization to other groups, and clearly generates the AKNS 
equations associated with SL (2,R ). It would be interesting 
to compare its predictions for SL (3,R ) with the results of the 
Gel'fand-Dikii 14 analysis. 

The notion of strings moving in space-time clearly gen­
eralizes to that of surfaces moving in space-time, and the 
problem then is to find a parametrization of the surface such 
that the compatibility conditions can be fulfilled simulta­
neously. One would expect the space directions to be equiv­
alent, and the compatibility conditions for these directions 
to be satisfied identically. 

Since the Miura transformation maps the generalized 
KdV equations onto the modified KdV equations, these also 
have spin equivalents, and we suspect the Miura transforma­
tion can be given a geometrical interpretation. 
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We extend global particle symmetries from the traditional group framework to that of generalized 
groups. The nature of these latter are presented, and various invariants constructed for them. The 
problem of gauging generalized groups is discussed and a no-go theorem proved under reasonable 
conditions on the generalized group structure. 

I. INTRODUCTION 

Since group theory has been so useful in analyzing the 
natural world it is of interest to ascertain if any more general­
ized notion than that of a group would also be of value. In 
particular one can ask ifit is possible that the symmetries of 
elementary particles could be clarified by such a generaliza­
tion. It is our purpose in this paper to attempt to answer this 
latter question in the case of generalized groups. These re­
place the requirement that the (binary) product of two ele­
ments of a group belong to the group by the condition that an 
n-fold product belong to the generalized n-group. Thus for 
n = 3, a generalized 3-group G3 is essentially a set of ele­
ments (gl' g2' ••. ) such that for any gl' g2' andg3 in G3 the 
generalized product (g\gzK3) is also in G3 (though a product 
of any pair of elements need not even be defined). 

Generalized groups have been considered at an abstract 
level 1.2 but we will follow our earlier work3•4 and consider 
them in a more concrete form. In particular we will consider 
problems associated with their representations and invar­
iants, and of their putative gauging. We will also restrict our 
discussion solely to that of 3-groups, though much of it is 
very similar for other n-groups. 

One of the most important concepts in applications of 
group theory is that of an infinitesimal group element. In 
order for such a concept to exist it will be necessary to re­
quire the existence of an identity element e, which we define 
by the condition 

(e2g) = (ege) = (ge2) =g, (Ll) 

for any gEG3• We may define the inverseg- ' ofg by 

(geg- I
) = e. (1.2) 

A 3-group G3 is thus defined as a set of elements with the 
binary productg

" 
g2, gr-+(glgzK3) in G3 satisfying (1.1) and 

for which all elementsg in G3 have an inverseg- ' in G3 satis­
fying (1.2). 

A concrete example of a 3-group is the three-dimen­
sional array gijk , where i,j, and k are integers (though con­
tinuous variables could be included), with 3-product one of 
the four possible expressions for (g(l) ge2) g(3»n (the sum-. .. ~ 
matlon convention IS used) 

(I) (2) (3) 
gi/",gmjng'nk' 

...{I) (2) (3) 
l5i/mgnjmg'nk' 

(I) (2) (3) 
gilmgmjngnlk' 

(I) (2) (3) 
gi/",gnjmgnlk' 

(l.3a) 

(l.3b) 

(l.3c) 

(l.3d) 

We note that there are other possible definitions of the 3-
product besides (1.3). If we wish to keep i,j, and k in the 
appropriate places for an identity to exist these can only cor­
respond to interchanging the suffices in (1.3), so do not need 
separate consideration. 

It is possible to interpret the elements of the 3-group as 
"vertex functions" with three external legs denoting the 
three possible labels i,j, and k in the same way that a matrix 
can be represented by a two point function, as in Fig. 1. The 
matrix product now becomes the Feynman diagram with 
one internal line, whilst the 3-group products (1.3) can be 
represented by the triangle diagram, as shown in Fig. 2. We 
can see immediately from this graphical approach that the 3-
product (1.3) is nonassociative, as seen by the differences 
between rtl)g(2)(g(3)g(4)g(S»] and [(g(l)g(2)g(3»g<4)g(Sl] in Fig. 3. 

This may cause difficulties in applications to particle phys­
ics, though it may alternatively be important in algebraic 
confinement, as has been suggested by Giirsey and others.5 

We can also reduce the problem of nonassociativity by work­
ing with infinitesimal elements. 

We may consider the quantities gijk as the 3-group ana­
logues of elements of GL(n,R ), and so expect to need sub-3 
groups, the analogues ofSO(n) or SU(n), which will preserve 
quadratic scalars. These latter must also be constructed to be 
positive definite in order that they have physical import. 
Given such constructs we would be ready to analyze detailed 
physical applications of these results. For example we could 
determine if there are suitable groupings of particles to fill 
irreps of suitable 3- (or higher) groups. We would then at­
tempt to gauge such n-groups, as was remarked earlier. 

We start our analysis in the next section by considering 
the problem of the existence of the identity defined by (1.3). 
In order for this to exist for the generalized 3-group with 
elementsgi , ... i " for 1 <,i, <N, we find we need N = 3, and then 

(a) (b) 

FIG. I. ~a) A graphical :epresentation of the matrixg,j as a propagator; (b) 
A graphical representation of the 3-group element gijk as a vertex function. 

2715 J. Math. Phys. 21 (12), December 1980 0022-2488180/122715-04$1.00 @ 1980 American Institute of PhYSics 2715 



                                                                                                                                    

Fig. 2(a) 

FIG. 2. (a) A graphical representation ofthe matrix productg~) g;Z) . (b) A 
graphical representation ofthe 3-products (g" 'g,2 'g' 3,) of(1.3), the orders of 
the labels differing according to the choices (1.3a) to (l.3d). 

only for the product (1. 3d); Furthermore this identity is only 
an infinitesimal one, in the sense made more precise in Sec. 2. 
In the following section we consider infinitesimal symmetry 
operations on the n-group (the analog of the adjoint repre­
sentation) and construct a quadratic invariant; the question 
of representations is also discussed in this section. In Sec. 4 
we attempt to make the global symmetry into a local one, but 
find that this is not possible. Possible directions for further 
analysis and applications of n-groups are discussed in the 
last section. 

2. EXISTENCE OF AN IDENTITY 

Our analysis will be carried out in this paper only for the 
concrete case of the three-dimensional array of real numbers 
gijk with 3-product (1.3). While this is a severe limitation we 
have not been able to develop detailed results for any other 
case, though some of our restrictions will be expressed in a 
form independent of the 3-product actually chosen. 

It does not appear possible to construct an identity for 
the labels i,j, and k taking more than three values. For the 
only nontrivial numerical 3-index quantities available are 
the Kronecker and permutant symbols Ejjk' Oijk defined to 
be ( -1)P and 1 when ijk is a permutation of signature p of 
1,2,3, and zero otherwise; these are only defined if 1 <,i,j, 
k<,3. 

Let us construct the identity ejjk as a linear combination 
of Eljk and Ojjk' 

eljk = aEjjk + b8ljk' (2.1) 

We will attempt to choose a and b so that (1.1) is valid under 
one or other of the product rules (1.3). Let us consider first 
the 3-product rule (1.3a). Then (1.1) becomes 

[a2(oIjOln - Ojno/j) + ab (EilmOmjn + EmjnOj/m) 

+ b 2omj/omjn ] glnk' (2.2a) 

and so we require the square bracket in (2.2) to be propor­
tional to oj/on' This is impossible, since, for example, when 
i = I =1) = nJthe bracket in (2.2) vanishes. A similar situation 
arises for the 3-product (1.3b). For (1.3c) the bracket in (2.2) 
must be proportional to Ojnojl' whilst for (1.3d) the bracket 
becomes 

[ - a2(OijOln - Ojnojl) + ab (EjlmOnjm + OjlmEnjm) 

+ b 2omj/omjn]' (2.2b) 

and must again be proportional to Ojnoj,.But this again can­
not in general be satisfied for any nonzero b. The only way to 
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satisfy (1.1) appears to be to take a = 1, b = 0, and also 
require 

(2.3) 

For the choice (2.3) we have eljk = Ejjk . 
The 3-group product (1.3d) does not preserve (2.3). We 

will therefore restrict our discussion to infinitesimal ele­
ments of form (e + g), for g satisfying (2.3), and with pro­
ducts approximated as 

«e + gl)(e + gz)(e + g3)ze + (gl + g2 + g3)' (2.4) 

where (g I + gz + g3) also satisfies (2.3). The set of such infin­
itesimals will be all that is required for our further discussion 
of symmetry transformations. We say that e acts as an infini­
tesimal identity. 

We conclude that there is a unique 3-product, (1.3d), 
for which there exists the infinitesimal identity E Ijk . Further­
more, this exists only for this particular 3-group. We now 
need to determine if it is possible to use this infinitesimal 
identity to construct symmetry transformations. 

3. GENERALIZED SYMMETRIES 

For any elements U, g of the 3-group we can define the 
symmetry transformation of g by U in the usual manner, 

g---.(U g U- 1
). (3.1) 

This can be analyzed infinitesimally, for U = (e + T), 
U- I = (e - T), with Tsatisfying (2.3), as , 

8g = (U g U- 1
) - g = (Tge) - (egT). (3.2) 

The rhs of (3.2) thus plays the role for our 3-group of the 
commutator for a 2-group. We note that in order that 
(e - T) is the inverse of (e + T) to 1st order in T, it is only 
necessary that e act as an infinitesimal inverse, in the manner 
we discussed in the previous section. 

We now consider the quadratic expression (denoted by 
Tr) 

Tr g2 = gljk gljk' (3.3) 

The variation ofTr g2 is given by (3.2) and (1.3d) as 

8 Tr gZ = 2gijk [Tj/mgnjm en1k - ej/mgnjm Tnlk ] = 0. 

Thus (3.3) is a positive definite quadratic, invariant under 
(3.2). 

Fig. 3{e.} 

/ 
--. -\ 

FIG. 3. (a) A graphical representation of the 5-product 
(g" 'g,2'(g,3'g,4'g,5,») . (b) A graphical representation of the 5-product 
«g"'g'2'g\3')g,4'g,5,) . 
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We must also consider the problem of defining the 
equivalent of the fundamental representation for a 2-group. 
We see that iftfa (x) is introduced as a complex-valued field, 
its transformation under U, obtained by saturating indices, 
generates a companion 2-index field tfaP(x). Thus we take 
I tfa (x),tfaP (x) J = '/I (x) as defining the analog ofthefunda­
mental representation of a 2-group, with 

Otfa = iTaPr tfPr' . Otfap = iTaprtfr . (3.4) 

We can construct the positive definite quadratic form 

'/I * '/I = tf~ tf a + tf~p tf up , 

and find that under (3.4) 

(3.5) 

{j('/I*'/I) = itf!ptf/TaPr - TraP) + itf:¢Pr(TaPr - TPra). 

This is zero provided Tapy is invariant under cyclic 
permutations, 

Tapy = + TPra = + TraP' (3.6) 

The factor iin (3.4) is essential; without it (3.6) becomes TaPr 
= - TPra = - TraP' whose only solution is TaPr =0. 

Thus we are forced into a complex fundamental 
representation. 

The set of elements Tapr satisfying (3.6) and the trace 
condition (2.3) is a seven real-parameter subset of the 3-
group. Furthermore it acts on the 12 complex-dimensional 
space '/I by (3.4), and on the 27 real-dimensional space of gijk 

by (3.2). We may use the space of '/I's to describe Dirac spin­
ors, and can write down a Lagrangian iJiJ'/I invariant under 
the global transformations (3.4). We have thus constructed 
the beginnings of a suitable global symmetry theory for ele­
mentary particles based on a 3-group. We propose to discuss 
detailed applications of this elsewhere. 

4. GAUGING THE 3-GROUP 

In view of the recent great successes of gauge theories 
based on the 2-group Su(3t X SU(2) X U(l) it is natural to 
determine if we can allow the seven-parameter infinitesimal 
set Tapy satisfying (2.3) and (3.6) to be space-time depen­
dent. To achieve this we would require the presence of a 
gauge vector field Af1 (x), with values in the 3-group, and 
transforming under the local version of (3.2) as 

oAf1 = (TAf1e) - (eAf1 T) + a f1 T. (4.1) 

We will attempt to construct a field strength Ff1v transform­
ing covariantly as (3.2), so that - Tr(Ff1vFf1j defined by 
(3.3) will be a satisfactory Lagrangian. Let us consider 

oalllA v ] = (Ta lf1 Av]e) - (ea{llAV]T) 

+ (a{f1 TAl' }e) - (eA{vaf1}T). (4.2) 

We wish to add to a lf1 Av] the analog of the commutator 
bracket [A", Av] for 2-groups. This analog could be chosen 
as (A" eA,,) - (AveA,J, but its variation under the last term 
of (4.1) gives (a lf1 TeAv]) - (A lveaf1} T), which does not 
cancel with the last two terms of (4.2) unless there are the 
identities 

(4.3a) 

and 

(4.3b) 
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Using (l.3d), (4.3) becomes in components 

(4.4a) 

and 

eilmA" Tnlk = A" enim Tnlk . r-»j"\ r'!fm J 
(4.4b) 

The solution of (4.4a) for Af1 is given by the trivial solution 

A""" = en1k Af1 ' (4.5) 

where Af1 is a single vector field. This choice of generaliza­
tion of the commutator bracket is therefore unsatisfactory. 
But this is also true of the other choices, being (Af1Av e) 
- (AvAf1 e), (eAf1Av) - (eAvA,,), or their linear combina­

tions. Similar conditions to (4.3) arise, such as 

(Af1 Te) = (eA" T), (4.6) 

which again can only be satisfied by (4.5). We therefore con­
clude that it is not possible to obtain a satisfactory local the­
ory under the gauge transformation (4.1). The above diffi­
culty is absent for the modified transformation 

oAf1 = (TeA,,) - (Af1eT) + af1 T, (4.7) 

for which 

oalf1 Ay] = (Teal"A yj ) - (al/,A v] eT) 
+ (a lf1 TeA vj ) - (A lv eaf1j T). (4.8) 

The last two terms in (4.8) now agree with those arising in 
(AI" eAv])' Thus if we define 

Ff1v =alf1Avj-(AI"eAvj), (4.9) 

then under (4.7) Ff1V will transform without the inhomoge­
neous term, 

oF"v = (TeFf1v ) - (F"veT ), 

provided we have the identity 

(Te(A"eA v» - «TeAf1)eAJ + (A"e(AveT» 

- «Af1 eA,,)eT) 

= (Af1e(TeA v» - «Af1eT) eAf1)' 

(4.10) 

(4.11 ) 

Yet again, by inspection it only seems possible to satisfy 
(4.11) by the trivial solution (4.5). We conclude that there is 
a no-go theorem for gauging 3-groups. 

5. DISCUSSION 

We have only presented here the bare preliminaries of 
the framework for n-groups and their applications in particle 
symmetries. We have found that a sensible framework can be 
constructed when the transformations are global and belong 
to a particular 3-group. Undoubtedly similar results should 
be possible for higher generalized groups, and the detailed 
construction of such cases would be of interest. There are 
also many related questions as to the definition and nature of 
higher representations and the construction of alternate in­
variants. Indeed one might attempt to extend all of the stan­
dard technology for Lie groups and their associated algebras 
to the generalized group setting; our results (together with 
those in Ref. 4) can be regarded as a preliminary step in that 
direction. 

There are also numerous questions as to the possible 
applications of these ideas to elementary particles. Can any 
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clue be detected as to the existence of a 3-group or higher 
global symmetry in the particle mass spectrum? This would 
seem a difficult question to answer until a reasonable analog 
of the representation theory of Lie algebras has been 
developed. 

One of the purposes of this paper has been constructive: 
to point out the possible generalization of the idea of a parti­
cle symmetry, and to sketch its possible nature. However the 
other purpose is also constructive, but involves the no-go 
theorem of Sec. 4. Ifit is not possible to sensibly gauge the 3-
group (and, by implication, higher generalized groups) then 
nature would not have used these objects to describe the 
fundamental forces. Such a result supports the recent suc-
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cesses of electroweak and color gauge theories, and indicates 
that there may well be few alternatives to them. At least the 
alternative discussed here does not seem viable. 
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Invariance conditions for gauge fields under smooth group actions are interpreted in terms of 
invariant connections on principal bundles. A classification of group actions on bundles as 
automorphisms projecting to an action on a base manifold with a sufficiently regular orbit 
structure is given in terms of group homorphisms and a generalization of Wang's theorem 
classifying invariant connections is derived. Illustrative examples on compactified Minkowski 
space are given. 

In the study of gauge field equations at the classical 
level a standard method of simplification involves the re­
quirement that the fields be invariant under a group of space­
time transformations. ' Such a requirement leads to a reduc­
tion in the dimension of the free variables and a reduction of 
the gauge freedom to those changes of gauge which preserve 
the invariance condition. The specification of how the trans­
formation group acts on the fields may involve an auxiliary 
gauge transformation. In local terms this gauge transforma­
tion will be determined by a function which we shall call a 
transformation function, depending on the group element 
and the space-time point and subject to an appropriate com­
position law. A change in gauge changes the local expression 
for the transformation function to an equivalent one. Since 
the form of the transformation function determines the form 
of the invariance equations and thus affects the difficulty in 
finding the invariant fields it is useful to have a reduction 
procedure for simplifying the invariance equations. An asso­
ciated problem is determining all inequivalent transforma­
tion functions for a given transformation group. In this pa­
per we study these problems and show how to find the most 
general gauge fields possessing a given symmetry using the 
language and methods of fiber bundle theory. Forgacs and 
Manton2 have studied the same problem from another point 
of view. For further applications to problems in symmetry 
breaking and dimensional reduction see Refs. 3-6. 

Since a change of gauge can be interpreted as a change 
of fiber coordinates in a fiber bundle, our first step will be to 
formulate the problem in coordinate free language. So ex­
pressed, the problem of determining all inequivalent trans­
formation functions is seen to be essentially the same as de­
termining all inequivalent lifts of the transformation group 
action from the base to automorphisms on the bundle. For a 
homogeneous space, a known result 7 reduces the problem to 
a classification of group homomorphisms. For the general 

"Research supported in part by the National Sciences and Engineering 
Research Council of Canada. 

case, no result is known, however, provided the orbit struc­
ture is regular enough we can solve the problem under the 
additional hypothesis that the gauge group is compact. The 
gauge fields determine a connection on the bundle and the 
symmetry problem is equivalent to the classification of G­
invariant connections. Again, for a homogeneous G space 
the solution is standard and may be extended to certain more 
general cases. 

1.BASIC RESULTS FOR HOMOGENEOUS SPACES 

Let Hbe the gauge group with Lie algebra h, M a differ­
entiable manifold, and G a Lie transformation group acting 
on M such that the map 

G XM-M( g,x)-/g(x) 

is differentiable and satisfies 

J. (x) = x, /g, (/gl (x)) = /g,gl (x). 

When no confusion can arise we shall write gx for /g(x). 

(1) 

The gauge fields which we consider are defined on an 
open covering (Ua J of Mby a set of h valued l.formswa on 
Ua related by 

wp = Adk a-j/wa + k;;p 'dkap , 

where the functions kaP :UanUp-H satisfy kaa ==e, kaPkpy 
= kay on UanUpnUy. ThekaP are transition functions fora 

principal H bundle E over M trivial over each Ua , that is, 
there are functions 

"a:Ua XH-E, 

with 'T p- 'T a: U a nUp X H-Ua nUp X H, such that 

'Tp-'''a(x,h) = (x,kap(X)-'h) 

= (x,kPa(x)h). (2) 

The right action of the gauge group H on E is given by 

Rk'Ta{x,h)='Ta{x,hk), forxeM; h,keH. (3) 

Define a local section U a by 

ua(x) = "a (x,e). 

When there is no possibility of confusion we write U a (x)h for 
Rhua(x). The form (da is the pull-back underua ofaconnec-

2719 J. Math. Phys. 21 (12). December 1980 0022-2488/80/122719-06$1.00 @ 1980 American Institute of Physics 2719 



                                                                                                                                    

tion form cu on E. The pull-back of cu under 7 a is given by 

(-r!CU)lx,h) = Adh -1(CUa)x + h -I dh, (4) 

which in fact defines cu. 

If the open sets Ua are G invariant the condition for G 
invariance of the CUa up to gauge transformation is 

U;cua)x = Adpa( g,X)-I(CUa)x + Pa- I( g,x) dpa( g,x), 
(5) 

where the differential inpa is in thex variable. The function 
Pa is what we call a transformation function. The 
Pa:G X U-H satisfy 

Pal gl g2,x) = Pal g2,x) Pal gl,g:zX) (6) 

in order to satisfy the group composition law (1) and the 
compatibility condition, and 

(7) 

for the consistency of (5) under change of section. The func­
tions P a define a G action on E 

G XE-E (g,7a(x,h ))-h7a(x,h) 

= 7a(gX, Pa(g,x)-Ih). (8) 

[This is a valid G-action on Eby virtue of(6) and independent 
of the local trivialization 7 a by virtue of (7).] Again writing 
gua(x) forh(ua(x)), 

gua(x) = ua(gx)Pa(g,x)-I. (9) 

The invariance condition (5) implies that the connection de­
fined in (4) satisfies 

l;cu = cu. (10) 

This is the coordinate-free form of the invariance condition 
which we shall study. 

Before proceeding, note that if the open sets Ua over 
which E is trivial cannot be chosen so that they are G invar­
iant, then given XEUa, we must restrict thegEG appearing in 
Eq. (5) to those for which gXEUa. Alternatively we can find 
an infinitesimal in variance equation which can be expressed 
in local coordinates as follows. 

Let V (M) be the smooth vector fields on M. Denoting by 
':1 the left invariant vector fields on G (identified with the Lie 
algebra) define mappings: 

and 

tp:':1_V(M) tp(s)x =!!...-I exp(-ts)x 
dt 0 

ra:':1 XM-h rat s,x) = - !!...-I Pal expts,x). 
dt " 

The invariance equation in infinitesimal form becomes 

2"'I'ls)cua = [ra(s,x),cua ] -dra(s,x), (11) 

where the left hand side denotes the Lie derivative and the 
differential on the right is in the x variable. 

The function r a satisfies the composition law 

ra([ S,1/],x) = [rat S,x),ra(1/,x)] + tp (S)x ra(1/,x) 
- tp (1/)x r a ( s,x) 

and the compatibility condition 

raP ( s,x) = Adkap(x)-Irp ( s,x) + k ar/ dkap · 
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(12) 

(13) 

The interpretation of the infinitesimal invariance con­
dition on the bundle level is as follows. 8 Let 

(14) 

Equation (13) guarantees that this defines unambiguously a 
vector field onE and Eq. (12) implies that ([>:':1-V(M) is an 
algebra homomorphism 

([>([5,1/]) = [([>( 5),([>(1/)]· 

One checks that (11) is equivalent to 

2" <1>1 s)cu = O. (15) 

This infinitesimal form seems more general since it does not 
assume the existence of a group action in finite (integrated) 
form. However, if the infinitesimal action on M integrates 
and if the gauge group is compact the infinitesimal action on 
E given by ([> integrates. 

We can now formulate the problem in terms of fiber 
bundles as the determination of all principal H bundles with 
G action (as automorphisms) projecting to the given action 
on M and all invariant connections on such bundles. Howev­
er the question posed in this form is too general since it in­
volves the topological problem of classifying all H bundles 
over M. We restrict attention to the structure of the bundle 
over a neighborhood of an orbit in M and begin with the 
structure of E over a single orbit. 

For xEMlet G x be the isotropy group at x and let G (x) be 
the orbit through x. Assume the orbit is an imbedded sub­
manifold of M then G IGx is diffeomorphic to G (x) and the 
structure of E over G (x) is determined by (see e.g. Ref. 7). 

Proposition 1: There is a one-to-one correspondence 
between 

(a) Equivalence class of principal H bundles E over 
G IGx admitting a Gaction which projects to leftmultiplica­
tion of G on GIG x; and 

(b) Conjugacy classes ofhomomorphismsA:Gx_H. 
Equivalence in (a) means an isomorphism of bundles 

which commutes with the action of G and projects to the 
identity mapping. 

We shall sketch a proof in order to clarify the result and 
establish notations. 

Proof Given a bundle E from one of the equivalence 
classes in (a) any gEGx maps the fiber Ex over x = eGx into 
itself. If we pick a point pEE x we have 

gp =PA(g), 

where A:G x _H. One sees immediately that A is a homomor­
phism since the G and H actions commute and that if p is 
right translated by h then A is conjugated by h. Also if 
tp:E_E' is a G equivariant bundle isomorphism so that E 
and E' are equivalent, the points p and tp (p) determine the 
same homomorphism A. 

Conversely given A:Gx-H we can construct a princi­
pal H bundle E;.. over G IGx • On the set G XH define an 
equivalence relation 

(g,h )-( ggl' A (gIl-lh), for glEGx ' 

Let fg,h ] be the equivalence class oft g,h ) and let E;.. be the set 
of equivalence classes. Another notation often used for E;.. is 
G X G, H. Projection on the first factor G X H-G defines a 
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projection 

11":G XGxH~G la". 
The left action of G and right action of H defined by 

(gl'( g,h ))~( glg,h ), 

((g,h ),hl)~(g,hhtl 

preserve the equivalence relation and so define group actions 
of G and H on E" . The action of G on E" projects by 11" to left 
multiplication on the coset space G /Gx • The right action of 
H is transitive on the fibers of 11". To verify the bundle struc­
ture, let UCG IGx be an open set on which there is a cross­
section u: U~G of G~G / G x' Then we can define a cross­
section of E" over Uby 

y~[u(y),e] 

and a corresponding local trivialization 

(y,h )~[o1y),h]. 

Since G~G IGx itself has a bundle structure, there exists a 
covering of G / G x by such open sets U. Having shown how to 
go from (a) to (b) and (b) to (a), we show that the composite in 
either order gives back the same equivalence class. Ifwe pick 
the point [e,e] in the fiber of E" over x = eGx we have for 
gEGx 

g[e,e] = [g,e] = [e"i (g)] = [e,ejA (g). 

Thus we recover the homomorphism A, from the bundle E". 
Finally if E is a bundle and for pEEx the associated homo­
morphism is ..1" we define a G equivalent isomorphism: 

E" = G XG,H----..E, 

[g,h ]----..gph. 

In local terms we can use this result to show how the 
transformation function depends on the homomorphism A 
and the section u of G--+G /Gx ' 

g[o1 y),e] = [go1 y),e] = [u(gy)u(gy)-lgo1 y),e] 
= [01 gy)"i (01 gy)-Igu(y))] 

Thus 
= [o1gy),e]..1, (o1gy)-1 gu(y)). 

p-I( g,y) = A, (01 gy)-I gu(y)) 

if we use the section of E" 

y --+[u(y),e]. 

(16) 

For a given homomorphism ..1" the bundle E" need not 
be trivial and therefore the transformation function may not 
be defined throughout the orbit. The case when it can be is 
given by: 

Corollary 1: The bundle E is trivial over G / G x if and 
only if the homomorphism ..1,:G x ~H extends to a smooth 
function A :G~H such that 

A (ggtl = A (g)A. (gl)' for gEG, glEGx ' 

Proof: If u is a section of E defined over all of G /Gx ' 

define A (g)bygo1x) = 01 gxjA (g). Conversely given A satis­
fying the hypotheses, u:gG x --+[ g,A -iI g)] defines a section 
of the bundle G X GxH over G /Gx • 

The section u satisfies 

glo1gGx ) = [glg,A -I(g)] 

= [glg,A -1(glg)]A (glgjA -I(g) 
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for g I,gEG and so the associated transformation function is 

P(gl,gGx ) =A (gjA (glg)-t, gl,gEG. (17) 

The condition for p to be independent of its second variable, 
the point in the orbit, is given by the following corollary. 

Corollary 2: The following two conditions are 
equivalent. 

(a) The bundle E--+G /Gx is trivial with gauge function 
p( g I,gG x ) independent of the point gG x • 

(b) The homomorphism ..1,: Gx~H extends smoothly to 
a homomorphism A :G~H. 

Proof Equation (17) shows that 
p( gl,gGx ) = p( gl,Gx ) = A (gtl- I if and only if A is a 
homomorphism. 

The simplest transformation function is just the identi­
ty, the criterion for which is the following. 

Corollary 3: The transformation functionp( gl,gGx ) re­
duces to the trivial function =e ifand only ifit is trivial when 
restricted to the isotropy group Gx • That is, the image of A, in 
Hise. 

One case in which this always occurs is when the G­
action on M is free, i.e., Gx = e. 

We continue with the discussion of G-invariant connec­
tions on E~G IGx • We shall give a proof of the theorem of 
Wang9 classifying these connections, in which we make use 
of the bundle E" = G X G H. 

Proposition 2: Let Y be the Lie algebra of G, Yo the Lie 
algebra of Go C G and h the Lie algebra of H. The G invariant 
connections on the bundleE" determined by ..1,:Go~H are in 
one to one correspondence with linear mappings A: Y--+h 
satisfying the following two equations: 

the homomorphism ..1,*:Y o~h determined by the differen­
tial of ..1,. 

A (Adg- I$') = AdA (g)-I(A ($')), for $'EY and 
gEGo. (18b) 

Proof Let 0) be a G-invariant connection on G X GoH, 
let tjI:G XH~G XGoH be defined byf/!( g,h) = [g,h] and let 
j:G----..G XHbej( g) = (g,e). Then tjI*w is a G-invariant con­
nection on the trivial Hbundle G XH andj*tjI*w, its pull­
back to the base space G, is a left G-invariant h valued form 
and thus is determined by its value at Te G which can be 
identified with Y. We conclude that if (J,'J is the left-invar­
iant Maurer-Cartan form on G then there is a linear map 
A: Y--+h such that 

j*tjI*O) = Ao(J,,§, . 

Let tjI*O) = WI + w2, where WI acts on the tangents to the first 
factor and 0)2 on the tangen ts to the second factor in G X H. If 
1]Eh and ij is the vertical vector field on G XGoH generated 
by Rexp ''1/' then w(ij) = 1] which implies 0)2 is the Maurer­
Cartan form on h, (JA' From the equivariance condition 

R to) = Adh -10) 

we conclude 

tjI*O)( g,h) = Adh -I(A o(J,,?, ) + (J /, . 
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Proof The argument is very close to that in the proof of 
Proposition 2 so we will omit most of the details. As in that 
proof we define t/!:G XH XS-G XG.,H XSby 
t/!( g,h,s) = ([ g,h ],s) and find 

t/!*w( g,h,s) = Adh -1(As 08,,§ + J.l) + 8h , 

where J.l is a one-form on S. Left G invariance shows that 
there is no "g dependence" in the form J.l. The conditions 
that the right-hand side define the pull-back of a form on 
G X G.,H xS impose in addition to Eqs. (ISa) and (ISb) on 
the linear mappings A s the additional equation, 

J.l = AdA. (g)-IJ.l, for gEGo. 

Thus J.l must take values in the subalgebra of h of elements 
invariant under the adjoint action of A. (Go). 

3.EXAMPLES 

We now illustrate these results with some examples. let 
Mo be compactified Minkowski space which we identify I 
with U(2), letM = SU(2)xU(I) be the twofold covering and 
let the gauge group H be SU(2). For the transformation 
group G also equal to SU(2) consider the following actions of 
G on M. Given gEG = SU(2) and (x,e i¢)EM = SU(2) X U( 1) 
define 

ag(x,ei¢) = (gx,ei¢), 

/3g(x,ei¢) = (xg-I,ei ¢), 

rg(x,e i¢) = (gxg-I,e i¢). 

Both a and /3 define simple actions with special cross-sec­
tions through (x,ei¢) given by qJ (s) = (x,e i(¢ + Sl). The action 
defined by r is not simple since there are two orbit types for 
the conjugation action of SU(2) on itself. Therefore we re­
stricttotheopensubmanifoldMI = (SU(2) - I ± I JlXU(I) 
on which the action r is simple, where 

I = (~ ~) ESU(2). 

OnMI 

qJ (s,t) = (x (~iS ~ _ is)' ei(¢+ ti) 
defines a special cross-section through (x,e i¢). 

Since a and /3 commute there is a well defined action 
a x/3 of SU(2) X SU(2) on M which we shall also consider. 

Example a: The isotropy group is the identity I and 
therefore the orbits are identifiable with G. By Corollary 3 
the bundle structure over any orbit is trivial. By Theorem 1 
the same is true over a neighborhood of an orbit and by 
Theorem 2 the connection form pulled back to the base space 
M under any G invariant section is given by 

iii = A¢ 08;<) + Bdt/!, 

where A¢ is a smoothly parameterized family oflinear maps 
f§ = .?u(2)-h = .?u(2), B is a smooth Su(2) valued function 
of t/!, and the Maurer-Cartan form 8,,§ is regarded as de­
fined, on a neighborhood of orbits, on the first term in 
M -SU(2) X U(I). The triviality of the bundle in this case 
may be proved to be global (see Ref. 1). 

Example /3: This is completely equivalent to the pre­
vious example with the left invariant Maurer-Cartan form 
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8;<) replaced by the right invariant Maurer-Cartan form in 
the expression for iii. 

(For the above two examples, the gauge group SU(2) 
may be replaced by arbitrary H with algebra h, with A¢ 
interpreted as any smooth family of linear maps 
A",:.?u(2)-h. 

Example a x/3: The transformation group G is 
SU(2) X SU(2) and along the cross-section qJ(s) = (I,e is) the 
isotropy group is the diagonal subgroup 
~ = Ug,g)jgESU(2)} CG 
= SU(2) X SU(2). Up to conjugacy in H = SU(2) there are 

two homomorphism ..1.:A_H 

..1.o(g,g) I and..1.l(g,g) =g. 

These both extend to homomorphisms of G_H by choosing 
the extension independent of the second factor; therefore, by 
Corollary 2, there exists a section of EA.., and EA., over the 
entire orbit. The bundle EA.., is defined by the equivalence 
relation 

(gl,g2,h )-( glg3-1,g~3- I,h) 

and EA., is defined by the equivalence 

(gl,g2,h )-(glg3-1,g~3-1,g3h). 

The group action on both is given by 

ax/3/g;,gil [gl,g2,h] = [g;gl,g;g2,h], 

where [ ] denotes an equivalence class. We can identify the 
orbits with G / ~ and G / ~ can be identified with SU(2) by 

XJ----+(XJ).1EG /~, for xESU(2). 

Define sections (To and EA.., and (TI of EA., over an orbit by 

(To(x) = [x,l,I] and (TI(X) = [x,l,l]. 

(The different notations used, distinguish between the two 
definitions of equivalence.) Then 

and 

ax/3(g;,g,I(TO(x) = [gix,g;,I] 

= [g; xg; - 1,1,1 ] 

= (To(g;xg; -I) 

ax/3/g;.gil (TI(X) = [g;x,g;,I] 

= [g; xg; - l,l,g; ] 

= (TI( g;xg; - I)g;. 

Ifwe consider EA.. xS and EA., xS and define (To and (TI by 

(To(x,e i
"') = ([x,l,I ],e i¢). 

(T1(x,e i"1 = ([x,I,l],e i
"'). 

We get the same transformation equations. Write the 
Maurer-Cartan form 8[f1 as 8 1 + 82 corresponding to the 
direct product decomposition. An invariant connection on 
EA.., xS or EA., xS pulled back to G XH xS looks like 

w( g,.g,.h.e"l = Adh -1(A¢(81 + 82) + B¢ dt/!) + 8h 

subject to compatibility with ..1.0 or ..1. 1' For ..1.0 the condition 
(ISb) implies 

A",(Ad(g,g)-1(81 + 82)) =A",(81 + 82), 

which implies A ",=:0. The .?u(2) valued function B", is arbi­
trary and the connection pulled back to the base by (To is just 
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The mapping t/J defines a fibration of G XH over 
G X GoH with Go acting on the fibers. The conditions for a 
form on G X H to be the pull-back by t/J of a form on G X GoH 
are first that it vanish on tangents to the fibers and second 
that it be invariant under the action of Go. The tangents to 
the fibers are given by differentiating in t the expression 
[g exp(ts j), A (exp( - ts))h ] hence are of the form 

[S,-Adh-1A.(S)](g,hP for SEf1. 

The condition t/J*w S, - Adh -IA• ( s ) = 0 implies 

A (s) =A.( S)· 
The Go action is given by 

gl.( S,1])(g,h) = (Adgl-IS,1])(gg",,(g.l-'h)· 

The invariance of t/J*w implies 

AdA (g)A (Adg-IS) = A (S). 

Since these conditions are necessary and sufficient the pro­
position is proved. 

2.GENERALIZATION TO INTRASITIVE GROUP 
ACTIONS 

Now we study the situation when the base space M is 
not a homogeneous space. The structure of the bundle over 
the orbit through x is determined by a homomorphism 
Ax :Gx-H. To put together the information over a set of 
orbits we need a smooth cross section, a submanifold inter­
secting each orbit in one point. Such a cross section may not 
exist even locally if the conjugacy class of isotropy group 
changes from orbit to orbit. 

For xEM, let G (x) be the orbit of G through x,if YEG (x) 
theny = gx and Gy = gGxg- l

; the isotropy groups are con­
jugate. Associated to each orbit is a unique conjugacy class 
which we call the type of the orbit. If the action ofG on Mhas 
just one orbit type one can often show that for all xEM there 
is a smooth imbedding of an open set SC R k (k = dimM 
- dimG IGo) intoM f/J:S---+Mwithf/J (0) = x andf/J (S) inter­

secting each orbit in a unique point, further the isotropy 
group of all the points f/J (S) is the same, G<p(P) = G x for all 
pES. We call such a situation a simple G action and such an 
imbedding a special cross section. For a simple G action we 
can formulate a reasonable theorem without involved tech­
nical conditions on the orbit structure. One can best deal 
with the more complicated cases involving several orbit 
types individually. 

Given an H bundle 1T:E---+M with G action projecting to 
a simple G action on M, let f/J be a special cross section and 
(rS--+Ebe a "section of E over f/J" that is 1Ta(S) = f/J (s). Define 
As:Go-H by 

ga(s) = a(8 lAs( g), gEG<p(s) = Go. 

Lemma: If Go and H are compact the section u can be 
chosen so that As is independent of s, equal to its value at 
8=0. 

Proof: Let To be a maximal torus in Go and let t be an 
element such that r t n J is dense in To. We shall show that 
thereisasmoothfunctionh:S'_Hh (0) = e, withS'300pen 
in S, such that h (slAs (t)h (S)-I is constant. Then the homo­
morphism A ; corresponding to the section a(s)h (s) -I is con­
stant in S on To. 
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First observe that if X is any character on H then XOAs is 
a trigonometric polynomial on To whose coefficients are in­
teger va!ued functions continuous in s, hence constant. Thus 
XOAs (t ) is constant and letting X vary over all characters we 
see that aIlAs(t) are in the same conjugacy class. Let Zbe the 
centralizer of Ao(t). What we have shown is that S is mapped 
smoothly into one orbit of the conjugation action of H on 
itself. That orbit is diffeomorphic to H IZ. Hence we have a 
smooth map S_H /Z and composing with a local section of 
H--+H IZ we have, after possibly restricting to an open subset 
S' CS, a function h:S_H such that 

h IslAs(t)h (S)-I = Ao(t). 
Since Go and H are compact each is a product of a torus 

and a compact semisimple group - G = A XF and 
H = B X K with A,B tori and F,K compact semisimple 
groups. We can assumethatA C To and T cf1F'= TI is a maxi­
mal torus in Fand that for some maximal torus TinH,BC T 
and Tn/( = T2 is a maximal torus in K. The restricted homo­
morphism (that is, As: To-T composed on the right with the 
inclusion Tc'" To and on the left with projection T --+ T2 ) 

As :T1-T2 is constant in Sand using the results of Dynkin lO 

this shows that all the subgroups As(F) are conjugate in K. 
More precisely, the condition thatAs :T1-T2 is constant ins 
implies that all As(F) are equivalent in every representation 
of K. For all semisimple groups there are at most finitely 
many conjugacy classes of semisimple subgroups of K which 
are equivalent in every representation. The continuity in s of 
As implies that the conjugacy classes cannot vary with sand 
therefore all theA, (F) are conjugate. That the conjugacy can 
be carried out with smooth dependence on s follows from the 
existence of smooth sections of KIN (AoW )) the coset space of 
K by the normalizer of the subgroup AoW). 

Combining this lemma with Propositions I and 2 gives 
us the following two theorems. 

Theorem 1: Let M be a manifold with simple G-action 
and compact isotropy groups. Let E be a principal H bundle 
with G-action projecting on the G-action on M. Assume H is 
compact. Let f/J:S-M be a special cross-section through 
xEM and U = G'f/J (S ) C M. Then there is an isomorphism 

E'v~E" XS, for some A:Gx---+H. 

This theorem together with Proposition 1 and its corollaries 
completely analyzes the structure of a bundle with G action 
over the neighborhood of an orbit in space with a simple G 
action. 

Proof Let q;:S---+M be a special cross-section and u a 
section of E over f/J such that the homomorphism As is inde­
pendent of s. Then define a mapping 

fE"o XS-E I v' 

1([ g,h J,s) = ga(s)h. 

It is immediate to check that this is a G equivariant 
isomorphism. 

Theorem 2: The G invariant connections on E" xS are 
determined by 

(i) A family oflinear maps As: f1 -h depending smooth­
lyon s and satisfying (I8a) and (I8b). 

(ii) A one-form f..t on S with values in the subalgebra of h 
of elements invariant under the adjoint action of Ao(Go). 
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B", dt/J. For AI the condition that B", takes values in the Ad­
invariants of the image of AI implies B",=O. The remaining 
conditions are (18a) 

A",(Ad(g,g)-I(OI + O2)) = Adg-IA",(OI + O2 ), 

which implies 

A",(OI + O2) = a",OI + b",02 

for a""b", scalar function of t/J and the right-hand side inter­
preted as taking values in su(2). By condition 18b, for SEsu(2), 

A (0 1 + 02)(S, -S) =A.(s, - S) =S, 

thus a", - b", = 1. The connection pulled back to the base is 

iii = a",OI' 

Example r: This is an example which, in view of the 
orbit structure in M, goes beyond the scope of Theorems 1 
and 2. We therefore begin by considering only the dense 
submanifold MI' 

Using the special cross section defined for 0 <s < 1T and 
O<t<21T 

qJ (s,t ) = ( (~S e ~ is) ,eit
) , we find 

_ {(eiS 
Go-

O 

For pEMI and q in the fiber of E over p define Aq :Go-H by 

Ygq = qAq( g), 

where Y is the action on E. The homomorphism Aq is conju­
gate to some fLn :Go-H, nEZ, defined by 

lin (eO is 0) (e
inS 0) 

r- e - is = 0 e - ins 
hence, by continuity, the integer n characterizing the homo­
morphism of the isotropy group into the gauge group is inde­
pendent of p. There exists an extension of Aq to iq :G_H if 
and only if n( p) = 0 or 1. Suppose the bundle E over MI 
extends to if over M and the G action on E extends to an 
action on if projecting to the r action on M. We can find a 
section u of if near p( t/J) = (I,e i"') and since the isotropy group 
at p(t/J) is SU(2) we have a homomorphism A", :SU(2)-SU(2). 
Restricted to Go 

A", (~S e ~ is) = (ei~"')S e _ ~n("'ls) 
where n(t/J)=l or n(t/J)=O. 
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By continuity the first case implies n(p)=l for pEMl 
and the second case implies n( p)=O. In either case the ho­
momorphism A extends to iq :G_H and we conclude that 
the transformation function can be chosen independent of 
the point in MI' This implies that we can choose the transfor­
mation function to be either 

Pol g,y)=IESU(2), 

PI( g,y) = g-IESU(2). 

The invariant connections corresponding to these transfor­
mation functions may be determined through Theorem 2 or 
by applying the theory of orthogonal invariants directly in 
the base space. The pull-backs lUo and lU I of the generic invar­
iant connections corresponding to Po and P I respectively 
may be expressed as: 

lUo = M ds + N dt 

and 

lUI =Adt + BlU + C[U,lU] + D(U,lUlU, 

where M, N are Ju(2)-algebra valued functions and A,B,C,D 
scalar functions depending on the invariants sand t only, U is 
an Ju(2)-valued function on M defined in the standard anti 
Hermitian representation 1 by 

U (x,e i"') = ~(x - ~ Trx), 

and lU is the Maurer-Cartan form in the first factor under the 
identification M - SU(2) X U( 1). 
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The matrix elements of the translation operator with respect to a complete orthonormal basis set 
of the Hilbert space L 2(R3

) are given in closed form as functions of the displacement vector. The 
basis functions are composed of an exponential, a Laguerre polynomial, and a regular solid 
spherical harmonic. With this formalism, a function which is defined with respect to a certain 
origin, can be "shifted", i.e., expressed in terms of given functions which are defined with respect 
to another origin. In this paper we also demonstrate the feasibility of this method by applying it to 
problems that are of special interest in the theory of the electronic structure of molecules and 
solids. We present new one-center expansions for some exponential-type functions (ETF's), and a 
closed-form expression for a multicenter integral over ETF's is given and numerically tested. 

1. INTRODUCTION 

The problem of how to perform spatial transforma­
tions, i.e. rotations .and translations, of physical fields often 
arises in various branches of theoretical physics. A useful 
concept for the mathematical treatment of such transforma­
tions has been the introduction of operators which establish 
a mapping of a given function onto a new function: The oper­
ator maps the function which represents a given field onto 
the function which represents the transformed physical 
field. This concept is especially valuable if the functions, 
which describe the physical field, are subject to the condition 
of being elements of certain Hilbert spaces, because in this 
case, the translation and rotation operators often cause uni­
tary transformations of the appropriate function spaces. 

For rotational transformations this method has been 
used successfully in connection with the theory of angular 
momentum. The well-known results provide an easy possi­
bility to rotate a physical field if its angular dependence can 
be represented by an element of the Hilbert space L2(1J ).1 
This function space contains all square-summable functions, 
which are defined on the surface of a sphere in the three­
dimensional Euclidian space. 

Translational transformations can be described by a 
mapping of a functionf, which represents the original field, 
onto a function F, which represents the shifted field. The 
mapping of/ onto F can be formulated with the help of the 
translation operator .'T R defined by .'T R : /-+F or 

Y J(r) =/(r - R) = F(r). (1.1) 

We consider the case when the function/is an element 
of the Hilbert space L 2(R

3
), which is of special importance in 

quantum mechanics. If/is an element of L 2(R
3

) the function 
F is also an element of this space, and the translation opera­
tor causes a unitary transformation of the space L 2(R3

) 

which is closely connected to the Fourier-Plancherel trans­
formation. 2 This connection is usually utilized to represent 
the translation operator by an integral-operator which pro­
vides the possibility to shift a physical field by applying two 
successive Fourier transformations to the function which re-

• Author to whom correspondence should be directed. 

presents the original field. However, this method has severe 
drawbacks. For instance, when applied to the difficult multi­
center integral problem which plays an important role in the 
theory of the electronic structure of molecules and solids,3 it 
has led to rather impractical results, although the calcula­
tions have been performed in a very sophisticated manner.4 

In this paper we want to present an alternative method 
for the treatment of translational transformations of phys­
ical fields which are represented by functions of the space 
L 2(R3

). Because the translation operator is unitary, it is pos­
sible to represent it completely by its matrix, if the matrix 
elements are defined with respect to a complete and ortho­
normal basis set of the space L 2(R3

). 
5 Since this Hilbert space 

is separable, only a countable set of matrix elements is need­
ed for the representation. In practical calculations, a set of 
matrix elements can usually be handled rather easily by 
methods established in linear algebra. Therefore, a represen­
tation of an opertor in terms of matrix elements is often more 
practical than the representation by means of an integral 
operator, which can lead to serious analytical and numerical 
difficulties. The method of transforming functions with the 
help of a matrix representation of the translation operator 
has the further advantage that the basis functions, which are 
required, can be chosen properly according to the nature of 
the problems under consideration. This is rather important 
because the choice of the basis set will determine the rate of 
convergence of the resulting series expansions. As a com­
plete and orthonormal basis set, we have chosen a set that 
consists of functions which are the product of an exponen­
tial, a Laguerre polynomial, and a regular solid spherical 
harmonic. The choice of spherical harmonics for the de­
scription of the angular part of the basis set functions offers 
the possibility to perform at once, if necessary, a rotational 
transformation of the field with the help of the well-known 
rotation matrix,6 before the translation is considered. Utiliz­
ing results for the convolution of exponential-type functions 
which we derived recently,7 we are able to find the complete 
matrix representation of the translation operator with re­
spect to the chosen basis set in a rather compact analytical 
form. Applying this method to the problem of finding one­
center expansions of given functions, we also derive new ad-
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dition theorems for "reduced Bessel-", Laguerre-, and 
Slater-type functions which have some striking advantages 
compared to results which have been given in the literature 
so far. 
2. REALIZATIONS OF THE TRANSLATION OPERATOR 

A given scalar field in three-dimensional space may 
mathematically be represented by a functionf(r) which is 
defined with respect to a certain coordinate system; the func­
tional form off depends on the choice of this coordinate 
system. If the field is subject to a translation (without rota­
tion) defined by a displacement vector R, then the field is 
mathematically represented by a new function F (r) which is 
defined with respect to the same coordinate system. Hence, 
the "new function" Fhas the same value at the point defined 
by the local vector r as the "old function" fhas at the point 
defined by the local vector (r - R), i.e., 

f(r - R) = F(r). (2.1a) 
As this equality holds for any point in three-dimensional 
space, the relationship Eq. (2.1a) is an identity among the 
values of the functions, which is valid for each point. If the 
new functionfis described with the help of an operator :T R' 
where:T R changesfinto F, thefunctional relationship be­
tweenf and F, which corresponds to Eq. (2.la), is given by 

:T J(r) = F(r). (2.1b) 
In Eq. (2.lb), thefunctions do not depend on the dis­

placement vector R any more, as they did in Eq. (2.1a): Now, 
the dependence upon R is put into the:T R operator only. Iff 
can be expanded into a three-dimensional Taylor series the 
translation operator :T R can be represented by the differen­
tial operator:T R = exp( - R·a I ar). For quantum mechani­
cal investigations, it is often sufficient to consider :T R as an 
operator that operates on such functionsfas are elements of 
certain Hilbert spaces. Then, the relationships Eqs. (2.la,b), 
which are pointwise valid, can be replaced by the equation 

:T R If) = IF). (2.2) 
For a given Dirac-ket I f), the ket IF) will depend on R as a 
parameter. In order to analyze this dependence, the operator 
:T R has to be specified in a way which exhibits its R depen­
dence in explicit form. If this is done, it will be possible to 
execute analytical calculations with the help of :T R . 

A well-known realization of the translation operator 
:T R' which can be used for the shifting offunctions that are 
elements ofthe Hilbert spaceL2(V), is the matrix representa­
tion of :T R with respect to a basis of plane wave functions 
Ik) = V- 1I2 exp(ik'r), where k = 21T(n 1/a, n2lb, n3/c) and 
V = a·b·c specifies a normalization volume: 

:TR = I Ilk) (kl:TR Ik') (k'i 
k k' 

= L Ik)e-ik.R(kl· (2.3) 
k 

Here it is assumed that every function which is an element of 
L 2(V) is extended to a function defined in the whole three­
dimensional space R3 by periodic continuation. 

The situation becomes more complicated if one consid­
ers the translation operator acting on the space Lz(R3

), be­
cause then it is no longer possible to decompose the space 
into a denumerable direct sum of invariant subspaces.8 A 
realization which is formally similar to Eq. (2.3) can be ob­
tained with the help of the Fourier-Plancherel transforma-
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tion given by 

/(k) = ''It f(r) = (211') - 3/2 f dr exp( - ik'r)(r), (2.4) 

utilizing a Fourier integral operator ''It. Because ''It defines a 
unitary transformation due to Plancherel,2 it is possible to 
obtain a representation of :T R from the unitary equivalent 
operator Y R defined by Y R l(k) = F (k). Because Y R 
= exp( - ik·R) it follows that 

:TR = "lttyR"lt = (21T)-3fdkeXP(ik.r) 

X exp( - ik.R)J dr' exp( - ik·r'). (2.5) 

This realization ofthe translation operator via Fourier inte­
grals, however, often leads to serious integration problems if 
the integrals are to be evaluated for practical purposes. 

In this article we present a new analytical realization of 
the translation operator in L 2(R3

) by means of its matrix 
elements. The details of the results and the derivations will 
be given in Sec. 4. Now we discuss some more general 
aspects. 

The translation operator :T R is unitary if it acts on the 
space L 2(R3

). Therefore, :T R is also a linear and bounded 
operator, and the following realization of the operator must 
be possible5

: 

As expansion basis! ¢'n 1, any complete orthonormal set of 
L 2(R

3
) can be used. As the space L 2(R

3
) cannot be decom­

posed into a direct sum of translationally invariant sub­
spaces, no basis set! ¢'n 1 exists which would reduce the ma­
trix to block-diagonal form. However, this disadvantage will 
often be compensated by the possibility to use methods of 
linear algebra when the representation as it is given by Eq. 
(2.6) is applied. In Eq. (2.6) the R-dependence of:T R is ex­
pressed completely by a set of matrix elements 

(2.7a) 

Each matrix element can be considered as a function S of R, 
i.e., 

(2.7b) 

The determination of these functions is essential for the ap­
plicability of Eq. (2.6). 

A rather general method to obtain formal expressions 
for these functions is provided by the Fourier transform con­
volution theorem,9 which states that the Fourier transforms 
fin,.n" ¢;n, and ¢;n, are related by 

fin"n, (k) = (21T)3/Vn, (k)¢;n, (k). (2.8) 

This relationship converts the matrix elements given by Eq. 
(2.7a), which are in fact two-centric convolution integrals, 
into one-centric Fourier integrals 

Sn •. n, (R) = (:T R )n •. n, 

= f d k e1k.R<p n, (k)<P n, (k). (2.9) 

This equation can also be obtained if in Eq. (2.7a) the opera-
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tor Y R is substituted according to Eq. (2.5). 
Another rather general method is the procedure that 

one tries to find the function S (R) as a series in terms of 
functions ofR which constitute an orthonormal set. If one 
chooses the original functions ¢", one obtains the formal 
expansion 

(2.10) 

Such an expansion is always possible if the product i", ·i", of 
- - 3 

the Fourier transforms ¢n and ¢" is an element of LiR ). 
Then, S as given by Eq. (2: 8), and,' therefore, also S must be 
elements of this space. In this case, the series expansion as 
given by Eq. (2.10) is at least convergent in the mean, and the 
expansion coefficients are given by the integrals 

c~"n, = (21T)3/2(ivlin.lin), (2.11) 

as can be seen with the help ofEq. (2.9). 
From Plancherel's theorem it is clear that the expan­

sion coefficients (iv lin. lin, ) are integrals over three or­
thogonal functions. This sort of integral is often hard to 
evaluate. Only a few special results are available even if the 
functions in consist of classical orthogonal polynomials 
multiplied by appropriate weight functions. 10 The same is 
true for the kind of integrals given by Eq. (2.9). Therefore, it 
will often only be possible to evaluate the matrix elements of 
the translation operator with respect to a given basis set if 
specific mathematical relationships are available which 
make it possible to avoid the rather general but complex 
integral representations given by Eqs. (2.9) and (2.11). 

An explicit matrix realization of the translation opera­
tor requires the choice ofa basis set. Obviously, if the matrix 
representation of the translation operator is used for the 
translational transformation of a given function, the rate of 
convergence of the resulting series expansion will depend on 
the choice of the basis functions which are used. We will 
consider the case when the functions of the complete and 
orthonormal basis set consist of the product of an exponen­
tial, a Laguerre polynomial, and a regular solid spherical 
harmonic. It is to be expected that the representation of the 
translation operator with respect to this set of exponential­
type functions (ETF's) will lead to rapidly convergent series, 
if it is used for the shifting of fields which are described by 
exponentially declining or similar "strongly localized" func­
tions, because then the main character of the original func­
tion is preserved by the basis functions. Therefore, the choice 
of ETF's as basis functions for the matrix representation of 
the translation operator should be especially appropriate for 
applications to problems in which ETF's are to be trans­
formed, as it is the case in the context of various fields of 
theoretical physics, as especially in atomic, molecular, and 
solid-state theory. 

3. ORTHOGONAL AND NONORTHOGONAL BASIS 
SETS OF EXPONENTIALLY DECLINING FUNCTIONS 

In this section, different orthogonal and non orthogonal 
exponentially declining basis functions will be defined for 
later use. For the different classes ofETF's studied here, new 
relationships will be given which make it possible to trans-

2727 J. Math. Phys., Vol. 21, No. 12, December 1980 

form a given type ofETF into another type ofETF. These 
relationships enhance the applicability of ETF's, and they 
also make it possible to transform the formulas given in the 
present paper into formulas which hold for those ETF's 
which are not used in this article. 

As an exponential-type function (ETF) we denote a 
function of the form 

¢,:,(r)=e-p,,(r)'IY/'(r), (3.1) 
where P~ (r) is an arbitrary polynomial of order n. The r;gular 
solid spherical harmonic 'IY/'(r) stands for the product 
rY,[,(8,¢), where for tbe sudace spberical barmonic Y'[' tbe 
definition of Condon and Shortley is used. I I The function 
sets considered in the following differ from each other only 
by the choice of the polynomial part Pn (r); each choice of a 
certain kind ofpolynomialpn(r) leads to a certain set of 
ETF's. The various sets obtained in this way exhibit different 
properties as far as orthogonality and completeness is 
concerned. 

Well-known ETF's of the type defined by Eq. (3.1) 
are the bound-state wave functions of the electron in the 
hydrogen atom. These functions are orthogonal but do not 
form a complete set of functions in L 2(R

3
). A complete set 

can be obtained only if the Coulomb functions which belong 
to the continuous spectrum are included. 12 However, these 
functions are not of the form Eq. (3.1). Therefore, the solu­
tions of the one-center-one-electron Coulomb problem do 
not form a countable exponential-type basis set and, there­
fore, the "basis" consisting of all hydrogen functions (includ­
ing the continuum) is not suitable for our purposes. 

A well established exponential-type function set is 
given by the system of (unnormalized) Slater-type functions 
(STF's) which are defined by 

&.L (ar) = (art - Ie - ary f(nr ). (3.2) 
These functions are a complete but not orthogonal basis 

set for the space L2{JR3). 13 Slater-type functions (or Slater­
type orbitals, STO's) are widely used in atomic, molecular, 
and solid-state theory. 

Investigating the integral and convolutional as well as 
the transformational properties of Slater-type functions and 
their applicablity in electronic structure calculations,7.'4 we 
have recently introduced the so-called B functions IS which 
have some remarkable advantages over other kinds of 
ETF's: 
B~Llar) = kN _ 112 {ar)'lYf(ar)[(2N + 2L I!!] -I, (3.3a) 

k
n

_ I12 {r) =r-Ie-rf (2N-p-I)! 2P- NrP 
P= I (p - I)!(N - pI! 

= (2I11')1/2,.,v - I12KN _ 1/2 (r). (3.3b) 
Here, k" is the so-called reduced Bessel function 7.14 (RBF), 
which is closely related to the modified Bessel function of the 
second kind K".16 These B functions are closely connected 
with Slater-type functions, and can like these be used for the 
calculation of properties of small molecules. 17 The set of all 
B functions with different n,l,m is complete but not orthogo­
nal. The completeness follows from the fact that the basis set 
of B functions can be obtained from the basis set of Slater­
type functions by a linear transformation with a triangular 
matrix. 13 

Another set of ETF's which is a complete and also or­
thogonal basis set for L2(JR3) is given by the Laguerre func-
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tions A r:.L which we define by the equation 

A ~l (ar) = ff(n,1 )a3
/
2 L ~~+l ~ I (2ar)e - ar'3'';'(2ar). (3.4a) 

The normalization factor is given by 

ff(n,/) = 23/2[(n -1- l)l/(n + 1 + 1)W/2. (3.4b) 

For the Laguerre polynomial we use the definition 18 

L ~)(x) = i (- It (n + a) xm . (3.5) 
m=O n -m m! 

Functions of this kind have also successfully been used in 
electronic structure calculations. 19 For our purposes the A 
functions are especially useful because it is possible to ex­
press the unit operator in L 2(R

3
) as 

I IA r:.L) (A r:.L I = 1. (3.6) 
N,L,M 

The decomposition of the unit operator with respect to a 
complete basis set that consists of functions which are not 
orthogonal is usually much more complicated. This is the 
reason why we used the set of A functions for the expansion 
of the translation operator in Sec. 4. It is important, howev­
er, to be able to change from one basis set to another one. 
Therefore, we are now going to derive the necessary trans­
formation formulas which relate the Slater-type, B, and A 
functions to each other. 

The formulas describing the transformation of Slater­
type functions into B functions and the inverse transforma­
tion readl4 

M N-L [(-It-L-P(N-L)!2L+P(L+P)! M ] 
XN,dr) = L B pdr) , 

p = min(p) (2p -. N + L )!(2N - 2L - 2p)!! ' 

(3.7a) 

. {(N - L )/2 for N - Leven 
mm(p) -

- (N - L + 1)/2 for N - L odd ' 
(3.7b) 

Br:.L(r) = [(2N + 2L )!!]-I 

N (2N - P - 1)!2P- N 
M 

X P~1 (p _ l)!(N _ p)! xp+L,dr). (3.8) 

The transformation of A functions into Slater-type 
functions can be obtained directly by representing the La­
guerre polynomial in terms of powers of r according to Eq. 
(3.5), leading to 

(3.9) 

Because any power of r can be expressed in terms of Laguerre 
polynomials L ~)(r), 20 we obtain immediately for the inverse 
relationship 

N-L-l 

xr:.L(r) = (N-L-1)!2-2L I (-l)P 
p=O 

( N+L+1 ) 
X \N-L-l-p ff-l(p+L+1,L) 

X A :r+ L + I,L (r). 

(3.10) 
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The expansion of B functions in terms of A functions 
can be obtained by starting from the interesting relationship 

'( + 1/2 (r) = ( - 2) - nn! e - rL ~ - 2n - 11(2r), (3.11) 

which follows from a comparison of the definitions of the k 
functions with the Laguerre functions. Then, with the help 
of the relationship20 

L1a)(x)= 'f (a-fJ)m LIf3I () 
n ~ , n-m X ' 

m=O m. 
(3.12) 

the k function can be expressed as a linear combination of 
Laguerre polynomials with arbitrary upper index times an 
exponential function according to 

A _ n _ r n m (2n + 1 + fJ) 
kn+I/2(r)=(-2) n!e m'?;o(-l) n-m 

X L ~)(2r). (3.13) 

Setting fJ = 2L + 2 and multiplying Eq. (3.13) by a regular 
solid spherical harmonic '3'~, we find 

N I N 
BM ()- . "'( liP 

N+I,L r - (2N 2L 2)" ~ -+ + .. p=O 

(
2N + 2L + 3) 

X N-p ff-l(p+L+1,L) 

X A :r+ L + I,L (r). (3.14) 

In order to express A by B functions, which results in 
the inversion of the transformation Eq. (3.14), we start from 
the relationship 

x - Ie - XL ~a)(2x) 

- i (-2)'r(n+a+t+ 1) k 
-,=ot!(n-t)!F(a+2t+1) '_In/X), (3.15) 

which can be obtained as follows: In the Laguerre polynomi­
al Eq. (3.5) given in terms of powers of x, with the help ofEq. 
(3.7) the various terms of the form xVe - X, which occur, are 
expressed by reduced Bessel functions k. If we collect the k 
functions with equal index, we obtain a linear combination 
of k functions, where the coefficients are given as finite sums. 
These sums can be expressed in closed form by Vander­
monde's theorem,21 yielding Eq. (3,15). Now, making use of 
the recursion relation22 

xL:," + I)(X) = (n + a + I)L ~a)(x) - (n + I)L ~a~ 1 (x), 

(3.16) 

the factor x - I in formula Eq. (3,15) can be eliminated, lead­
ing t023 

e-XL :,")(2x) = (2n + a + 1) 

n (-2)'r(n + a + t + 1) A 

X L k,+ 1/2 (x). 
,= 0 t !(n - t )!r (a + 2t + 2) 

(3.17) 

For a = 21 +2 we finally obtain the relationship which en­
ables us to transform A functions into B functions: 

(3. 18a) 

with 
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b':·L = (_I)'-L- 12t
-

I(N + t)! 
X [(t - L -1)!(N - t)!(2t + I)!! ] -1(2N + 1) 

X ff(N,L). (3.1Sb) 

4. MATRIX ELEMENTS; OF THE TRANSLATION 
OPERATOR 

The matrix representation of the translation operator 
Y R in terms of a general expansion basis { <P n ) was intro­
duced by Eq. (2.6). NO\v, as a specific expansion basis we 
choose the A basis, whi,.::h consists of all A ~L functions as 
given by Eqs. (3.4a,b). Then, in Dirac's notation the matrix 
representation of Y R can be written asZ4 

Y R = I, I, IA~~'L'> (A~L,IYRIA~'L) (A~:L,I· 
N.L.M. NlLlM, 

(4.1) 

The applicability ofth;is expansion to practical problems de­
pends strongly on the efficient calculation of the coefficients 

(y )M,.M, _ (A M, IY IA M, ) (4.2) 
R N.L •• NlL1 - N,L. R N,Ll 

that occur in the expansion. In this section we will show that 
with the chosen basis it is possible to obtain very compact 
analytical formulas for these matrix elements which are well 
suited for practical applications. In Sec. 4A we will list the 
main results. The derivation of these formulas will be given 
in Sec. 4B. 

A. Results 

The matrix elements of the translation operator Y Rare 
three-dimensional convolution products, i.e., overlap inte­
grals, of the A functions according to 

(Y R )~t:.N,L, = f df~ A ~I. (r)Y RA ~L, (r) 

= f dJr A ~I. (r)A ~L, (r - R). (4.3) 

These matrix elements can be expressed as linear combina­
tions of functions A :~I (R) which depend on the displacement 
vector R. By doing :,0, the following simple analytical ex­
pression is obtained: 

(YR)~L~N,L, = I,<LzMzILIMIllm) 
1 

mrxnl 
X TN,L,N,L'A m (R) 

n,l n,l' (4.4a) 
n = min(nl 

min(n) = max(l + 1,INI - N21 - 1), 

max(n) = N) + N2 + 1, m = M2 - MI' (4.4b) 

The important conditions Eq. (4.4b) and Eq. (4.4c) are 
very similar to the triangular condition for the Gaunt coeffi­
cient25 (LzMzILI.ftlfd1m) which limits the I summation to 
the range 

ILl - L 21.;;;[."L1 + L 2· (4.4d) 

The range of the summation index n in Eq. (4.4a) is given by 
max(n) - min(n). This range, i.e., the number of A ;::1 func­
tions that occur in the summation, is strictly limited. The 
lower limit ofn increases if the upper limit increases. In 
many cases, therefore, the number of terms in the summa-
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tion will not increase considerably if the indices N I,L I,N 2,L2 
are raised. As can be seen from examples discussed in Sec. 
SB, this fact improves considerably the practical applicabil­
ity of the formulas. 

The coefficients T~}L,N,L, in the expansion Eq. (4.4a) 
fulfill the following useful symmetry relations: 

T~}L,N,N, = (_ 1)IT~1L,N,L" 

TN,L,N,L, _ TN,L,nl 
n,l - NlL l ' 

TN,L,N,L, = ( _ I)L'TnIN,L,. 
n,l NIL. 

(4.Sa) 

(4.Sb) 

(4.Sc) 

For the coefficients T~{,N,L, we first give integral re­
presentations. The coefficients T~/,N,L, can be represented 
by a double convolution integral 

(L MIL M IL 11.£ )TN,L,N,L, 
2 2 I I 3"'~ 3 N,L, 

(4.6) 

It is also possible to obtain the coefficients as a one-dimen­
sional integral over the product of three Jacobi polynomi­
alsz6 p~.P)(x): 

TZ'l;N,L, = ( - 1)4L'c(NpLdc(N2,L2)c(N3,L3) 

X f~ Idx (1 + xt + 112( 1 - xt + 7/2P!fi: ~ l;~LI' + 1121(x) 

X P (L, + 312,L, + 1121(x)P IL, + 3/2,L, + 1121(x) N, - L, - I N3 - L3 - I (4.7a) 

with 

c(N,L) = 2N- L- I/2 

X [(N + L + 1)I(N - L - 1)!]1/2/(2N - 1)", (4.7b) 

u= (LI +L2 +L3)12, .::1LI = (Lz +L3 -Ld/2. (4.7c) 

The last integral can be transformed into a simple linear 
combination of integrals over three Gegenbauer polynomi­
alsz7 CW(x): 

TZ;i:N,L, = 2L, +L,+L3(L)!L2!L3!)( _ 1)4L, 
I 

X L Yi(NpL I)Yj(Nz,L2) 
iJ.k=O 

XYdN3,L3)f~ Idx (1 - x2t+ 112 

xCIf;:~l~ _ i(x)C!fi:~l; _j(x)c!fi:~l! _ k(X), 
(4.Sa) 

with 

.(NL) = {(N + L + IjJY(N,L) 
y, , (N - L jJY(N,L ) 

for i = 1 

for i = O· 
(4.Sb) 

These formulas are related to Eq. (2.11). For some special 
values of the parameters, the formulas Eqs. (4.7) and (4.S) 
reduce to integrals for which closed form expressions can be 
found in standard tables. For the general case, however, 
these integrals seem to be unknown. 

Secondly we have found explicit formulas which ex­
press the general coefficients T~,L,N,L, that occur in the se­
ries expansion Eq. (4.4), as finite sums. An explicit formula 
for the coefficients is the following finite triple sum: 

TN,L,N,L, = 41T( - 1)4L'(2u + l)!!{ '" bN,L'bN,L'bN"L, 
N~3 L." (. tl (, 

ti/lt} ~ 
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X (2tl + 2t2 + 2t3 - 20' + I)!!} (4.9a) 
(2tl + 2t2 + 2t3 + 4)!! ' 

Li + I<.ti<.N;. i= 1,2,3. (4.9b) 

This expression exhibits the symmetry properties as stated in 
Eqs. (4.5a)-(4.5c).1t may be applied to the numerical calcula­
tion of the coefficients if the "quantum numbers" N 1, N2, N3 
are not too high. 

Ifthe "quantum numbers" NJ> N2, N3 are arranged ac­
cording to the condition 

(4.1Oa) 

which is always possible with the help ofEqs. (4.5a)-(4.5c), 
then it is possible to express the nonvanishing coefficients 
TN.L.N,L, by the following formula 

N,L3 

TN.L.N,L, = 1f( _ I)L. + N, - l.ff- I(N L )2 - N, + 3 N,L, 3' 3 

where we have put 

I1N3 = NI + N2 + N3 + 1, 

I1L3 = (L I + L2 - L3)12. 

The summation limits are given by 

min(tIl = max(O, I1N3 - N2 + L2 + 1 - I1L3) 

min(t2) = max(O,L I + 1 + tl - NIl, 

min(p) = max(O,I1N3 - N2 + L2 + 1 - tl)' 

max(p) = min(I1L3,I1N3 - til. 

(4.IOc) 

(4.1Od) 

(4.IOe) 

(4.1Ot) 

(4.1Og) 

(4.1Oh) 

The coefficients b ljL are defined by Eq. (3.18b). The summa­
tions on the r.h.s. of Eq. (4.1Ob) contain only a very limited 
number of terms due to the values of the upper and lower 
limits. Therefore, this expression Eq. (4.10) is well suited for 
numerical calculations. 

B. Derivations 

The formulas given above can be derived as follows. In 
the first place, we consider the integral 

[L,L, (R) = fdrA MT (r)e-1r-R1 
N,NJ N,L, 

XPN,(lr - RI)~~'(r - R), (4.11) 

where PN, stands for an arbitrary polynomial of degree N 2• 

For the evaluation of this integral, we make use of the convo­
lution theorem of B functions which we have derived 
recently28: 

f M* M dr B N,~, (r)B N,'L, (r - R) 

2730 

= 41T r(L2M2ILIMlllm)( _1)L, 
I 

X :f ( - 1) I ~) B ~, + N,+ L, + L, - I - 1+ 1.1 (R). 

(4.12) 
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The B 'fIL functions as defined by Eq. (3.3) consist of a 
product of a polynomial of degree: N -I, an exponential, 
and a solid spherical harmonic. Therefore, it must be possi­
ble to express the integral Eq. (4.1 :l) as a linear combination 
of convolution products of B functions. Inspection of the 
degree of the powers of R, which clccur in the convolution 
theorem Eq. (4.12), leads to the conclusion that the follow­
ing finite series expansion for the integral [~: 7.;, (R) of Eq. 
(4.11) must be valid: 

[~',7.;,(R) = r (L 2M2IL tM t llm) 
I 

X 

with 

maX(l') 
" ~N,L,N,L'A .. ' (R) L ~ v,l v,l' 

l'= min(l') 

(4. 13a) 

min(v) = I + 1, max(v) = Nt + Nz + L2 + 2. 
(4.13b) 

Because the A functions form an orthonormal set, the coeffi­
cients S in Eq. (4.13) are given by the integrals 

(L2M 2IL tM t llm) S~iL.N,L, 

= fdRA ~;(R)[~:7.;,(R) 

= ( - I)L'fdr A Mf (r)[IL, (r). N,L, vN2 
(4.14) 

IfI~"7v,(r) in Eq. (4.14) is expressed accoxding to Eq. (4.13), we 
obtain 

(L M IL M 11m) ~ N,L.N,L, 
2 2 t t !> v,/ 

= L (L2M21Iml...lp) ( - W' 
A 

(4.15) 

if we make use again of the orthogonali·,ty relation of the A 
functions. It can be seen from the exprel,sion Eq. (4.15) that 
the expansion coefficients have the following two interesting 
properties: In the first place, S ~iL.N,L, must vanish for all v 
which are smaller than 

min(v) = max (I + 1, Nt - N2 - L2 - 2). (4.16) 

Therefore, the lower limit of the summation index v in Eq. 
(4.13a), originally assumed to bel + 1 asg;iven by Eq. (4.13b), 
is in fact given by min (v) as defined by Eq. (4.16), which 
reduces the number of terms in the series expansion signifi­
cantly. In the second place, the following symmetry relation 
must be valid: 

(4.17) 

The relationships derived above are correct for arbi­
trary polynomials P N(r) as they are introduced in Eq. (4.11). 
If we now choose polynomials to be appropriate Laguerre 
polynomials, 

PN, _ L, _ t (r) = .ff(N2,L2 )L ~~:..i.;I- t (2.,.)2 L
" (4.18) 

the integrals defined by Eq. (4.11) become identical with the 
matrix elements of the translation operator" i.e., 

(4.19) 

Therefore, the results given by Eqs. (4.4)-(4.6) are special 
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cases of the formulas derived in this Sec. 4B. 
Having considered some general properties of the finite 

series expansion Eq. (4.4), we are now in the position to de­
rive explicit expressions for the summation coefficients T 
which occur in Eq. (4.4). In this derivation, the integral over 
A functions as given by Eq. (4.6), which represents the T 
coefficient, will be evaluated with the help of the convolution 
theorem of B functions as given by Eq. (4.12). After express­
ing the A functions in terms of B functions by utilizing the 
relationship Eq. (3.18) and performing the integration over r 
with the help of the convolution theorem Eq. (4.12), we 
obtain 

(L M JL M JL M ) TN,L,N,L, 
221133 N,L, 

X( - w, I (L~2ILIMIllm) 
/ 

X ~(- 1)' eJ fdRB~~L,.L,(R) 
X B;:' + t, _/_ t./(R). (4.20) 

The remaining integration over R can be performed with the 
help of the formula 

f d R B ~1 (R)B 'i:;L, (R) 

_ 8 (2LI + 1)!!(2NI + 2N2 + 2LI - I)!! 8 
- L,.L, (2NI + 2N2 + 4LI + 2)!! M,.M, 

(4.21) 

which we have derived recently. 29 If this value of the integral 
over the product of the two B functions is inserted into Eq. 
(4.20), it turns out that the summation over t can be ex­
pressed by the hypergeometric function ~I with unit argu­
ment which is given by Gauss' formula30

: 

2FI(a,b,c;l) = r(c)r(c - a - b )/[r(c - a)r(c - b)]. 
(4.22) 

For the T coefficients introduced in Eq. (4.4) we thus finally 
obtain the following expression: 

TZ~f:N,L, = 4( - 1).dLr [0' + 3/2] 

with 

X ~ b N,L'b N,L'b N,L, 
~ t. 1:1, 13 

X r [t l + t2 + 13 - 0' + 3/2] 
r(tl + t2 + 13 + 3) 

(4.23a) 

L; + 1 <J; ,N;, i = 1,2,3. (4.23b) 

This expression is identical with Eq. (4.9b). The number of 
terms in the summation is proportional to 
(NI - LI - I)(N2 - L2 - I)(N3 - L3 - 1). Therefore, this 
formula [Eq. (4.23) for the T coefficients] should preferably 
be used numerically for relatively small numbers 
(N; -L; -1). 

The relationship Eq. (4.23) offers the possibility to de­
rive one-dimensional integral representations for the T coef­
ficient, because the gamma functions combine to a beta func­
tion31 which may be represented by the following integral: 
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r [0' + 3/2]r [II + t2 + 13 - 0' + 3/2] 

r(tl + t2 + t3 + 3) 

= fdYYC ~Yr+1I2yt.+t,+t'. (4.24) 

If this expression is inserted into Eq. (4.23), under the inte­
gral sign the triple summation factorizes into the product of 
three sums, representing polynomials of degree N I, N2, and 
N3 , respectively: 

TZi:N,L, = 4fdY y C -Y)"+ 112 (Ibf..L,yt) 

X t ~b ~'L';') ( ~) ~,L,},). (4.25) 

By inspection of the coefficients b;'L as they are given by Eq. 
(3.18b) it turns out that the polynomials can be written as 
Jacobi polynomials according to 

2 - N -1I2(2N -1)!! Ib ;rLyt 
t 

= [(N + L + 1 )!(N - L - I)! ] lt2yL + I 

Xp~~t~-'f+1I2)(1-2y). (4.26) 

Ifwe substitute x = 1 -2y in Eq. (4.25) the integral repre­
sentation given by Eq. (4.7) is obtained. This integral repre­
sentation is closely connected to Eq. (2.11). The third inte­
gral representation as given by Eq. (4.8) can be derived at 
once from the last result by utilizing the relationship32: 

(1 _ y)P ~ ~ ~"!{ + 112) (y) 

(21 )!!(2n - I)!! = -O..-~-'--_--'-_ 

2n -/- I (n + I)! 
X [C~~P_I(Y)- (n-/) C~~P(Y)]. 

(n + 1+1) 
(4.27) 

For the numerical calculation of the Tcoefficients it is 
advantageous to use another explicit expression which we 
are going to derive now. Again we start from Eq. (4.6). How­
ever, we do not express all A functions, which occur in the 
integrand, by B functions as we did before, but we write only 
A ijJ.'L, as a linear combination of B functions according to 
Eq. (3.18), obtaining 

(L2M2IL\MtlL3M3) Tfd:N,L, 

= (4.28) 

where J is given by the following convolution integral: 

JTN~'(R) = f dr B~N"L' (r)A 'iJ,L,(r - R). (4.29) 

According to the discussion which led us to Eqs. (4.13) and 
(4.16), the integralJ can be expressed as a linear combination 
of A functions, 

J;~~r( - R) = I (L\M\IL2M211m) 
/ 

mrxvi 
X aN,L,tL'A m (R) 

v.1 v,l (4.30a) 
v=min(vi 

with 

minty) = max(1 + I, N2 - t - I), (4.30b) 
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max(v) = N2 + t + 1. (4.30c) 

On the other hand, ifin Eq. (4.29) the A function is expanded 
in terms of B functions with the help of Eq. (3.18), the inte­
gral J can be written in terms of B functions as 

J;~~r( - R) = 411'( - I~L'I<LIMIIL2M211m) 
1 

X I I ( - IJPb~,L, (.dj 
I, p P 

XB~I,+ l-l-p,dR). 
(4.31) 

The unknown expansion coefficients a~1L,IL. in Eq. (4.30a) 
can now be obtained as projections of the function J onto 
A :'1' The integral which represents the projection can be 
evaluated analytically with the help of Eq. (4.31) and the 
relationship 

J L.L,(O) = fd R B M r (R)A M, (R) 
tN2 t - L,.L. NILl 

whereas 

=th .. L,ff-l(N2,L2)2-I+l( _1)N,-L.-I 

X(t - LI - I)!(2t + I)!! 
X [(t -- N2)!(t + N2 + I)!]-I 

for r~N2' 

J ::.v~'(0) = 0 for t < N 2• 

(4.32a) 

(4.32b) 

This can be found from the transformation formula Eq. 
(3.14). The explicit formula for the coefficients a~,L,tL. then 
reads 

a~,L,IL. = 41T( _I)L.-I+v-lff-I(v,!) 

X I( - 2)P (.dj b~,L'2 -I-I, 
I,.P P 

X (t2 + t - 1-P)!(2t2 + 2t - 2p + 3)!! 

(t2 + t - P + 1 - v)!(t2 + t - P + v + 2)! 
(4.33a) 

with the summation limits 

Oq<.d/, v + p - t - I<t2<N2. (4.33b) 

If now Eq. (4.30) is used for replacing J in Eq. (4.28), the 
expression 

N 
TN.L.N,L, _ ~ b N.L·aN,L,IL.( _ I)L, (4.34) N,L, - L t N,L, 

t=L.+ 1 

is obtained. From Eqs. (4.30a), (4.30b), and (4.30c) it follows 
that only terms with t~!N~ - N21 - 1 have to be taken into 
account. Then, after a few manipulations, Eq. (4.34) becomes 
identical with Eq. (4.9), Q.E.D. 

5. SOME APPLICATIONS: ONE-CENTER EXPANSIONS 
AND MULTICENTER INTEGRALS 

A. General aspects 

The matrix representation of the translation operator 
makes it possible to derive normconvergent series expansion 
which represent new addition theorems--or one-center ex­
pansions--of three-dimensional functions fIr). Such expan­
sions can be used, for instance, for the evaluation of multi-
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center integrals. These examples for applications of the 
method presented in this article, which may be of general 
interest, shall be discussed in this section. They make it also 
possible to derive some useful relationships and to test the 
results numerically. 

A relationship 

(5.1) 

is called an addition theorem, as with the help of this formu­
la, the two variables in the argument of the functionf can be 
separated. If this formula, as usual, is understood as a rela­
tionship among functions which holds for any values ofr and 
R, respectively, the series expansion Eq. (5.1) is pointwise 
convergent. General aspects and methods for the derivation 
of such addition theorems for some special functions were 
discussed in earlier papers.33 If the functions have certain 
physical meanings, there are many possible applications of 
such addition theorems in theoretical physics and chemistry, 
like, for instance, in the theory of molecular interactions, in 
thermodynamics,34 and in the theory of the electronic struc­
ture of molecules and solids. 

Addition theorems are especially valuable for the evalu­
ation of generalized convolution integrals of the kind 

€I> (R1, ... ,Rn ) 

= f dr g(r)fl(r - RI)fz{r - R2) .. fn(r - Rn)· (5.2) 

Integrals of this kind and of related types necessarily occur 
in electronic structure calculations which make use of vari­
ational principles in connection with the LCAO (linear com­
bination of atomic oribital) method. They are called molecu­
lar multicenter integrals. The separation of the integration 
variable r with the help of an addition theorem of the type as 
given by Eq. (5.1) makes it possible to represent the compli­
cated integral Eq. (5.2) by a series of simpler integrals. If 
applied to integration purposes, however, it is often not even 
necessary that the series expansion Eq. (5.1), which repre­
sents the addition theorem, is pointwise convergent. Rather 
it is sufficient to have an equivalent expansion in a suitable 
Hilbert space. 

For any functionfwhich is an element of L 2(lR\ the 
unitary translation operator Y R as defined by Eq. (2.1 b) 
causes the transformation Y R If) = IF) with 
F (r) = fIr - R). Therefore, the expansion formula, which is 
equivalent to Eq. (5.1), reads 

(5.3) 

Again, we have used Dirac's bra-ket notation in order to 
indicate that the series on the right-hand side of Eq. (5.3) is 
convergent in the mean, i.e., 

\ \ fIr - R) - ~~Cn.n,hn,(R)gn.(r) ll~ 0 

for Nl,N2~OO. (5.4) 

If the translation operator as it is given by Eq. (4.1) is 
applied to a functionfELlR3

), one immediately obtains an 
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expansion of the type given by Eq. (5.3) in terms of the com­
plete orthonormal system of A functions: 

Y R If) = L IA ':,'1,) L (Y R )':::1,":;,1, (A ':,t I f)· (5.5) 
n,J,m, n:J/lmJ 

As the matrix elements (Y R ):;'Y~' I are already given in Sec. 
4, we only need to evaluate th~ >~~~lar products (A ~ I f) 
which are the expansion coefficients of the functionfin 
terms of the functions A ;;; according to 

If) = LIA;;;) (A ;;;If)· (5.6) 
nlm 

Hence, if these expansion coefficients are evaluated, one im­
mediately has not only the series expansion Eq. (5.6) of the 
functionfELiR3) in terms of A ~, but also the addition theo­
rem Eq. (5.5) of the functionfwhich is at least convergent in 
the mean. 

Because of the representation of the unit operator as 
given by Eq. (3.6), the addition theorem Eq. (5.6) can also be 
written in the form 

YRlf) = L IA;;;) (A ;;;IYRlf)· 
nlm 

If in this expansion the convolution integrals 

(A ;;;IYR If) = J dr A ;;;'(r)f(r - R) 

(5.7) 

(5.8) 

can be evaluated directly, the expansion in Eq. (5.7) has a 
simpler form than the expansion in Eq. (5.5). Of course, the 
expansion Eq. (5.5) would also result from the addition theo­
rem Eq. (5.7) by expanding the functions fin terms offunc­
tions A. 

B. Explicit one-center expansions for some 
exponential-type functions 

In the case that in Eq. (5.7) the (so far unspecified) 
function f stands for a A function or a B function we have 
already obtained closed form expressions for the respective 
convolution integrals Eq. (5.8) in Sec. 4. 

For f:==A ~L' the convolution integrals Eq. (5.8) are 
just the matrix elements of the translation operator as given 
by Eq. (4.4). Therefore, it follows immediately from Eq. 
(4.1) that 

YRIA ~L) = L (YR)~:~LIA ;;;). 
nlm 

(5.9) 

Forf:==B ~L the convolution integral defined by Eq. 
(5.8) is the same as the integral given by Eq. (4.29). There­
fore, we have 

YRIB~L) = LJ~~L.n( - R)IA ;;;). (5.10) 
nlm 

The last two identities, Eq. (5.9) and (5.10), are expansions 
which are valid with respect to the metric of the space 
LiR3). The question arises what happens if the Dirac-kets 
are formally substituted by the values of the functions. It is 
clear that the resulting series are at least pointwise conver­
gent for aU points r apart from a set of measure zero. We shall 
show in the Appendix that the series expansions which are 
obtained in this way are pointwise convergent for all R,r and, 
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therefore, also represent new addition theorems in the classi­
cal sense. 

From Eqs. (5.9) and (4.4) we thus obtain the formula 

A ~L(r - R) = L L (LM I/,mt//2m2) 
1,11. m. 

(5.lla) 

with the summation limits 

m2=M-m" 

1+I<n,<oo, 

max(/2 + 1,ln, - N 1- 1)<n2 <n, + N + 1. 

(5.1lb) 
(5.lIc) 

(5.lld) 

Explicit expressions for the expansion coefficients T~:I:NL 
are given by Eqs. (4.9) and (4.10). 

From Eqs. (5.10) and (4.30) the following expansion is 
obtained: 

B~L(r - R) = L L (LM I/,m,1/2m2 ) 

llll m 1 

(5.12) 

with the same summation limits as given in Eq. (5.11b). An 
explicit expression for the coefficients a~:I:NL is given by Eq. 
(4.33). 

The appropriate addition theorem for Slater-type func­
tions can be obtained from Eq. (5.lla) or (5.12) with the help 
of the transformation formula Eq. (3.7) or (3.10), 
respectively. 

It should be noted that the computation of the coeffi­
cients Tn,I,NL or an,I,NL which occur in Eqs. (5.1Ia) and 

n,/. nl'I' 

(5.12), respectively, is rather simple ifEq. (4.10) and Eq. 
(4.33) are used. The number of terms in the summations over 
12 and n2 is completely determined by the fixed indices Nand 
L. It is given by (2L + 1)(2N + 2) for arbitrary order I, and 
n" and, therefore, the number of terms in the series does not 
increase with the order of the terms. The radial part of the A 
functions can easily be calculated by upward recursion with 
the help of well-known recurrence relations. '8 

The new addition theorems as given in the present pa­
per differ from results given earlier in the literature as they 
exhibit a completely different representation of the radial 
functions in the series. Other authors who dealt with the 
problem of obtaining explicit addition theorems for ETF's 
usually considered Slater functions only.35-37 The series ex­
pansions given by these authors are very involved and com­
plicated in structure. This is partly due to the fact that most 
of these formulas exhibit a two-range form in a similar way 
as is well-known from the Laplace expansion of the Cou­
lomb potential. 

We can discuss the main differences between the two 
kinds of representation of addition theorems by comparing 
the new addition theorem of B functions as given by Eq. 
(5.12) with a pointwise convergent two-range formula which 
we obtained earlier by another method. 38 This latter addi­
tion theorem reads 

B~.o(r - R) = J41T( - It [(2N)!!] -1(rR )N- 112 X 
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'" 1+2N 
X L L L (2)(2n - 2N + 1) 

1=0 m n=1 

X TT.~ - lIn _ N + 112 (r < )Kn _ N + 112 (r > ) 

X y?,'(!Jr)Y?,(!JR), (5.13a) 

where 

r < = min(r,R), r> = max(r,R ). (5.13b) 

The symboll:(2) stands for summation in steps of 2. The 
formula Eq. (5.13) also represents an orthogonal expansion 
with respect to the angular variables. The radial dependence 
for any fixed value of I is given as a linear combination of 
products of modified Bessel functions Iv, K v' and shows the 
characteristic two-range form. In this form, it is necessary to 
distinguish between r < and r> . The explicit addition theo­
rems for Slater functions given so far in the literature35

,36 are 
also complicated "two-range formulas"; in their structure, 
they resemble Eq. (5.13). In contrast, the new type of addi­
tion theorems as given by Eqs. (5.11) and (5.12) has the great 
advantage that neither complicated special functions nor a 
two-range behavior of the radial variables do occur, as is the 
case in the two-range addition theorems. 

c. On the evaluation of multicenter integrals 

Addition theorems are valuable tools for the evaluation 
of (generalized) convolution integrals or multicenter inte­
grals, i.e., integrals which resemble those defined by Eq. 
(5.2), because the addition theorems make it possible to sepa­
rate the variables in the integrands. However, the newly de­
rived addition theorems, which have a uniform mathemat­
ical representation over the whole range of variables, are 
often of greater advantage for the the evaluation of integrals 
than the addition theorems which exhibit a two-range form, 
containing certain special functions of argument r < and r> . 
If addition theorems of the two-range form are used to trans­
form the integrand, the integration range is to be divided into 
different subregions due to the occurrence of r < and r> . 
This finally requires the evaluation of certain indefinite inte­
grals over special functions. It is a fact, however, that only a 
few indefinite integrals over special functions are known, 
whereas a lot of integrals over the entire space, i.e., integrals 
from 0 to 00, are available from standard integration tables. 

In the addition theorem as given by Eqs. (5.10) and 
(5.12) the radial dependence is given as an infinite series in 
terms of rather simple functions. As this series expansion 
holds for the whole region (between 0 and 00) of rand R, one 
has no longer to distinguish between r> and r < • Therefore, 
if we use this expansion in order to express a (shifted) func­
tion in the integrand of a generalized convolution integral we 
obtain an infinite series of integrals over the entire space. 
Usually these integrals can be evaluated much more easily 
than the integrals over subregions which occur if a two­
range addition theorem is used. Therefore, with this method 
it will often be possible to evaluate generalized convolution 
integrals as a series expansion even if the evaluation of these 
integrals with the help of the first method (based upon a two­
range addition theorem) is too complicated. 

As an example and as a test for the numerical applica­
bility of the new series expansions, we want to use the appro­
priate relationships for the evaluation of the following rather 
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difficult multicenter integral: 

Li (R I,R2) = J dr l J dr2 e - r'e - r, 

X Irl-rll-le-lr,-R,le-lr,-R,I. (5.14) 

In molecular physics integrals of this kind are called three­
center exchange integrals. They occur, for instance, in calcu­
lations of properties of molecules with three or more atoms. 
Because of the identity 

e-r=1T1/2A~.o(r), (5.15) 

it is possible to use Eqs. (5.9) and (5.11) in order to represent 
the two shifted exponential functions in that coordinate sys­
tem which is used for the integration. We thus get at once the 
following series expansion for the integral 

Li (R I ,R2 ) = L L e~:~,(YR,):::i',\O(YR,l;;:i;\o, (5.16) 
"111m • "211 m 2 

with 

el,l, = fdr fdr e-r'e- r, Ir - r 1-1 "1"2 1 2 1 2 

X A:::), (rdA ;;:i, (r2)1T. (5.17) 

This one-center integral can be evaluated analytically with 
the help of the Laplace expansion of the Coulomb operator. 
The coefficients then read 

el,l, = {j 2 - n, - n, - I(n + n - 2)! ".n 2 11>/2 1 2 

X [n l + n2 - (nl - n2)2 + (2/1 + 2)(2/1 + 4)] 
X [(nl + II + 1)!(n2 + 12 + l)!(n l -II - I)! 

X(n 2 -/2 - I)!] -1/2. (5.18) 

Having substituted the matrix elements of the translation 
operator in Eq. (5.16), we obtain the three-center exchange 
integral as a double infinite series of A functions and simple 
coefficients. 

A numerical analysis for the region O<R I,R 2 < 3 has led 
us to the conclusion that an accuracy of7-8 significant fig­
ures can be obtained if the series expansion Eq. (5.16) is 
summed up to order n l ,n2 = 60. For comparison purposes, 
tabulated results for the special case RI = R 2, for which it is 
possible to solve the integral by other methods,39 have been 
used. Because of the simple structure of the formulas for the 
matrix elements of the translation operator it causes no diffi­
culty to include higher order terms to get even more precise 
results if they are needed. 

6. SUMMARY 

In Eqs. (4.1) and (4.4) of this article, we have given a 
matrix representation of the translation operator which can 
be used to describe the shifting of physical fields, if these 
fields are mathematically represented by functions of the 
Hilbert space L 2(R 3). All elements of the matrix representing 
the translation operator are given analytically as a linear 
combination of simple functions of the displacement vector 
R. If the translation operator in the realization that is given 
by Eqs. (4.1) and (4.4) is applied to a function which describes 
the original field, one immediately obtains the new function 
which describes the transformed, i.e. shifted, field, in form of 
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a series expansion with respect to the complete and orthon­
ormal system of A functions; cf. Eq. (5.5). All that remains to 
do, is to expand the function describing the untransformed, 
i.e. original, field, into a seri,es of A functions, as stated in Eq. 
(5.6). The A functions, whicll are closely related to Laguerre 
functions, are defined by Eg .. (3.4). 

Using the matrix representation of the translation oper­
ator, we have derived new addition theorems in Sec. 5B, and 
presented a method for the evaluation of generalized convo­
lution integrals in Sec. 5C. 

APPENDIX: POINTWISE CONVERGENCE OF THE 
ADDITION THEOREMS 

The expansion as given in Eq. (5.12), which is at least 
convergent in the mean, can be written in the form 

00 I, 

B~L(r - R) = L L iidr)Y'f:'(l1r ), (Al) 
I, 000 m, = - I, 

with 

~ c l , L (ZI, +Z) (2r)e - rr". 
,4.t ",", - I, - I 

(A2) 
", = I, + I 

Here we consider B as a function of r; the vector R is an 
arbitrary but fixed parameter which shall be suppressed in 
the following equations. 

On the other hand, a pointwise convergent addition 
theorem for the B function also does exist. 40 It can be written 
as 

00 I, 

B~L(r-R)= L L R,,(r)Y'f:' (I1r)' (A3) 
I. =0 m, = -I, 

The radial function R
" 

(r) is a continuous function for 
0< r < 00 and has the asymptotic behavior 

R,,(r)_yN+L--'e- r for r-,>oo, 

R
" 

(r)-r" for r----+O. 

(A4a) 

(A4b) 

These properties can be found in the following manner. Mul­
tiply both sides of Eq. (5.13) with a'. regular solid spherical 
harmonic ~:!(r - R) and use the addition theorem for this 
function41 to separate the variables J' and R. With the help of 
the well-known relationship 

Y,!,(I1)Y:!(I1) = L (-ill/1m/EM) YHI1), (A5) 

" 
the products of spherical harmonics can be expressed as sin-
gle harmonics. Now use the asymptotic properties of the 
modified Bessel functions42 

Kv(r)_r-'/Ze--r for r-oo, 

Iv (r)_r" for r----+O 

(A6a) 

(A6b) 

to obtain Eqs. (A4a) and (A4b). Since the series on the r.h.s. 
ofEq. (AI) is at least convergent in the mean, it follows that 
the function RI , (r) must be the formal Laguerre expansion of 
the function R/, (r), Le. 

Rdr)- I c~', L ~~/,---j,Z>"1 (2r)e - rr'" (A7) 
n. = I. + 1 

Now we can apply Szego's equiconvergf~nce theorem43 

which states under which conditions a f<>rmal Laguerre se­
ries of a given function does also converge point by point. 
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Due to Szego, the limit relation 

lim [~12x -).g.~) 
N~"" 

_ rxl/, +<5 dt g(t 2)t - Ue"IZrPN (X I /2 _ t J] 
Jx1/Z _6 

=0 

with 

(AS) 

(A9) 

holds for x > 0, if the following prepositions are fulfilled: 
The partial sumsgN(x) are defined by 

N 
gN = L anx"e - x!2L ~a)(x), (AlO) 

n=O 

where the coefficients aN are obtained by the orthogonality 
relation of the Laguerre polynomials, 

aN = [r(a+l) (n:a)]-' 
X loo dx x a - "e - x!2L ~a)(x)g(x). (All) 

Furthermore, the functiong(x) must have the following inte­
gral properties: First, 

(A12) 

is Lebesgue measurable for XE[O, 00]. Second, the integrals 

r'dx x a - "exIZ/g(x)/, r'dx x ul2 -). -1I4/g(X)/~/2 (A13) 
Jo ' Jo 
exist. Third, the following asymptotic relationship is valid: 

1"" dx x u/2 -). - 1I4Ig(x) I = 0 (n - 112) for n- 00. 

(AI4J 

We notice the validity of the distributional relationship 

lim rP N( y) = 6( y), 
N~"" 

if the function g(s) has the property that 

L"" dx' g(x')t5(x - x') = g(x) 

(AI5) 

(AI6) 

is well defined for all x > O. Then it follows from Szego's 
theorem Eqs. (AS)-(AI4) that the sequence of the partial 
sumsgN(x) does converge in a pointwise sense, which means 
that 

lim gN(X) = g(x) (AI7) 
N-+oo 

holds for any x > O. 
In order to apply Szego's considerations to our prob­

lem, we have to define the functiong(x) and the parameters-i 
and a adequately. If we set 

g(x) = 2 -IR/(xI2), -i = I, a = 21 +2, (AIS) 

and if we use Eqs. (A6a) and (A6b), then it is easy to prove 
that the conditions given in Eqs. (AS)-(A16) are fulfilled. 
Therefore, it must be true that the expansion Eq. (A 7) is 
pointwise convergent for all r> 0 and arbitrary R. Taking 
into account the symmetry of the series expansion as given in 
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Eq. (5.12) with respect to an interchange ofr and R, we are 
led to the conclusion that the expansion is pointwise conver­
gent for the whole region of the argument vectors. Since the 
Laguerre and Slater functions are given as simple linear 
combinations of B functions according to Sec. 2, the appro­
priate new addition theorems for these functions must also 
be pointwise convergent, Q.E.D. 
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!he i~finities o~ polynomial conserved densities for several nonlinear evolution equations are 
mvesttgated usmg Noether's theorem, and are identified as energy or momentum densities of 
higher-order enveloping equations. A recursive operator formula is derived for the densities. 

1. INTRODUCTION 

In a recent paper, 1 the infinity of conserved densities for 
the Korteweg-de Vries (KdV) equation was investigated us­
ing Noether's theorem. In that paper, these densities were 
identified via Noether's theorem as energy densities, not of 
the KdV equation but of higher-order enveloping KdV 
equations. By "enveloping" it is meant that the solution set 
of the KdV equation is contained by the solution set of each 
higher order KdV equation. 

This paper presents an extension of that result to the 
modified KdV equations, the sine-Gordon equation, the 
classical nonlinear shallow-water (CNSW) equations, and 
the nonlinear Schrodinger (NLS) equations. For these equa­
tions (and the KdV equation) it has been found that the poly­
nomial conserved densities may be identified either as ca­
nonical energy densities or as canonical momentum densities 
of the appropriate higher-order equations. This identifica­
tion has been made by using Noether's theorem in both its 
conventional and its generalized form. 1 

For each of these nonlinear equations, the higher-order 
enveloping equations have taken the form of an integrodif­
ferential operator operating n times on the original equation. 
They are integrodifferential, and are not known to be of any 
physical significance or interest in themselves. Their main 
property of interest in this paper is that their solution sets 
contain that of the original nonlinear evolution equation be­
ing considered. 

This work differs from other techniques which use in­
variance groups and symmetry groups2 in the following 
manner: These other techniques use an infinity of symme­
tries on the nonlinear evolution equation, whereas this work 
use.s on~ symmetry (time or space translation invariance) on 
an. mfimty of n.onlinear equations. The main advantage of 
thIS approach IS felt to be the ease of interpretation of the 
results. The two approaches may well be parallel ones since, 
for example, the integrodifferential operators used in this 
paper to generate the infinity of nonlinear equations for the 
sine-Gordon, the KdV, and the modified KdV equations are 
the same operators as the "recursion operators" used by 
Olver.3 

The integroditferential operators used are closely relat­
ed to the operator4 

L + = ;i (dX -2r f q, 2r f r ) (Ll) 

-2q f q, - dx +2q f r 

used by Ablowitz et al. s The operator L + appears in their 
derivation of a general set of nonlinear equations which are 
solvable by the inverse scattering transform method, 

(~~J +2Ao(L +) C) =0, (1.2) 

where Ao is a ratio of entire functions. The results of this 
paper will be extended to the general set of equations (1.2) in 
a future paper. 

One interesting and novel feature in all cases has been 
the splitting of the problem into two parts. One is an integro­
differential part involving integrals over space of polynomi­
als in the field variables and their derivatives, and the other is 
a partial differential part, involving polynomials in the field 
variables and their spatial derivatives (in all of the cases con­
sidered, there is one space dimension, x). 

The integrodifferential part is proved inductively by us­
ing the generalized Noether's theorem,l and amounts to 
pr?ving a type of anticommutation principle for the appro­
prIate operator. The partial differential part is proved by 
deriving a Lagrangian density, using the work of Atherton 
and Homsy6 on the inverse problem of the calculus of vari­
ations. An inductive approach is used to prove the Lagran­
gian density exists in each case, and the conventional 
N oether's theorem completes the proof of this part. As a 
bonus, this approach gives each of the infinite number of con­
served densities explicitly in terms of the integrodifferential 
operator. With the exception of the KdV equation, 7 the au­
thor is not aware that such a form for the conserved densities 
has been previously derived. 

Section 2 of this paper outlines the general method used 
in all five cases. The steps involved in each case are quite 
s~milar. Se~tion 3 gives more details for each of the five equa­
ttons mentlOned above. 

2. A GENERAL OUTLINE OF THE METHOD USED 

It has been possible to identify the infinite sets of con­
served densities arising in certain nonlinear systems, as ener­
~y or momentum densities of higher-order enveloping non­
lInear systems. Let the original nonlinear system have the 
equation of motion 

F~O, (2.1) 

(where ~ means "equals for solutions," to be distinguished 
from "equals for all values of the field variables," the usual 
= ), and the infinite number of conservation laws (we are 

dealing with only one spatial dimension) 
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dt Tn + dxXn ~ 0, n = 0,1,2,.·. , (2.2) 

where Tn is a polynomial in the field variables and their 
derivatives. Then the higher-order enveloping equations are 
written 

Kn(F) ~ 0, n = 1,2,.··, (2.3) 

where K is a nonlinear integrodifferential operator, and the 
superscript n is a power. 

The relationship which has been proved for five differ­
ent systems is that 

<Pt [K n(F)] = dt Tn +1 + dxXn +1' n = 0,1,.·· , (2.4) 

where 

<Px = dx<p = d<p , 
dx 

where <p is the field variable, here written as a scalar for 
simplicity. 

For these systems it has also been found that 

<Px[K"(F)] =dt Tn +dxX~, n =0,1,.·.. (2.5) 

By the generalized Noether's theorem, I Eq. (2.5) identifies 
Tit as a momentum density8 for Eq. (2.3), and Eq. (2.4) iden­
tifies Tn +1 as an energy density for Eq. (2.3). Note that the 
solution sets ofEqs. (2.3) contain that ofthe original equa­
tion (2.1), hence solutions to the original equation (2.1) must 
obey the momentum and energy conservation laws/or Eqs. 
(2.3). With the exception of the sine-Gordon equation, all of 
the nonlinear evolution equations considered can be written 
in the form 

F=<Pat+K(<Pa+')~O, a=O or 1, 

where 

_ da<p 
<Po =-. 

dxa 

(2.6) 

The field variable is here written as a scalar for simplicity; 
the results for vector fields are quite analogous, as will be 
seen in Sec. 3. Despite the fact that the sine-Gordon equation 
cannot be written in the form (2.6), the proof ofEq. (2.4) for 
the sine-Gordon equation is similar to the outline presented 
here. 

In the cases where a = 1, the evolution equation has 
been of the form 

F= ~ [cPt +L(cP2)] ~O. 
dx 

(2.7) 

This property ensures that a polynomial conserved density 
may be required to contain only x-derivatives of the field 
variables, since all t-derivatives can be replaced by x-deriva­
tives within a trivially conserved density, using Eq. (2.7). 

The proof ofEq. (2.4) will be outlined here, since the 
proof of Eq. (2.5) follows in all cases considered. It is re­
quired to prove that 

<PtKn[cPat +K(cPa+l)] =d, Tn+1 +dxXn+1 , (2.8) 

where 

a = 0 or 1, n = 0,1,2,.··. 

It is at this stage that the problem splits into two parts, the 
integrodifferential part 
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<Pt K n(<Pat ) = dxX~ +1 (2.9) 

and the partial differential part 

cPtKn+'(<Pa+I)=dtTn+1 +dx(Xn+1 -X~+I)' 
(2.10) 

This division is motivated by the fact that if the existence of a 
polynomial conserved density Tn depending only on x-de­
rivatives of cP is assumed, the Ihs ofEq. (2.9) cannot contrib­
ute any terms to the density Tn. Note that the equality in Eq. 
(2.8) must hold for general field variables <P, not just for solu­
tions to the evolution equation. 

If the operator K is integrodifferential in x, the lhs of 
Eq. (2.9) must also be integrodifferential in x. The Ihs ofEq. 
(2.10) has, in all cases considered, been partial differential 
(i.e., polynomial in cP and its derivatives). As will be seen at 
the end of this section, this feature is closely related to the 
existence of an infinity of polynomial conserved densities. 

Equation (2.9) is proved by deriving an anticommuta­
tion relation for the operator K, 

(2.11) 

where/and g are test functions of cP and its derivatives. The 
proof of Eq. (2.11) has in all cases been straightforward and 
inductive. R (g,f) contains integral terms, which in each 
case need to be shown to be acceptable flux terms when 
g = / = cPt . Integral terms are acceptable flux terms if they 
are equal to polynomial terms within a trivial flux term. 

Equation (2.10) is proved by deriving a Lagrangian 
density for the equation 

K'(cPa+1 )=0, i= 1,2,.··. (2.12) 

The first step in the derivation is to show that the Ihs of Eq. 
(2.12) is a polynomial in cP and its x-derivatives. This is done 
by induction, using the anticommutation relation (2.11). 
The work of Atherton and Homsy6 gives the Lagrangian 
density for Eq. (2.12) as 

if; = cP f X,(A<p) dA, (2.13) 
where 

(2.14) 

and Xi is a function, not an operator. This Lagrangian densi­
ty exists ifand only if the Frechet derivative of the lhs ofEq. 
(2.12) is symmetric, i.e., 

(2.15) 

for arbitrary test functions V, t/J, and (7 of cP, where the Fre­
chet differential in the direction (7 is6 

(2.16) 

In each case, Eq. (2.15) is proved by induction. Note that V 
must contain only acceptable flux terms. 

Once the Lagranian density (2.13) has been proved to 
exist, the conventional Noether's theorem 1 can be applied as 
follows: Since .5t' j has no explicit time dependence, energy is 
conserved in the corresponding equation of motion (2.12), 
and the energy density is given by 

a.5t' 
T=---'''''+if 

I atPt 'Pc i , 
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that is, 

Ti = 5e i = rp f Xi(Jrp) dJ. (2.18) 

Equation (2.10) follows immediately [it is simply Noether's 
relation, Eq. (2.5) in Ref. 1], with 1'; as above. Equation 
(2.18) gives each of the infinity of conserved densities explic­
itly in terms of the integrodifferential operator K, as men­
tioned at the end of Sec. 1. If 

Ki(rpa+l) = Xi(rp) (2.19) 

is a polynomial, Eq. (2.18) implies that Ti is polynomial also. 

3. PARTICULAR CASES 
A. The KdV equation 

For completeness, a brief outline of the results already 
published for the KdV equation I is given here. The form of 
the KdV equation used is 

rpll + rplrp2 + rp4 ~ 0, (3.1) 

where 

(A useful survey of recent work on the KdV equation has 
been published by Miura9

.) The integrodifferential operator 
for Eq. (3.1) is 

N = d; + ~ rpl + t rp2 IX dx . (3.2) 

The lower limit of the integral is chosen such that rp and its 
derivatives vanish there (e.g., - 00). The limits on all inte­
grals in this paper, unless stated otherwise, will be as above. 
Equation (3.1) may be written 

rpll +H(rp2)~0. (3.3) 

The relation proved in a previous paper l is 

rptHn[rplt +H(rp2)] =dt Tn+1 +dxXn+l , 
n = 0,1,2, ... , (3.4) 

where the densities Tk are polynomials in rp and its x-deriva­
tives, that is, the density Tn + I is an energy density of the 
equation 

(3.5) 

It is a straightforward corollary that Tn is a momentum den­
sity of Eq. (3.4) and is conserved, i.e., 

rplHn[rplt +H(rp2)] =dt Tn +dxX~, (3.6) 

as follows: The integrodifferential part is 

rpIHn(rplt) = d< Rn - rp, H nrp2' 
where 

Rn 

= ~t~ [(J H
i
rp2) (JHn-i-lrplt) 

_ (H irp2)(H" - i- I rpll ) 

- t(J rp IH
irp2)(J Hn-i-Irplt) 

(3.7) 

- * (J rp lH
i
rp2) (J rplH" - i-Irplt ) ] + rpt J Hnrp2' 

(3.8) 
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In Ref. 1 Rn is proved to contain only acceptable flux terms. 
The last term in Eq. (3.7) can be written I 

- rpt H n(rp2) = dt Tn + dxXn , 

so that the integrodifferential part is 

rpIHn(rplt) = dt Tn + dx(Xn + Rn)· 

(3.9) 

(3.10) 

A similar approach to that of Eq. (3.7) gives the partial dif­
ferential part as 

(3.11) 

where Qn is a polynomial in rp and its x-derivatives. This 
result also follows from the recursion formula lo 

HdxAn = dxAn +1' Ao = rpl , (3.12) 

where A n is a polynomial conserved density for the KdV 
equation. 

B. The modified KdV equation 

The form of the modified KdV equation used is 

rplt + rp i rp2 + rp4 ~ O. (3.13) 

The operator is 

M=d; + ~rpi + irp2 J rpl' (3.14) 

and Eq. (3.13) may be written 

rplt + Mrp2 ~ 0 . (3.15) 

The proof of the integrodifferential part of Eq. (2.5), 

rpt M"rplt = dxX~ +1 , (3.16) 

is accomplished by first proving the anticommutation 
relation 

IMngl = -gMnll+dxRn(f,g), (3.17) 

where 

Rn(f,g) = ~t: [( J Mill) (J Mn-i-Ig l) 

- (Mi/l)(Mn-i-lgl ) - ~ (J rplMfl) 

x(J rpIMn-i-lgl)+g f MniJ]. (3.18) 

The proof of Eq. (3.17) is omitted as it is quite straightfor­
ward. Rn contains integral terms, which must be shown to be 
acceptable flux terms for I = g = rpt . Note that 

Mk(rplt)= -M k +l (rp2)+M k (rplt +Mrp2)' (3.19) 

where the last term in Eq. (3.19) is a trivial flux term since it 
is zero for solutions. Hence if 

rp IM,,+I(rp2)=dxPn+l , n=0,1,2, .. ·, (3.20) 

where Pk is a polynomial in rp and its derivatives, then the 
integral 

(3.21) 

will be equivalent to the polynomial Pn , and will be an ac­
ceptable flux term. Also, since 

M"rplt =dx(dx + irpl J rpl)Mn-lrplt , (3.22) 
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the term 

f Mk<p1' =(dx+~<p,f <P,)M k- 1 <plt, k=1,2,. .. , 

(3.23) 

will be an acceptable flux term. 
Equation (3.20) may be proved by induction, using re­

sult (3.18). The proof is straightforward and is omitted. 
The partial differential part of Eq. (2.4) is 

<p,Mn+l<p2=d,Tn+1 +dx(Xn+1 -X~+l)' (3.24) 

The lhs is a polynomial by virtue ofEq. (3.20). Existence of a 
Lagrangian for the equation 

(3.25) 

is assured by the symmetry of the Frechet derivative,6 

(3.26) 

where ~ means "equals within an acceptable x-derivative." 
Equation (3.26) is proved by induction, as outlined here. 

Assume Eq. (3.26) holds for n = 1,2, ... ,k. Then 

tP(M k 
+1 <P2)~(U) = tP M(Mk<p2)~(U) + tP(M)~(u)(Mk<p2)' 

(3.27) 

where 

(M)~(u) = 1 <PIUl + ~ <P2 f UI + ~ U2 f <Pl' (3.28) 

Using the explicit form of M, Eq. (3.27) can be written 

tP (M k + 1<P2)~(U) 

~(f M tP}Mk<p2)~(U) + ~(<p,Mk<p2) f <PI tPl 

- j tPIUI(f <PIMk<P2)' (3.29) 

The inductive assumption gives 

(f M tPl)(Mk<p2)~(U)~u(Mk<p2)~( f M tPl)' 

and applying Eq. (3.29) to the rhs ofEq. (3.30) gives 

tP (Mk +1 <P2)~(U) 

(3.30) 

~(f MUl)(Mk-l<p2)~(f MtP,)- ~tPIu,(f <p,Mk<p2) 

(3.31 ) 

The first term on the rhs ofEq. (3.31) is symmetric by the 
inductive assumption, the second term is symmetric by in­
spection, and the remaining terms may be shown to be so 
within an x-derivative by expanding them. 

As explained in Sec. 2, the Lagrangian density for Eq. 
(3.25) is 

.:/ n = <p f vf( n().<P) d)' , (3.32) 

where 

(3.33) 

The Noether relation expressing conservation of energy for 
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Eq. (3.25) is 

<P, Mn<P2=d, Tn +dx(Xn -X~), 

i.e., Eq. (3.24) is proved with 

(3.34) 

(3.35) 

Note that Tn +, is a polynomial, and that Eq. (3.34) holds for 
all <p, not merely for solutions to Eq. (3.25). 

The uniqueness of the infinity of polynomial conserved 
densities for the KdV equation (Kruskal et al. 'I), together 
with the transformation due to Miura 12 from solutions of the 
modified KdV equation to solutions of the KdV equation, 
implies that the infinity of polynomial conserved densities 
for the modified KdV equation is also unique. Hence the set 
ofthe energy densities Tn is equivalent to the set exhibited by 
Miura et al. 13 

The density Tn may be alternatively identified (within a 
trivial sign) as the momentum density of the equation 

Mn(<PI' + M<P2) ~ 0, 

by proving the relation 

(3.36) 

<P,Mn(<PI' + M<P2) = d, (- Tn) + dxXn, n = 0,1,2,. ... 
(3.37) 

The partial differential part ofEq. (3.36) has been proved at 
Eq. (3.20). The integrodifferential part is proved by applying 
Eq. (3.17) with 

f = <PI' g=<p" 
to get 

<p,Mn<Plt = - <p, Mn<P2 + dxRn(<p,,<p,), (3.38) 

where Rn contains acceptable flux terms. Equation (3.24) 
may be applied to the first term on the rhs ofEq. (3.38) to 
complete the integrodifferential part, 

<P,Mn<P1' =d,(-Tn)+dx(X~ -Xn +Rn)' (3.39) 

C. The sine-Gordon equation 

The form of the sine-Gordon equation used is 

<PI' + sin<p ~ 0 . (3.40) 

The operator is 

S=d~ +<pi +<P2 f <p" 

and noting that 

S(sin<p) = <P2[COg¢ ]4>~O = <P2' 

(3.41) 

(3.42) 

the higher-order sine-Gordon equations may be written 

(3.43) 

Since the only difference between the operator S and the 
operator M for the modified KdV equation is a factor of 1 in 
the nonlinear terms, and since the higher-order modified 
KdV equations are 

M n(<plt + M<P2) ~ 0, (3.44) 

the proof of the energy relation 

<p, sn(<p1' + S-I<p2) = d, Tn +1 + dxXn +1' n = 0,1,. .. 
(3.45) 

is identical to that for the modified KdV equation, and is 
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omitted here. The energy density of the nth higher-order 
sine-Gordon equation is given by 

Tn+1 =(J f Y n- I (A.(J)dA., (3.46) 

where the function Y n _I is given by 

Y n _ I«(J)=sn-I(J2' (3.47) 

Similarly, the proof of the momentum relation 

(Jxsn«(J1t + S-I(J2) = dt Tn + dxX~, n = 0,1,,,, (3.48) 

is identical to that for the modified KdV equation. 
The similarity between the operators Sand M indicates 

a similarity between the conserved densities of the sine-Gor­
don and the modified KdV equation. 14 The transformation 
(J - ± v~ takes operator M to operator S, and takes the 
infinite set of conserved densities for the modified KdV 
equation to that for the sine-Gordon equation. 

The first three densities Tn have been found to be equiv­
alent to the first three of the set of densities derived for the 
sine-Gordon equation by Lamb, 15 and Sanuki and Konno. 16 

D. The c;lassical nonlinear shallow-water equations 

The CNSW equations govern the irrotational motion of 
an inviscid homogenous fluid under gravity, in the long wave 
approximation. 17 They may be written in the form 

q;,¢!..xt + &¢!..xx = ° , (3.49) 

where 

(3.50) 

and 

rT = (0, 1) "" 1, ° (a Pauli spin matrix), 

and where h (x,t) is the free surface height, u(x,t) is the hori­
zontal velocity component, and g is taken as 1. Note that the 
numeral sUbscripts here refer to vector components and not 
to x-derivatives. 

The steps involved in proving the relation 

rkt (C(il¢!..xr +&~<X)] =dr Tn+1 +dxXn+1 , 
n = 1,2,... (3.51) 

(where" • " is the scalar product between vectors), are a 
generalization of those for the modified KdV equation to the 
vector case. Hence only a brief outline will be given here. 

The relation analogous to relation (3.17) is 

i-CCqgx) = - g-(Cq;,L) + dxRn(f,g), 

where 

Rn([,g) = ~~~ ! [o,~{ J l..ir,rL)]-J (C-i-1f/Kx) 

- ![ 0, J ~ .({iilix)]-J (C-i-1qgx) 
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(3.52) 

+ [- f ({"q;,L)· (3.53) 

The analogous result to Eq. (3.20) is 

(3.54) 

where I!.n is a vector whose elements are polynomials in ¢!.. 
and its x-derivatives. 

For the partial differential part, the equation analogous 
to Eq. (3.31) is 

R·({"q;,¢!..xx)~(W)~( f <J.&e. }(c -2q;,¢!..xx)~( f q;,Im/!x) 

+ ~-(D~ (t/!.)(I.. n -I q;,~xx) 

+ t('D~ (f <J.&~x )(.C -2 q;,~x)' (3.55) 

The energy densities of the higher-order CNSW equations 
are given by 

Tn = (J.: f .[ n (A.¢!..) dA. . 

where ofn is a function defined by 

.f"n(~) ={"r,r~xx . 

(3.56) 

(3.57) 

Benney 17 has derived an infinite number of conserved densi­
ties for the case of nonzero vorticity. These reduce to an 
infinite set for Eqs. (3.49) if the motion is required to be 
irrotational. The first four densities T" in Eq. (3.56) have 
been found to be equivalent to the first four derived from 
Benney's work. 

In the same manner as for the modified KdV equation, 
these densities may be alternatively identified as momentum 
densities of the higher-order CNSW equations, i.e., it may be 
proved that 

(3.58) 

E. The nonlinear SchrOdinger equations 

The nonlinear Schrodinger (NLS) equations may be 
written in the form 

- i1;.~: + "y1;.~: ,;;, ° , (3.59) 

where 

1;. = (~: ~1) (a Pauli spin matrix), 

and 

N = (dX + (J * f ifJ, 

= ifJ f ifJ, 
(3.60) 

Note that 

"yg = (dx1;. + ~ * f ¢!..-Vg· (3.61) 

The relation identifying an infinity of conserved densities as 
energy densities of an infinity of higher-order NLS 
equations, 
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t . [!f O( - itt; + !ftt:)] = d, Tn + I + dxXo + I , (3.62) 

is proved in the same way as that for the modified KdV 
equation, generalized to the vector case. 

In the integrodifferential part, the anticommutation re­
lation analogous to Eq. (3.17) is 

.[.(N,..nr,g*) = - g.(N,..nr..[*) + dx Yn(.[,g) , (3.63) 

where 
n-I 

Yn (.[,g) = I (t~ .ir.f)·(r.N,.. n-i-IrK) 
i=O 

+ J (r.N,..ir.,{*)·t J (r.N,..n-i-IrK*)·t· (3.64) 

The analogous result to Eq. (3.20) is 

N,..°tt: = f.n , n = 0,1,.··. 

In proving Eq. (3.65), it should be noted that 

!fkg = d ~(N,..k -2 g) +2 t * [t.(N,..k -2 g») 

(3.65) 

+ (r.~) J t·(r.N,.. k -2 g) - t * J t", .(N,.. k -2 g) . 

(3.66) 

The second-last term in Eq. (3.66) will be a polynomial by 
the inductive assumption, and the last term in that equation 
may be dealt with using relation (3.63). 

In the partial differential part, the equation analogous 
to Eq. (3.31) is 

t(!f °tt:)~ (p) 

~(tRx + tt J ¢!. *. R )(N,..n -2tt:)~( vex + tt J t *.1£) 

+ if!: R* J (tt)·(!fn -Itt:) 

- (1:,l~).(1f"-ltt:) f t£·t * 

- R·(tt£: +tt* J t*·t£) J (tt)·(~O-2r.t:) 
+ (t t£x + tt f t *. t£).(r.N,.. 0 - 2r.t:) f R·t * . (3.67) 

The energy densities of the higher-order NLS equations 

N,..n( - ir.t: + N,..r.t:) ~ 0, n = 1,2,... (3.68) 

are 

Tn = t f vf'o(.-1.t) d.-1. , (3.69) 

where the vector function J!:n is defined by 

J!:."o(fjJ) = N,..ntt:, n = 0,1,2, .... (3.70) 

The first five of these densities have been found to be equiv­
alent to the five densities presented by Zakharov and Sha­
bat, 18 from the infinity of conserved densities they derive for 
the NLS equations. 

As in the previous cases, it is straightforward to show 
that these polynomial conserved densities may be alternati­
vely identified as momentum densities of Eq. (3.68), i.e., 

2742 

tx·[!f"(-itt: +;Ybt:)] =d, Tn +dxX~. (3.71) 

A further result for the NLS equation is that the densi-
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ties Tn may also be associated with an infinitesimal gauge 
transformation of the first kind, by the relation 

(ir.t)·[~"(-itt:+~r.t:)]=dtTn_1 +dxX~_I' 
- - (3.72) 

A gauge transformation of the first kind is given by 

fjJ - fjJei', ,p * _,p *e - i. , 

so that for infinitesimal E, 

ti,p = iefjJ, (j,p * = - iE,p * , 
that is, 

tit = iEr.t· 

(3.73) 

(3.74) 

(3.75) 

The integrodifferential part ofEq. (3.72) is proved by noting 
that 

(ir.t)-[ N,.. n( - ir.t:)] ~ - ¢!J .(N,.. nt *) , 
using Eq. (3.63), and that 

fit * = r.t: , 
and by using the partial differential part of Eq. (3.62). 

(3.76) 

(3.77) 

The partial differential part of equation (3.72) is proved 
by using Eqs. (3.65) and (3.61). Note that in the case of the 
NLS equation, invariance (of the action integral) under the 
gauges transformation (3.75) implies conservation of the 
number of particles, 

f: 00 fjJfjJ * dx. 
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Noether's theorem is applied to the infinity of polynomial conserved densities possessed by a 
general class of nonlinear evolution equations. The densities are identified on the solution sets of 
higher-order enveloping equations as canonical energy or momentum densities, and a new 
recursive formula is derived for these densities. 

1. INTRODUCTION 

An infinity of polynominal conserved densities 
(p.c.d.'s) { Tn J is derived for the class of nonlinear evolution 
equations 

Fo=uTr, +2Ao(l)OT ~ ° , (l.l) 

where Ao is entire in its argument, 

( 

- d;c +2qfx rdx, 
1 -00 

L=-
2' IX 

I 2r _ oordx, 

and 

_ (0, 1) 
0==;; , 

1, ° 
T=(I' ° ), dx =-'!!""', 

0, -1 dx 

r,=iJrlat, rx=iJrlax, 
and ~ means "equals for solutions", and where the field 
variable r and its derivatives are assumed to vanish on the 
lower boundary [x = - 00] of the integrals. The derivation 
extends to the more general case that Ao is a ratio of entire 
functions, under certain assumptions, discussed at the end of 
Sec. 2. 

The class of equations (1.1) was shown by Ablowitz et 
al. 1 to be solvable by the inverse scattering transform, and is 
already known to possess an infinity ofp.c.d.'sl.2 However, 
the derivation presented here uses the Lagrangian formalism 
and Noether's theorem, which has some advantages when 
dealing with conservation laws. What is perhaps the main 
point of this paper is interpretative: that each of the infinity 
of p.c.d. 's Tn is identified as a canonical energy or momen­
tum density of the higher-order enveloping equation 

(1.3) 

where k = n -1 for a momentum density, and k <n -1 for 
an energy density. The energy result is proved in Sec. 2, and 
the momentum result follows in Sec. 3. 

The solution sets of equations (1.3), for k> 0, contain 
the solution set of equations (l.l), so that the Tn are identi­
fied as energy or momentum densities on enveloping solution 
sets. The enveloping equations (1.3) are integrodifferential, 
and are of no known interest in themselves. 

The other advantage of the Lagrangian approach used 
here is the derivation of a recursion formula for the Tn' 

which to the best of the author's knowledge is original: 

Tn=r·fLn(Ar)dA, n=O,l, .. ·, (1.4) 

where 

and 

Lo(r) = 2Ao(L)OT (for energy densities) (1.5) 

or 
La(r) = OT (for momentum densities). (1.6) 

Note that the integral over A merely introduces a different 
constant factor for each term in the polynomial Ln. The for­
mula (1.4) differs from the algebraic formula of Konno et 
01., 2 which has no integral, and expresses Tn in terms of all 
previous Til i < n. They derive two sets of conserved densi­
ties t/J \0 and t/J~) and for i..;4 this author finds that t/J \') is 
equivalent to t/J ~'), and is also equivalent to the T; obtained 
from Eqs. (1.4) and (1.6). Hence, the two formulas are likely 
to be equivalent. 

The set of equations (1.1) contains the Korteweg-de 
Vries, the modified Korteweg-de Vries, the Sine-Gordon, 
and the nonlinear Schrodinger equations. Hence, the results. 
of this paper contain many of the results ofa previous paper,3 
excluding the case of the classical nonlinear shallow-water 
equations. Appendix A contains a short note relating the 
operator L to the operators used in that paper. Appendix B 
applies the analysis to linear equations, with the result that 
any existing conservation law for the equation 

F~O (1.7) 

gives rise to an infinity of conservation laws for that equa­
tion, each of the infinity being identified via Noether's theo­
rem on the enveloping solution set of the equation 

(1.8) 

in the same way as the original density is identified on the 
original solution set [that ofEq. (1.7)]. 

Appendix C shows that if r = ± q. in the nonlinear 
equations (1.1), an infinite set of conserved densities corre­
sponding to gauge invariance of the first kind may also be 
derived. This set coincides with the set of energy or momen­
tum densities (1.4), so that ifr = ± q. we have an alterna­
tive identification of that set. This leads to the speculation 
that perhaps the same may be true for the nonlinear equa­
tions (1.1) as a proved in Appendix B for linear equations, 
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that any existing conserved density leads to an infinite set of 
conserved densities. 

2. THE ENERGY DENSITIES OF THE ENVELOPING 
EQUATIONS 

An infinity of energy densities will be derived, one for 
each of the enveloping equations 

Gn=Ln[O'1'r, + Lmar] ~, n =0, 1, ... , (2.1) 

where m is some positive integer. This infinite set of energy 
densities will then constitute an infinity of conserved densi­
ties for the equation Go ~ 0, since the solution set of that 
equation is contained by the solution sets of the equations 
Gn ~O,n>O. 

The energy relation identifying Tn as an energy density 
of the nth equation (2.1) is 

(2.2) 

since this associates Tn with invariance of the action integral 
(if it exists) under the infinitesimal time translation 
8r = - € r" where € is an infinitesimal parameter (Ref. 5, 
Sec. 2). Equation (2.2) will be proved to hold for all positive 
integers m, n, and a recursive formula for Tn will be obtained 
from the Lagrangian formalism used in the proof. 

The proof of Eq. (2.2) is attempted in two parts: the 
partial differential part 

r, .(Ln+ mar) = d, Tn + dxX ~ , 

and the integrodifferential part 

r,.(LnO'1'r,)=dx (Xn -X~). 

(2.3) 

(2.4) 

The following anticommutation relation will be useful in 
both parts: 

Lemma: For arbitrary vector functions f and g ofr and 
its derivatives, 

d 
f·(Ln1'O'g) = - g-(L nTof') + dx Wn(f, g), (2.5) 

where 
n -I 

Wn (f, g)= I {( O'1'Li1'of').( 1'L n - i - 1 Tag) 
;=0 

+ 2 [ f 00 r.( 1'Li1'of') dX] 

X [ f: 00 r·( 1'L n - i - I1'O'g) dX]} . (2.6) 

Proof The proof is inductive, straightforward, and 
omitted. 

A. The partial differential part 

Application of lemma (2.5) implies that the lhs ofEq. 
(2.3) is a polynomial in r and its x derivatives (hence the 
name "partial differential part") as follows: 

The operator L may be written 

2iL = - 1'dx + 2( ar) f 00 r·1' (2.1.1) 

when it operates on some vector. Hence, L kar is partial dif­
ferential if 
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(2.1.2) 

where P k _ 1 is partial differential. 
Assume Eq. (2.1.2) holds for all positive k<.n. Then 

r'(1'Lnar) = - (1'r)·[Ln1'O'(1'r)], (2.1.3) 

= (1'r).[L n1'a(1'r)] - dx Wn (1'r, 1'r), (2.1.4) 

using the properties 

a'(1'b) = (1'a).b, a·(O'b) = (aa)·b, 

0'0' = 1'1' = identity, 0'1' = - TO' . (2.1.5) 
Hence, 

r'(1'L nar) = - 21 ~ W (1'r 1'r) dx n , , 
(2.1.6) 

where Wn is a polynomial by the inductive assumption. 
Since 

d 
r'(1'Lar) = dx (- rq), (2.1. 7) 

the induction is started and Eq. (2.1.6) is proved for all n > O. 
Note that if L kar is partial differential for some k < 0, 
then L nar is partial differential for all n>k. 

Since there are no integral terms on the 1hs ofEq. (2.3), 
a Lagrangian density will be derived for the equation 

L kar = 0, k = m, m + 1 , ... , (2.1.8) 

and conventional Noether's theorem will be applied to that 
Lagrangian density to obtain Eq. (2.3). 

According to Atherton and Homsy,5 a Lagrangian den­
sity exists for Eq. (2.1.8) if the Frechet derivative of the lhs is 
symmetric, i.e., if for arbitrary vector functions", and p, 

",·(Lk ); (p)=p.(Ld; ("') , (2.1.9) 

where 

Lk = LLk _ 1 

and 

(2.1.10) 

where = means equals within the x derivative of a function 
of r and its derivatives. This function must vanish when eval­
uated on some boundary at which its arguments vanish. The 
Frechet differential in the direction p of a vector function F 
of the vector u is 

(F)~(p) = lim F(u + €p) - F(u) , (2.1.11) 
€~O € 

and if G is a polynomial in ¢ and its derivatives, 

(2.1.12) 

Equation (2.1.9) will be proved by induction, assuming 
it holds for all positive k<.n. Then 

",.(Ln + 1 );(p) = ",.(L);(p)(Ln) + ",.[L(Ln);(p)], (2.1.13) 

where 

2i(L);(p) = 2O'p fr.1' +2arf P·1'· (2.1.14) 

With some manipulation and application of the inductive 
assumption, Eq. (2.1.14) becomes 
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"'.{Ln + 1 ); (p) ~(O'-rL -rO'p )·(Ln _ 1 ) ; (O'-rL -r0'l/f) + [p.( 0'l/1) + ",.{ O'p)] f r.( -rLn) 

- 2p.(-rLn ) f ",.(O'l") + 2p·(TLTO'l/1) f r-( TLn -I) - 2( O'TLTO'l/1H1'Ln - I) f p.(OT) . (2.1.15) 

The first term on the rhs is symmetric by the inductive as­
sumption, the second term is clearly symmetric, and the re­
maining terms may be explicitly shown to be symmetric. 

Since for m = 0, 

(2.1.16) 

and 

(21Y"'·(L2);(P)~ - "'x·(O'px) -4qr"'.(O'p) 
- 2q2p <i )t/J<i) - 2rp(2)t/J(2) , (2.1.17) 

where 

p= 

the induction is started and Eq. (2.1.9) is proved for all 
k,m~O. 

Hence a Lagrangian density exists for equation (2.1.8) 
and is given by5 

.!fk =r·fLk(A.r)dA. (2.1.18) 

Since the Lagrangian density has no explicit time depen­
dence, energy is conserved in Eq. (2.1.8), and the conven­
tional Noether's theorem4 gives the energy relation for that 
equation as 

rt·(L k+
mOT) = dtTk + dxX k , k = 0,1, .... (2.1.19) 

where 

Tk = .!f k = r·fLk(Ar) dA . (2.1.20) 

Note that Noether's relation (2.1.19) holds for all values of 
the field variable r, so that we are not restricted to solutions 
ofEq. (2.1.8). 

B. The integrodifferential part 

The application of Lemma (2.5) to the lhs of Eq. (2.4) 
gives (using 1'0' = - 0'1') 

(2.2.1) 

where 
n -I 

Wn(r"rt)= I {(O'1'LiTOTt).(TLn-i-ITOTt) 
i=O 

+ 2 [fr{TLiTO'l",) ] [fr.(TL n - i -I TOT,)]} . 

(2.2.2) 

The integral terms in Wn are not in general acceptable as flux 
terms in a conservation equation, since they do not vanish 
when evaluated on a boundary at which r and its derivatives 
are assumed to vanish, e.g., x = - 00. However, for all i > 0, 

fr.(TLiTO'l"t) = - fr.(TGJ + fr.(-rLi+mO'l") , (2.2.3) 
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(2.2.4) 

where Wj (1'r, 1'r) is partial differential, using Eq. (2.1.6). 
Hence, the integral terms in Wn(r" r,) are equal to polyno­
mial terms, within the integral of an expression which van­
ishes for solutions to the original equation Go ~ O. However, 
the integral does not necessarily vanish for all solutions to 
the equation G n ~ 0, so that it will in generallead to noncon­
servation of the energy density for the equation Gn ~ O. 

The sum of the results (2.3) and (2.4) gives the result 
that the density 

Tn = r·fLn(Ar) dA , (2.2.5) 

where 

Ln(r) = LLk _I (r) 

and 

Lo(r) = L mOT , 

is an energy density for the equation 

Gn =L n(O'1'r, + L mO'l") = 0 . 

(2.2.6) 

(2.2.7) 

(2.2.8) 

The energy density Tn is not in general conserved for all 
solutions to Eq. (2.2.8). In fact, 

d, f: 00 Tn dx 

= ~~: [too 00 (r·-rGi) dX] [f: 00 (r·-rGn -; - I) dX] . 

(2.2.9) 

The rhs ofEq. (2.2.9) is nonzero in general for solutions to 
the equations Gk d:: 0, k> nl2. However, for the subset of 
the set of solutions to Eq. (2.2.8) which is the solution set of 
Go d:: 0, the source/sink terms on the rhs ofEq. (2.2.9) van­
ish, and Tn is conserved. Since this is true for any m, n~O, 
the densities ( Tn; n = 0, 1, '" J constitute an infinity of 
p.c.d.'s for the equations Go ~ O. 

The derivation in this section clearly extends to the gen­
eral set of equations (1.1) if Ao is entire in its argument. If Ao 
is the ratio of entire functions, then the derivation applies 
provided that the original equations (1.1) are partial differ­
ential, and that a Lagrangian density exists for Ao(L)O'l" and 
for L4o(L)OT. To see this, let 

1:a L n 
2Ao(L)O'l" = n O'l" = P , 

1:';/= obkL k 

(2.2.10) 

where ai' bi> are (possibly zero) constants, bM is nonzero, 
and P is a polynomial in r and its x derivatives. Then 

L~/k Lk ] [2Ao(L)O'l"] = Ian L nO'l", 

= IanPN , 
n 
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where P n is partial differential by the results of Sec. 2.A. 
Hence, since Li is linearly independentofL! for i=/j, and 

since Lv cannot be partial differential ifv contains an integral 
S"_ 00 , Li [2Ao(L)aT] is partial differential for all i <,M. Fur­
ther, since for allj>O, 

M 

L! L bkLk [2Ao(L)aT] = Lan Ln +JaT , (2.2.13) 
k=O 

Li[2AO(L)aT] is partial differential for all i. 
Hence, the Frechet derivative of Q2Ao(L)aT] exists, 

and the analyses of Sec. 2.A and 2.B apply under the above 
assumptions. 

3. THE MOMENTUM DENSITIES OF THE ENVELOPING 
EQUATIONS 

The densities Tk derived in Sec. 2 may be alternatively 
identified within a trivial sign as momentum densities of the 
enveloping equations (1.3) by proving the momentum 
relation 

rx· [L n(<rTr, + L maT)] = d,( - TN+ I) + dx(Xn + I)' (3.1) 

since this is the Noether relation associating Tn + 1 with the 
field variation 8r = - ff x' i.e., with an infinitesimal x trans­
lation. The proof of Eq. (3.1) is straightforward, using the 
results of Sec. 2 and noting that 

2iLaT = <rTrx • (3.2) 

The integrodifferential part is, using Lemma (2.5), 

rx·(Ln<rTr,) ~ - r,.(Ln<rTrx), (3.3) 

~ - r,·(Ln + 1 aT) , (3.4) 

which using Eq. (2.1.19) gives 

rx·(Ln<rTr,)"",d,( - Tn+l)' 

where 

Til + 1 = r·LLn +1 (Ar) dJ., 

with 

and 

(3.5) 

(3.6) 

(3.7) 

Lo(r) = aT . (3.8) 

Note that the momentum densities start with Lo = aT, 
whereas the energy densities start with Lo = 2Ao(L)aT. 

The partial differential part is 

(3.9) 

and application oflemma (2.5) to the rhs of this gives 

rx·(Ln+maT)=o. (3.10) 

4. COROLLARIES 

An immediate corollary to Sec. 3 is that the set of 
equations 

<rTr, + LnAo(L)aT = 0, n = 0, 1, ... (4.1) 

(where Ao is polynomial in its argument) has the same infi­
nite set of p.c.d.'s { Tn J. The set of equations (4.1) is soluble 
by the same inverse scattering method, since it belongs to the 
AKNS class. 1 In the particular case of the KdV equations 
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[r = lIy6, q = ¢>x /y6, Ao(q) = q3J this set has become 
known as the Lax set. 

The results of Sec. 2 may be used to investigate the 
p.c.d.'s of the equations 

L m(J'Tr, + aT ~ 0 , m = 1, 2, .... (4.2) 

In particular, it may be shown that for the first m energy 
densities Tk of the enveloping equations, Tk is not conserved 
for Eqs. (4.2), since for k < m, 

d, Tk + dxXk ~ - dx [~t~ f: = r.( TLiTaT, )dx 

X f: 00 r'(TLk + m - i --ITaT,)dX] , (4.3) 

where X k contains acceptable flux terms, but the terms on 
the rhs are not acceptable flux terms for Eq. (4.2). Integra­
tion ofEq. (4.3) over x, assuming the field variables and their 
derivatives vanish at x = ± 00, gives 

d,(LooTkdX)~ - ~t~f:oo(r'TLiTaTT)dX 

X f: 00 (r'TLk+ m - i - + TaT,)dx, (4.4) 

i.e., the quantity S': = Tkdx is not constant in time, since the 
source/sink terms on the rhs ofEq. (4.4) do not vanish for 
solutions to Eq. (4.2). 

If k>m, Tk is conserved for solutions to Eqs. (4.2) so 
that Eqs. (4.2) have an infinite set ofp.c.d.'s ! Tk , k>m 1 that 
diminishes with increasing m. 
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APPENDIX A 

The Korteweg-de Vries equation 

In previous papers3
.
4 the operator which generated 

higher-order equations for the KdV equation 

¢>x, + ¢>1¢>2 + ¢>4 ~ 0 (AI) 

was given as 

H=d:+¥PI+¥P2f~· (A2) 

In this case\ r = lIy6 and q = ¢>Jy6, so that 

(A3) 

and 

(A4) 

Note that 

(21YL
2 (~) (AS) 
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The modified Korteweg-de Vries equation 

In a previous papeil, the operator generating higher­
order equations for the modified KdV equation 

tPx, + tP~tP2 + tP4 = 0 (A6) 

was given as 

M=d; +~f +~2f: ",tP •. 

In this case\ r = - q = tPx/v6, so that 

and 

(21YL
2 

= (:: !), 
where 

a=:d; + tp i + ¥P2f tP. - ¥P.f tP2' 

Note that 

The Sine-Gordon equation 

The Sine-Gordon equation 

tPx, + sintP = 0 

has the operator3 

S=d; +tPf +tPzftP •. 

(A7) 

(AS) 

(A9) 

(AlO) 

(All) 

(A12) 

(AI3) 

Since in this case· r = - q = tP x , and since operator S differs 
from operator M only by a scale transformation in tP, the 
results are identical within that scale transformation to those 
for operator M, and are omitted here. 

The nonlinear Schr~dlnger equation 

The higher-order equations for the nonlinear Schro­
dinger equation 

itP, + tPxx + tP ztP * = 0 and conjugate (A 14) 

are generated by the operator3 

(A15) 

The substitutions· q = - r* = tP /v2 give 

(A16) 

(A17) 
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where 0' are l' are defined at Eq. (1.2). 

APPENDIXB 

Infinities of conserved densities for linear equations 

Assume that the linear equation 

F(u) ~ 0 (BI) 

has the conserved density To( u) associated with the infinites­
imal transformation 8u via Noether's relation 

(B2) 

Replace u by v" = d ;v, where n is a positive integer, in Eq. 
(B2), to get 

8vnF(vn) = d,To(vn) + dxXo(vn). (B3) 

Since F is linear, 

(B4) 

and assuming that 8u is linear in u (i.e., To is quadratic), Eq. 
(B3) becomes 

8vd;"F(v)=d,Tn +dxXn , 

where 

and 

Xn(v) = XO(vn) - id: -'(8v)d: - i-IF. 
i= 1 

(B5) 

(B6) 

Hence, Tn (u) is conserved for solutions to Eq. (Bl), and is 
associated via Noether's theorem with the variation 8u on 
the higher-order enveloping equation 

(B7) 

i.e., Tn is identified on the enveloping solution set ofEq. (B6) 
in the same way as To is identified on the solution set of Eq. 
(BI). 

Hence, if energy is conserved in Eq. (B I), there is an 
infinity of conserved densities for that equation, each identi­
fied as an energy density on the solution set of each Eq. (B6) 
(n = 1,2, ... ). 

APPENDIXC 

The densities Tk derived in Sec. 2 may be alternatively 
identified as being associated with an infinitesimal gauge 
transformation of the first kind6 if r = ± q*, by proving the 
relation (which holds even if r;l= ± q*) 

(Tr).[L"(Tar, + L mar)] = d,Tn + dxin . (Cl) 

The transformation 8r = Tr is a gauge transformation of the 
first kind if r = ± q*. Equation (CI) is easily proved by us­
ing the results of Sec. 2. The integrodifferential part is, using 
Lemma (2.5), 

(Tr).(L"1'OT,)=r,.(Lnar), (C2) 

and result (2.1.19) may be applied to the rhs of Eq. (C2) to 
get 

(Tr).(L"Tar,)=d.T" , 

where 

Mark J. McGuinness 
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Tn = r·fLn(Ar)dA, (C4) 

Ln = LLn~l , 

and 

Lo(r) = ur . (C5) 

The partial differential part is, using Lemma (2.5), 

(Tr).(LN+mur)~O. (C6) 

Note that infinitesimal gauge transformations of the first 
kind may be associated where appropriate, with conserva-
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tion of the number of particles (e.g., in the nonlinear Schro­
dinger equation), of wave action, or of charge. 6 

IM.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, Stud. Appl. Math. 
53,249 (1974). 

2K. Konno, H. Sanuki, and Y.H. Ichikawa, Prog. Theor. Phys. 52, 886 
(1974). 

3M.J. McGuinness, J. Math. Phys. 21, 2737 (1980). 
4MJ. McGuinness, J. Math. Phys. 19, 2285 (1978). 
'R.W. Atherton and G.M. Homsy, Stud. Appl. Math. 54, 31 (1975). 
6E.J. Saletan and A.H. Cromer, Theoretical Mechanics (Wiley, New York, 
1971), p. 298. 
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The nonabelian Toda lattice-Discrete analogue of the matrix SchrOdinger 
spectral problem 
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and 
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We investigate the discrete analog of the matrix Schrodinger spectral problem and derive the 
simplest nonlinear differential-difference equation associated to such problem solvable by the 
inverse spectral transform. We also display the one and two soliton solution for this equation and 
tersely discuss their main features. 

1. INTRODUCTION 

Within the class of nonlinear differential-difference 
equations which so far have been integrated by the inverse 
spectral transform (1ST), the Toda lattice, historically the 
first in this list, 1-3 is considered to be the most interesting 
from the physical point of view. Actually, this system pro­
vides an integrable model of one-dimensional classical crys­
tals and moreover it is now established that its quantum ver­
sion is also solvable.4 In the present paper we investigate the 
nonabelian (matrix) generalization of this model, namely we 
consider the following system of differential-difference 
equations: 

~[G(n)G -1(n)] = G(n + I)G -I(n) - G(n)G -I(n - 1), 

at (1.1) 

where G (n) is an arbitrary (in general, complex valued) non­
degenerate N X N matrix, depending on the integer variable 

L= 
o I B(n) A(n) 

o 0 I B(n + 1) 
000 I 

A (n + 1) 

B(n +2) 

o 

n and on the continuous real variable t, G (n) being its t­
derivative. 

As a discrete version of the principal chiral field model 

~(gg-I) = ~(g1g-l) (g1 = ag ) 
at ax ax 

system (1.1) was first introduced by Poliakov,5 who also dis-
covered for it an infinite sequence of conserved quantities. 

It is easy to show that system ( 1 . 1) can be cast in the Lax 
form: 

i = [L, M]. (1.2) 

Namely, introducing the new fields: 

A (n) = G -1(n)G(n + 1); B(n) = G -1(n)G(n); (1.3) 

Eq. (1.1) can be identically rewritten as: 

A (n) = A (n)B (n + 1) - B (njA (n), 

B(n) =A (n) -A (n - 1). (1.4) 

The Lax representation (1.2) is achieved with the help of the 
two operators: 

(1.5) 

o 0 -A (n) 

o 
o o 0 

M= o 0 
o 0 o 

-A (n + 1) 

o 
o O. 

-A(n +2) 0 

a'Permanent address: Landau Institute for theoretical Physics of the Acade­
my of Sciences, Moscow. USSR. 

"Presently at Rockefeller University. New York 10021. The research re­
ported in this paper has been supported in part by C. N. R. grant n. 
78.00919.02 

In the following section we shall study the direct and 
inverse spectral problem: 

(1.6) 

for the operator L defined here above, in the general case, 
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when G (n) belongs to GL(N, q. In Sec. 3 we give the time­
dependence of the spectral data of the operator L which cor­
responds to the dynamics given by Eq. (1.1). In Sec. 4 we first 
display the one-soliton solution for our problem, and discuss 
its behavior: we shall see that in the general complex case 
such solution is not well behaved, since a bounded initial 
datum can evolve in a solution diverging in a finite time; to 
prevent singularities we are thus forced to require that G (n) 
be real valued (G (n)EGL(N, R)). In the same section we also 
discuss the two-soliton solution, which as in the abelian case, 
exhibits the typical phase-shift phenomenon and, for special 
choices of the spectral parameters, has the characteristic 
"breather" features. 

2. DIRECT AND INVERSE SPECTRAL PROBLEM 

The spectral problem (1.6) will be treated under the 
most natural boundary conditions, i.e.: 

G(n)-G ±' G(nH (n_ ± (0), 

and hence 

A (n)-I, B(nH (n- ± (0). 

(2.la) 

(2.1b) 

Due to such boundary conditions, we have a twice-degener­
ate continuous spectrum, which can be parametrized by set­
ting,i = z + Z-I, where z belongs to the unit circle in the 
complex plane; consequently, Eq. (1.6) can be rewritten in 
the form: 

t/J(n - 1, z) + B (n)t/J(n, z) + A (n)t/J(n + 1, z) 

= (z + z-I)t/J(n, z), (2.2) 

t/J(n, z) being a fundamental matrix solution. We define the 
Jost matrix solutions t/J ± (n, z), q; ± (n, z) by the following 
asymptotic behavior: 

lim t/J ± (n,z)z+1I =1 
n_ + 00 

(Izl = 1) (2.3) 

lim q; ± (n, z)z+ 11 = I. 
11-- 00 

From Eqs. (2.3) it obviously follows that 

t/J.(n,z)=t/J_(n,z} (lzl)=1 (2.4) 
q;.(n, z) = q;_(n, z ). 

The monodromy matrix M = (~ ~) for Izl = 1 can be intro­
duced in the standard way: 

q; _In, z) = t/J _In, z)a(z) + t/J +(n, z)b (z), 

q; +(n, z) = t/J _In, z)c(z) + t/J +(n, z)d (z), 

(2.Sa) 

(2.Sb) 

where, due to Eq. (2.4) the matrices a(z), b (z), c(z), d (z) are 
related by: 

c(z) = b (Z-I); d (z) = a(z-I). (2.Sc) 

It is easy to show that t/J+(n, z), q;_(n, z) are analytic 
inside the unit circle, and consequently t/J_(n, z), q;+(n, z) are 
analytic outside the unit circle. Let us consider, for example, 
t/J +. By introducing 

X (n, z) = z - "t/J +(n, z); x(n, z) - I, (2.6a) 
n_+ 00 

we get, from Eq. (2.2): 

x(n - 1, z) + (zB (n) - Z2 - 1)x(n, z) 
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+ z2A (n)x(n + 1) = O. (2.6b) 

Thus, as the solution exists for Izl = 1, it will exist afortiori 
and be bounded also for Izl < 1; moreover we have 

limx(n, z) = I, (2.6c) 
z-->o 

. d 
G (n) = G (n) dz[z- "t/J.(n, z) - z- 11+ It/J.(n -1, z) L~o. 

(2.7a) 

In a similar way it can be shown that q;_(n, z) has the same 
analytical properties, and that 

G-I(n) = [limq;_(n,Z)Z"]G =1. (2.7b) 
z~o 

In order to prove that a(z) is also analytic inside the unit 
circle, we shall first assume that the "potentials" A (n) - I 
and B (n) are on compact support. In this case, there exists an 
integer No such that 

q;_(n, z)z" = a(z) + r"b (z) 'rIn > No, Iz 1 = 1. (2.8) 

On the other hand, for potentials on compact support, it is 
clear that both a(z) and b (z) can be analytically continued 
inside the unit circle (actually, they depend polynomially on 
z) so that Eq. (2.8) holds for Izl < 1 as well. But, if the poten­
tials A (n) - I and B (n) vanish rapidly enough as Inl-oo, 
they can be uniformly approached by sequences of potentials 
on compact support, and thus it still holds true. for such 
potentials. that: 

a(z) = lim q;_(n, z)z" (2.9a) 
n __ + 00 

which means that a(z) is analytic inside the unit circle. Fur­
thermore, from formulas (2.7b), and (2.9) it follows that 

a(O) = G :;:IG_. (2.9b) 

In order to treat the bound states. we shall assume a(z) 
to be a nonsingular matrix on the unit circle, so that. for 
Izl < 1, its determinant can have at most a finite number of 
zeros Zj(j = 1, .... N) which will be taken to be simple. 

Hence. in a convenient neighborhood of Zj' we can 
write: 

a(z) = Cj (I - ~) + (z - Zj )a'(zj) + 0 [(z - Zj)2] 

(a'(z) = 1:(Z)), (2.10) 

where c; is a nonsingular matrix and~. is some one-dimen­
sional projector. such that 

- -2 -
Pj ICj) = ICj)' P j =Pj , (2.11a) 

where, of course 

a(zj Jlcj ) = O. (2.11b) 

From Eqs. (2.10) and (2.11) it follows that 

a-I(z) = (cjICj ) p.C-I(Z_Z)-I+O(l). 
(cj ICj - la'(zj) Icj ) J ) j 

(2.12) 

Introducing the row vector (dj 1 = (cj 1 Cj -I. such that 
(dj la(zj) = O. we can cast formula (2.12) in the simpler form: 

a-I(z) = - pjzjlcj) (djl(z - Zjtl + 0(1). (2. 13 a) 
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where 

Pj = - «djlzja'(z)lcj»-I. (2.13b) 

Finally, from formula (2.5a), taking into account (2.llb), it 
follows that there exists some vector Icj ), such that 

9?_(n,zjlc) = tP.(n,z)lcj ). (2.14) 

This formula, together with the asymptotic conditions (2.3), 
show that the solutions of Eq. (2.llb) provide the bound 
states of the operator L. 
We now turn to the inverse problem, in order to reconstruct 
the potentials from the spectral data. To this aim, we define 
the matrix function 

_ {9?-(n, z)a-I(z), 
l/J (n, z) - .1. ( ) '/'_ n, z , 

Izl < I} 
Izl > I ' 

(2.15) 

which is obviously analytic both outside and inside the unit 
circle, and has on the unit circle the jump [see Eq. (2.5a)) 

.d<P (n, z) = tP +(n, z)b (z)a-I(z). (2.16) 

Moreover, it satisfies the "normalization" condition: 

lim <P (n, z)zn = 1. 

Hence, we can write for it the usual Cauchy formula 

N R.(n) 
l/J (n, z)zn = I + I _1 - + (21Ti)-1 

j~ IZ -Zj 

X! dz' z,n tP +(n, z'~b (Z'ja-I(Z') , 
Ytzi ~ I z - z 

where [see Eqs. (2.13) and (2.14)] 

Rj(n) = -9?_(n,zj)z;+lpjlc)(djl 

(2.17) 

(2.18) 

= -tP+(n,zj)z;+lpjlcj)(djl. (2.19) 

Taking into account (2.4) and (2.15), we can write 

tP+(n,zj) =z;(I - kt,tP+(n,zk)zZ+ Ipk Ick)(dk I / 

( -I )) + (2 ')-If d I In tP+(n, zI)b(z'ja-I(Z') Zj - Zk 1Tl Z Z I _ 1 

Izl ~ 1 Z - Zj 

(j = 1, ... , N) (2.20) 

which, together with formula (2.18), written in terms of tP., 
defines uniquely tP.(n, z) (lzl,,; I). Consequently, from (2.18), 
we know l/J (n, z) in the whole complex z-plane, and hence 
9?-(n, Z)a-I(Z) inside the unit circle, according to definition 
(2.15). 

Therefore, we can assert that the spectral data 

S=[b(z)a-I(z), Izl = l;zj,pjlcj)(djl 

(Izjl < I,j= I, ... N») (2.21) 

together with the boundary conditions (2.1), enable us to 
reconstruct uniquely the potentials G (n), G (n), taking into 
account formulas (2.7) and (2.9b). 

To end this section, we notice that from the Cauchy 
formula (2.18) it is straightforward to obtain the proper dis­
crete version of the Gel'fand-Levitan-Marchenko equation. 
Assuming that tP.(n, z) admits the triangular representation: 

tP.(n, z) = ! K(n, m)zm, (2.22a) 
m=tt 
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where 

K(n,n)=I; lim K(n, m) = Dn.m I (2. 22b) 
n __ + r$J 

and inserting this representation in formula (2.18), written 
in terms of tP., we get the following "integral" equation for 
K(n,/) (l>n) 

K(n, l) + F(n + I) + I K(n, m)F(m + n) = 0, 
m=n+l 

(2.23a) 

where 

F (n) = jtzjpj I cj ) (dj I + (21Tl}1{1 ~ Idz zn - 1 b (z)a-I(z). 

(2.23b) 

The potentials A (n), B (n) are easily obtained in terms of 
K (n, m) by inserting formula (2.22a) into the eigenvalue 
equation (2.2) and requiring compatibility for the lowest 
powers of z. This yields 

A (n) =I -K(n -I, n + I) +K(n, n +2) 

- K2(n, n + 1) +K(n -I, n)K(n, n + I), 
(2. 24a) 

B(n) = K(n, n + I) -K(n -I, n); (2. 24b) 

of course, from A (n), B (n), once given the boundary condi­
tions (2.la), one can recover uniquely G (n). G (n) according 
to their definition (1.3). 

3. TIME EVOLUTION OF THE SPECTRAL DATA 

The Lax equation (1.2) implies the following time evolu­
tion for the eigenfunctions tP(n, A ) 

(L - AIj(,f(n, A) + MtP(n, A)] = 0, (3.1) 

so that we can assert that 

,fIn, A ) + Mt/J(n, A ) = alA )tP(n, A ), (3.2) 

the function a being determined by the boundary conditions. 
In particular, it follows that the Jost solutions tP ± (n, z), 

9? ± (n, z) obey the evolution equations 

If ± (n, z)[¢ ± (n, z)] + (M + (z± I/A)L)tP ± (n, z) 

X [9? ± (n, z)] = O. (3.3) 

Performing the time derivative of Eq. (2.5a) and inserting 
there formula (3.3), we get the following evolution equations 
for the elements of the monodromy matrix a(z), b (z) 

a(z, t) = 0, 

bIz, t) = (z - z-I)b (z, t). 

(3.4a) 

(3.4b) 

Hence, the reflection coefficient R (z, t ) = b (z, t) a(z, t ) - I 

evolves in time according to the formula: 

R (z, t) = R (z, O)exp[(z - z- I)t ]. (3.5) 

As for the bound-state spectral data, their time evolu­
tion obtains by the requirement that for the bound state 
eigenvector 

I ¢'In, Zj) = 9?_(n, Zj) Icj ) = tP+(n, Zj JI c) (3.6) 

the function a be zero. Thus we get: 

Icj(t) = Icj(O)exp(Zj-l t ), (3.7a) 
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(3.7b) 

Recalling now formula (2.13a) and Eq. (3.4a), from (3.7a) we 
obtain 

Pj(t )(dj(t)1 = Pj(O) (dj(O) lexp( - Zj~ It) 

whence it follows that 

(3.8) 

Pj(l )Icj(t) (dj(t)1 = pj(O)lcj(O) (dj(O)lexp [(Zj - Zj~ I)t ]. 
(3.9) 

The above formula can be cast in a more convenient 
form through the following definitions 

p. __ Icj)(djl. 
) (djlcj ) ' 

O'j = (djlcj); Vj =PPj' 

which yield 

Pj(t) = Pj(O), 

Vj(t) = Vj(O)exp[(Zj - Zj~ I)t]. 

4. ONE AND TWO SOLITON SOLUTIONS 

(3.10) 

(3.11a) 

(3.11b) 

As in the abelian case, the N-soliton solution can be 
evaluated by a purely algebraic procedure, starting from the 
Cauchy formula (2.18) and setting there b (z) = O. Then Eq. 
(2.20) gives rise to a system of linear algebraic equations for 
the N unknown matrices", + (n, Zj)' In particular, the one­
soliton solution reads: 

G(n) = G+(/ - sinh;exp( -;) 

X[I-tanh[;(n-!-5)]]Pd, (4.1) 

G(n) = G+sinh2;exp( - ;)sech2[;(n - ~ - 5)]P1, (4.2) 

where we have set 

zl=exp(-;); 5=(2;)-lln[~]. (4.3) 
2smh; 

We notice that, due to Eqs. (3.12), the projector PI is 
constant in time, as it is, of course, ZI' while the parameter 5 
evolves according to the formula 

5(t) = 5(0) - (sinh; I;)t (4.4) 

which means that the (complex) position ofthe soliton 
moves with the (complex) speed VI = - sinh; I;. In terms 
of the more familiar fields A (n), B (n) the one-soliton solution 
reads: 

A (n) = I + sinh2;sech2[;(n +! - 5)]PI, (4.5a) 

B(n) = sinh2;sech[;(n -! - 5)]sech[;(n +! - 5)]PI, 
(4.5b) 

It is necessary to remark here that, if Z I is not real, there 
exists always (i.e., for any initial condition) a finite time for 
which the one-soliton solution is unbounded around a cer­
tain point of the lattice. This is a characteristic feature of 
complex solutions; to prevent such singularities it is suffi­
cient to restrict consideration to real valued matrices G (n). 

We now tum to describe very briefly the main features 
of the two-soliton solution, which can be obtained by the 
procedure outlined at the beginning of the present section. 
We give just the explicit expression of [G (n )]-1, which is the 
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easiest quantity to evaluate and, on the other hand, provides 
all relevant informations. It reads 

[G(n)]-IG+=I+(I-r sinh;lsinh;2 )~I 
4 sinh2[(;1 + ;2)12] 

X {[eXP(;t!sinh;I]1"IP I + [exp(;2)sinh;2]1"2P2 (4.6) 

_ [ex (;1 + ;2) sinh;lsinh;2 ]1" 1" (P P P P )} 
P 2 2sinh U; 1 + ;2)/2] I 2 1 2 + 2 I , 

where 

(4.7a) 

(4.7b) 

the parameters 5j evolving linearly in time according to the 
formula 

(4.8) 

It is perhaps worthwhile to remark incidentally the 
striking similarity between solution (4.6) and the two-soliton 
solution associated to the matrix Schrodinger spectral 
problem. 6 

In order to prevent singularities, we have to require, as 
we did for the one-soliton solution, that the matrix G (n) be 
real. But now, this "reality" requirement can be fulfilled in 
two different ways: either by assuming both the discrete ei­
genvalues and the corresponding polarizations to be real, or 
by letting them to be mutually complex conjugate. 

In the first case (all parameters real) the situation is 
quite analogous to the abelian case. In particular, the two 
solitons are asymptotically separated, and moreover it can 
be shown that their interaction is such that, after the colli­
sion, the two solitons preserve the shape and the polarization 
they had before, just exhibiting a shift in their relative posi­
tion. The easiest way to see this phenomenon is to choose a 
reference frame moving with one of the two solitons (for 
instance, the soliton I) and to look at the asymptotic behav­
ior of the solution in this frame, where we have of course, 

1"2 = I - tanh[;2<5"2 - 51)] 

= 1 - tanh [;2<5"rel (0) - Vrel t)] 
(Srel = 5z(0) - 51(0); Vrel = V2 - VI)' 

Assuming, with no restriction, Vrel > 0, it follows: 
[G(n)]-IG+ - 1+ exp( - ;t!sinh;IPI + axp+Q, 

1_+ 00 

(4.9) 

(4. lOa) 

[G(n)]-IG+ _ I+(I-r .si~h;lsinh;2 )~I 
h - 00 2smh [(;1 + ;2)12] 

X {exp( - ;1)sinh;IPI + 2exp( - ;2)sinh;2P2 

- 2exp[(;1 + ;2)/2] 
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X sinh;lsinh;z (PlP
Z 
+ pzPtl} + a- lxf3_Q, 

sinh [(; 1 + ; z)l2] 
(4. lOb) 

where a = 2exp( - 2;zSredO)), x = exp( - 2urel lt I), f3 ± are 
numerical coefficients defined by: 

13- = sinh;z[exp(;z) - ysinh;d; 

13+ = 13_/(1 _ sinh;lsinh;z )2 
2sinh2[;l + ;zl/2] 

(4.11a) 

and Q is the following projection matrix: 

Q = 13 = 1 {exp( - ;z) Pz + ..Lexp(;tl sinh
2
;lsin;2 PI 

sinh;2 4 sinh2[(;1 + ;zl/2] 

[ r r 12] sinh;lsinh;2 
- exp (~I + ~z) 2sinh[(;1 + ;2)/2] 

(4.l1b) 

Formulas (4.10) clearly show that, but for an inessential 
constant matrix, the solution has the same structure both in 
the remote past and in the far future, the only difference 
consisting in the phase shift 

/j = In(13+) = _ 2ln 11 _ sinh;lsinh;2 I. 
13 _ 2sinhz [(; I + ; z)/2] 

(4.12) 
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In the second case (complex conjugate parameters) the 
solution exhibits the typical breather behavior, since it is a 
matrix oscillating with the frequency 

(J) = (2p) -II t/Jcosf/!sinhp + pcoshpsin¢ I 
;1(2) =p ± i¢ (4.13) 

in the reference frame of the center of mass of the two soli­
tons, defined, of course, 

(4.14) 

which moves with the constant speed v = - sinhpcos¢lp. 

5. CONCLUSIONS 

We want just to remark that the results contained in the 
present paper can be useful for the study of the principal 
chiral field with zero moment at infinity (i.e. such that g, 
g'--+O, Ix 1--+ 00 ), where the standard Riemann problem tech­
nique 7 is not applicable. 

1M. Toda, Progr. Theor. Phys. SuppJ. 45,174 (1970). 
2H. Flaschka, Progr. Theor. Phys. 51, 703 (1974); Phys. Rev. B 9,1925 
(1974). 

3S. Y. Manakov: Zh. Eksper. Teor. Fiz. 67, 543 (1974). 
4L. A. Thaktadjan, (private communication). 
5Polyakov, (private communication). 
6F. Calogero and A. Degasperis, Nuovo Cimento B 39, I (1977). 
7y. E. Zakharov and A. Y. Mikhailov, SOY. Phys. JETP 47, 1017 (1978). 
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An addition theorem for vector Helmholtz harmonics a) 
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0.1. Sindoni 
Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland 21010 

(Received 22 January 1980; accepted for publication 23 May 1980) 

An addition theorem for the vector solutions of Helmholtz equations under translation of the 
coordinate axes is proposed and its results compared with those of a previous addition theorem for 
Hansen's M and N vectors. The resulting comparisons are also separated into their radial and 
transverse components. 

In a problem ofinteraction of electromagnetic radiation 
with molecules we met the need of relating to each other the 
characteristic vector solutions of Helmholtz equations in 
two mutually translated systems of spherical coordinates. 
These vector functions, hereafter referred to as Vector 
Helmholtz Harmonics (VHH), can be written as 

Mi(r) = fL(kr)T:ji(i), (1) 

wherefL is a spherical Bessel or Hankel function and 

T:ji(i) = L C(I,L,J;-p,M+p)YLM +I-'(i)S_1-' (2) 
I-' 

is an irreducible spherical tensor of rank-J. 1 The set of 
VHH's defined in Eqs. (1) and (2) is complete and orthogo­
nal and diagonalizes simultaneously the operators J 2, Jz , L 2 

and S 2 for vector fields. 2 

Our starting point is the addition theorem for Scalar 
Helmholtz Harmonics which we rewrite here in a form 
slightly different from that reported by Nozawa3

: 

fL(kr)YLM(i) = L GL'M',LM( - R)gL,(kr')YL'M,(i'), (3) 
L'M' 

where the quantities 

GL'M',LM( - R) = 41T L iL'-L-AIA(L 'M';LM) 
A 

/'-. 

X I/JA (kR )Y*AM'-M(R), (4) 

with r = R + r', are the matrix elements in the angular mo­
mentum representation of the free space propagator for 
spherical waves.4 In Eqs. (3) and (4), wherefL = jL' I/JA = jA 
andgL, =jL" butwhenfL =hL' 

I/JA =hA' gL' =jL' :r'<R, 

I/JA=jA' gL,=hL' :r'>R, 

and the quantities 

IA(L'M';LM) = J Y!'M'YLMYAM'-Mdfl 

= [(2L + 1)(U + 1)/41T(2L' + 1) ] 112 
C(L,}.,L ';OO)C(L,}.,L ';M,M' - M) (5) 

are the well-known Gaunt integrals.5 Substitution ofEq. (2) 
into Eq. (1) and application ofEq. (3) yields 

"Based on work supported by the U.S. Anny European Research Office 
through Grant DAERO 78-G-A06. 

A:ji(i) = LC(I,L,J; -p,M +p) L GL'M",LM+I-'( - R) 
I-' L'M" 
xgL,(kr')YL'M"(i')S -I-' 

which can be written as 

A:ji(r) = LC(I,L,J; -p,M +p) L GL'M",LM+I-'( - R) 
I-' L'M" 

x L C(I,L ',J';p"M ")gL,(kr')T,:!~,-I-'(i') 
J' 

through the use of the inverse to Eq. (2). Now, putting 
M' =M" -p, 

f§':!~fl1.JL = L C(1,L 'J'; - p,M' + p) 
I-' 

XGL'M' +f',LM+I-'( - R)C(I,L,J; - p,M + p), 

we get 

A:ji(r) = L L f§':!Z'!,JL gL,(kr')T,:!~,(i'), (6) 
L'I'M' 

which is the required addition theorem. 
Unlike the previous addition theorem ofStein6 and 

Cruzan? for M and N vectors, the applicability ofEq. (6) is 
not restricted to solenoidal fields. Of course we could add an 
addition theorem for L simply by taking the gradient of both 
sides ofEq. (3) but the lack of orthogonality ofL and N may 
be cumbersome. Anyway since 

MLM(r) = fL (kr)XLM(i) = - fL (kr)T~L (i) , (7a) 

1 
NLM(r) = - VXMLM 

k 

,[( L + 1 )112 M 
=1 2L+ 1 fL-I TLL _ I 

( 
L )112 M] - 2£+ 1 fL+I TLL + I , (7b) 

the theorem of Cruzan can be easily related to our Eq. (6). 
Indeed for MLM we have 

MLM(r) = - L {f§~'~;LL gL'(kr')T~,~,(i') 
L'M' 

+ f§ ~,~ _ I;LL gL' _ I (kr')T~,~, - I 

+ f§~,~ + I;LL gL' + I (kr')T~,~, + I (i')}, (8) 

where on account of the divergenceless characters of M LM , 
the recursions relation follows 

( 
L' + 1 )112 f§M'M (L ' )112 f§M:M. 
2L' + 1 L 'L' + I;LL + 2L' + 1 L L -I;LL 

=0, (9) 
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which can also be proved by direct calculation making use of 
the Clebsch-Gordan coefficients. With the help of Eq. (9), 
Eq. (8) can be put into the form by 

MLM(r) = L {A (L'M';LM)ML'M,(r') 
L'M' 
+ B (L 'M';LM)NL'M'(f')} , 

where we put 

A (L 'M';LM) = ~';!,t.;LL ; 

.(2L' + 1 )1/2 M'M 
B(L'M';LM) = -t L' ~L'L'+I;LL 

and M and N are identical to M and N but for the substitu­
tion of g L to fL' The A and B coefficients as defined here 
differ from those of Cruzan because of the different normal­
ization chosen for M and N. However, the properties ofCru­
zan's coefficients are a direct consequence of those of ~ 
which in tum follow from the symmetry and recursion prop­
erties ofthe G matrix elements8 and ofthe Clebsch-Gordan 
coefficients. 1,2.9 

The last point we want to stress is that the right-hand 
side of Eq. (6) can be easily separated into radial and trans­
verse components with respect to r' through the 
equations 10.11 
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M (L )112 ~ (L+l )1/2~ TLL + 1 = --- (-t)rXXLM - --- rYLM , 
2L+l 2L+l 

T';!L = XLM • 

T';!L_I = (L + I )11\ -l)rxXLM + (_L __ )l!2ryLM . 
2L+l 2L+l 

The resulting equations can be very useful e.g. to impose 
boundary conditions on a spherical surface centered at R. 

'E.M. Rose, Multipole Fields (Wiley, New York, 1955); the notation and 
phase convention of this reference are followed as closely as possible. 

2E.M. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 
1957). 

3R. Nozawa, I. Math Phys. 7, 1861 (1966). 
4K.H. Iohnson, I, Chern. Phys. 45, 3085 (1966). 
5S. Stein, Quart. Appl. Math. 19, 15 (1961). 
60.R, Cruzan, Quart. Appl. Math. 20, 33 (1962). 
7W.W. Hansen, Phys. Rev. 47,139 (1935). 
8I.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1961). 
9 A.R. Edwards, Angular Momentum in Quantum Mechanics (Princeton U. 
P., Princeton, N.I., 1957). 

IOR.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, 
New York, 1966). 

"I.D. Iackson, Classical Electromagnetism (Wiley, New York, 1962). 
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Particle trajectories in 1 / r fields 
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The trajectory of a particle subjected to an attractive lIr force is discussed. The general 
mathematical solution is given. Various analytical results are derived including the 
representations for the trajectory function. 

I. INTRODUCTION 

The trajectory of a particle subjected to an attractive 
central force varying as lIr, where r is the radial displace­
ment is usually avoided in books on classical dynamics. I Al­
though this force appears at first glance to be unnatural, it 
has been well approximated in devices such as electrostatic 
cy lindrical spectrometers.2 The general analysis of this prob­
lem is the subject of this paper with special attention given to 
the mathematical properties of the trajectory function. 

II. THE DYNAMICAL PROBLEM 

Assume that a particle of mass m experiences a force F, 
where 

F= -Air, (1) 

and where A is the force constant. Then the total energy E of 
the particle is given by 

E = ~mv2 + A In(r) + const, (2) 

where v is the particle's velocity. For a particle with nonzero 
angular momentum and finite E, r must be bounded. Let the 
maximum and minimum radial displacements be r max and 
r min respectively. 

Consider a particle approaching r max; let its radial dis­
placement be ra and velocity be va' After the particle passes 
through r max and arrives again at the displacement ra , its 
velocity must be Va because of energy and angular momen­
tum conservation. The trajectory is therefore symmetric 
about r max' A similarly constructed argument for a particle 
passing through r min results in showing that the trajectory is 
symmetric about r min' 

The angular displacement between consecutive r max 

and r min must remain constant due to symmetry and angular 
momentum conservation. The particle must therefore have a 
trajectory periodic in the angular displacement variable 0; 
i.e., 

r(8 + 2P) = r(8), (3) 

where 2P is the period and P is the angular distance between 
r max and r min; see Fig. 1. 

III. THE MATHEMATICAL PROBLEM 

The differential equation for the trajectory is given by3 

d 2u/d0 2 + u = c2 /u, (4) 

where u = rolr, r = ro at 8 = ° and 

c2 = mAra/I2, (5) 

where I is the angular momentum. The boundary conditions 
are' = '0 and du/d8 = - tan(cp) at 8 = 0, where cp is the 
angle between the tangent to the trajectory and the perpen­
dicular to the displacement '0; refer to Fig. 1. 

Equation (4) has the trivial solution u = c; this is the 
circular orbit solution which is only valid for c = l. It is 
convenient to label the kinetic energy of the circularly orbit­
ing particle K c' where 

(6) 

Equation (6) follows from Newton's Second Law and the 
condition for a circular orbit. 

The solution ofEq. (4) is simplified if '0 is chosen to be 
an extremum; e.g., '0 = r min' Then' = r min and duld8 = ° 
at 8 = 0. The above arguments imply that u has the follow­
ing properties: 

Property I: urnin 'U, 1, where U min = 'min/r max' 

Property II: u(8 + 2P) = u(8). 
Property III: u(P) = Umlll • 

The parameter c2 is now C;;'in where 

C;;'in = KclKo, (7) 

and where Ko is the kinetic energy of the particle at 8 = 0. 

Since Ko>Kc' C~in , 1. 
Equation (4) may be integrated to obtain 

du/d8 = - (1 + c2In(u2) - u2r12~ - f(U)112, (8) 

FI G. I. The tr!lJectory of a particle SUbjected to a force varying as 1/ r. The 
radial displacement is r; the angular displacement is e. The trajectory's 
maximum and minimum are r m,,, and r"n" ,respectively. The half period Pis 
the angular distance between r"H" and r",,,,. The displacement ro is the radial 
displacement when e = 0, and if> is the angle between the tangent at 8 = 0 
and the perpendicular to r o' 
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for O<.(}<.P. The functionf(u) has roots at u == 1 and 
U = Urnin . The half-period P is obtained by integrating Eq. 
(8); i.e., 

P = - f"""f(t) - !dt. (9) 

The value of P in the limit c'2 -+ 1 is found by first noting 
that for c2 = 1 - E, where E<I, 

U = 1 - EJ'I - eY2 - "', (10) 

where YI' Y2"'" are functions of () and of order unity. When 
Eq. (10) is substituted into Eq. (8) and the terms of order c 
and higher are discarded,f(u) is approximated by 

f(YI) = 2eYI -2ey'. (11) 

Using Eq. (11) to find an expression for Urnin results in 

Umin = 1 - E, 

and the integral in Eq. (9) can be transformed into 

I II -2£ 
P= - [1-t 2 ]-!dt. 

V2 -I 

Finally, 

lim P= 1Tlv2 
c2 _1 

(12) 

(13) 

(14) 

Determining P when c2 
-+ 0 is more involved if rigor is 

required. The solution requires the facts that the integral in 
Eq. (9) is convergent and that Umin -+ O. The latter follows 
from r max -+ 00 when Ko -+ 00. Careful attention to the 
limiting process produces 

lim P = ([ 1 - t 2] -! dt, 
c2 ---..O Jo 

= !1T. (15) 

The period is therefore bounded in the interval 
1T < 2P<.(V2)1T. 

IV. THE ANALYTICAL PROPERTIES OF u 

To facilitate the analysis the behavior of u in the com­
plex plane will be found useful. Borrowing a technique from 
elliptic function theory,4.5 let 

Y = u(z); 

then 

The generalized U is defined through its inverse by the 
relation 

(16) 

(17) 

(18) 

with the parameter c defined to be real. Clearly Eqs. (4) and 
(8) follow from Eq. (18). 

Let Zs be the point where U is infinite. Then 

Zs = - f'" f(t)-I dt. (19) 

The latter integral diverges for all c; therefore, u has no infin­
ities on the finite complex plane. 

Let Zo be the location of the nearest zero from the origin. 
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Then 

Zo= - f f(t)-!dt. (20) 

The latter integral is finite for all c. The existence of a zero 
implies that U has a branch point at zoo 

Noting that U is symmetric about () = 0, the power se­
ries representation for u on the real axis is given by 

U = 1 + f an (}2n. (21) 
n=l 

The radius of convergence R for the above series is the dis­
tance to the closest nonanalytical point in the complex plane, 
or 

R = IZol. (22) 

Using arguments similar to those given for evaluating P, it 
can be shown that R>P for c<.l with R -+ P as c -+ O. 

The recursion relation for the coefficients an in Eq. (21) 
is found by substituting the series in Eq. (21) into Eq. (4); the 
result being 

an = [( - Jt/(2n)!](1 - c2)Qn(c2
), (23) 

where 

and, 

(24) 

Some of the Qn polynomials have been computed and listed 
in the Appendix. 

It is possible to sum the series in Eq. (21) when 
C = 1 - E, E<1. The latter condition reduces Qn in Eq. (24) to 

Qn = 2n
-

1 + o (E). (25) 

Then Eq. (21) sums to 

u = 1 - E+ Ecos(V2(}) + Ole). (26) 

Equation (26) is a form of the solution of electron trajectories 
in electrostatic cylindrical spectrometers first given by 
Hughes and Rojansky in 1929.6 

Had the analysis been chosen to have r = r max at () = 0, 
nearly identical results would have been obtained. The dif­
ferences being that now c'2 = ~ax' and the radius of conver­
gence R for the series in Eq. (21) is changed to R >P for a 
small range of c near unity, with R -+ 0 as c -+ 00. The pa­
rameters cmax and cmin are related through the constraints of 
energy and angular momentum conservation; the relation 
being 

c.;;-.! + In(c~.X> = c.;;;; + In(c~in)' 
The definition of u gives 

u«(},cmax ) = u«(} + P,cmin)lumin' 

V. THE FOURIER SERIES REPRESENTATION 

(27) 

(28) 

The function u( () ) is periodic and an even function of (). 
A Fourier cosine series representation is therefore permit-
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ted; Le., 

(29) 

where, 

(30) 

The power series for u(O) may be used to evaluate the inte­
gral in Eq. (30), provided that the convergence criteria are 
met, but this leads to slowly converging infinite series for 
each b n' An exceptional case occurs for c2

::::: 1; the series for 
the b" 's can be put into a rapidly converging form by use of a 
perturbation expansion. 

VI. A PERTURBATION SOLUTION FOR cZ:::::1 

Consider the case where the trajectory is nearly circu­
lar, then e may be expressed as c = 1 - E, where lEI <1. Let 

u(O) = c(l + w(O», (31) 

where I w( 0) 1< 1. Then Eq. (4) can be expanded and written 
as 

d 2wld0 2 +2w=W2_ W3+ W4_ "', 

with 

and 

dwldO 10=0 = O. 

(32) 

(33) 

(34) 

Using the method of Lindstedt-Poincare,1,8 the variable {3 is 
defined to be 

{3 = wO, 

where 

W = I + EW I + ~W2 + CW3 + .... 

(35) 

(36) 

The parameters WI' W 2' '" are to be determined. Now let wbe 
expanded parametrically as 

w = EWI + CW2 + cW3 + ... , (37) 

where WI' w2, ••• are also to be determined. Rewriting Eq. (32) 
in terms of the variable {J gives 

d 2w w2 __ + 2w = w2 _ w3 + w4 _ 

d{32 

Substituting Eqs. (36) and (37) into Eq. (38) gives 

(1 + EW I + ... )2(~ + 2)(EWI + cW2 + ... ) 
d{32 

(38) 

= (EWI + ~W2 + ... )2 - •••. (39) 

When Eq. (39) is expanded and terms oflike order in E are 
equated the following sequence of equations is produced: 

o (E):d 2w/d{J 2 + 2w\ = 0; (40) 

o (E);d 2w2Id{32 + 2W2 = wi - 2wt!d 2w\ld{32); (41) 

o (E):d 2w3Id{32 + 2W3 

(42) 

etc. The sequence may be extended as far as patience per­
mits. The Eqs. (40), (41), (42), etc. are solved sequentially, 
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and the parameters WI' W2"" are chosen to make resonant 
terms in the solution vanish; e.g., the solutions of Eqs. (40) 
and (41) result in 

Yl = cos(y'2{3), (43) 

and 

Y2 =! + ~os(y'2{J) - ncos(2y'2{J), (44) 

with the requirement that W \ = O. Thus, to the second order 
in E, Eq. (4) is given by 

u = 1 - E + ~ + (E - iC) 
Xcos(V20) + trcos(2y'20). (45) 

The agreement between Eqs. (45) and (26) is obvious. The 
above method when extended to the higher order terms in E 

produces the results listed in the Appendix. 

VII. THE REPRESENTATIONS FOR 1(0) 

The power series representation for r(0) is readily found 
from Eq. (4) since 

rlro = (l/c2)(d 2uldO 2 + u); (46) 

implying that 

.!.- = 1 + (l - e
2

) f (-IY 
ro e2 

n= I (2n)! 
X (Qn (e2) - Qn + \ (e2»0 2n . (47) 

The radius of convergence of the latter series is the same as 
that for the series in Eq. (21) with a corresponding parameter 
c2

• 

If the Fourier series for r(0) is given by 

r(0) = !ao + f ancos(mrO IP), (48) 
n=l 

where 

2 iP 

an = - r(0 )cos(mrO IP) dO. 
P 0 

(49) 

The coefficients an can be related to the coefficients b n in Eq. 
(29) by an integration by parts. The relation is 

bn = (Ve2)(l - n2"rlp 2 )an' (50) 

VIII. REMARKS 

In working through the mathematics of this problem, 
one is struck by the similarities u(O) has to the Jacobi elliptic 
functions. For example, ifEq. (32) were approximated by 
using terms to the third order and neglecting higher orders, a 
solution in closed form in terms of elliptic functions is possi­
ble.9 Yet the similarities are not close enough to permit sim­
plification of the representations for u(O ). For instance, there 
is no apparent algebraic addition formula which will express 
u(O\ + ( 2 ) in termsofu(O\). U(02j, and their derivatives. Also, 
contour integrations to find a closed form for the Fourier 
coefficients do not appear promising. 

Finally, the particle trajectories have the interesting 
property that depending on the parameter e the orbits may 
be open or closed. This property is a consequence of the 
period being a continuous function of e. When the period is a 
rational multiple of 1T" the orbit is closed; when the period is 
an irrational multiple of 1T" the orbit is open. 
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APPENDIX 

The first seven Qn (c2
) polynomials computed from Eq. 

(24) are: 

and 

QI = 1; 

Q2 = 1 + c2; 

Q3 = 1 - 4c2 + 7c4; 

Q4 = 1 + 87c2 
- 207c4 + 127c6

; 

Q5 = 1 - 2138c2 + 807Oc4 
- 10286c6 + 4369c8

; 

Q6 = 1 + 79883c2 
- 432308c4 + 863404c6 

- 754597c8 + 243649clO; 

Q7 = 1 - 5266677c2 + 30997509c4 
- 85021777c6 

+ 116205843c8 
- 76951818c lO + 20036983cI2. 

When the perturbation method in Sec. VI is taken to the 
fourth order in E, where E = c -1 for c;::;;; 1, the Fourier coef­
ficients in Eq. (29) are: 

and 

!ho = 1 - E + (l/4)e + (l/6)c + (1l/64)€4; 

hi = E - (l/6)e - (l9/144)c - (607/4320)E4; 

h2 = - (l/12)E2 - (l/18)c - (l/18)E4; 

h3 = (l/48)c + (l/32)E4; 

h4 = - (6l/8640)E4; 

With the aid ofEq. (46), the Fourier coefficients in Eq. 
(48) are found to be: 
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~ao = 1 + € + (5/4)C + (5/3)c + (433/192~; 
a l = - € - (ll/6)e - (413/144)c - (18413/4320)c4; 

a2 = (7/12)e + (14/9)c + (109/36)c4; 

a3 = - (17/48)c - (79/96)€4; 

and 

a4 = (189l/8640)E4' 

The expansion parameter £i) is given by 

£i) = 1T/(V2)P 
= 1 + (l/12)e + (5/36)c + (I I l/576)c4. 

Then the half period P is 

P= (17"/v2)(1- (l/12)e - (5/36)c - (107/576)E4). 
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The recently developed F N method of solving problems in particle transport theory is used to 
establish a concise and accurate solution for the flow of a rarefied gas between two parallel plates. 
The Bhatnagar, Gross, and Krook model is used, and numerical results are given for a wide range 
of the Knudsen number. 

I. INTRODUCTION 

In two basic papers in the field of rarefied gas dynamics, 
Cercignani and Daneri,l and Cercignani2 reported on two 
different methods of studying the flow of a rarefied gas be­
tween two parallel plates. In both papersJ

•
2 the BGKJ model 

was used to describe the physical problem. Cercignani and 
Daneri 1 used the integral form of the particle transport equa­
tion and finite difference techniques to develop numerical 
results applicable to a wide range ofthe Knudsen number, 
and Cercignani2 used the method of elementary solutions4 to 
reduce the problem to one of solving a Fredholm equation 
for the required expansion coefficient. Additional numerical 
results have been obtained more recently by Boffi, De Socio, 
Gaft'uri, and Pescatore,S and Loyalka, Petrellis, and 8tor­
vick. 6 Here we wish to describe the F N method1 of solving 
the same problem. The method utilizes aspects of the exact 
elementary solutions to establish an approximate solution 
that is particularly concise and very economical to use from 
the point of view of computer-time requirements. 

As discussed by Cercignani,2 the linearized BGK mod­
el for flow in the z direction between plates a distance d apart 
can be written as 

KCz + C;~(a/ax) h (x,c) = Lh (x,c) , (1) 

where c is the molecular velocity, h (x,c) is the perturbation 
of the particle distribution function from the Maxwellian 
and K is proportional to the pressure gradient that causes the 
ftow. For the BGK model, Cercignani2 uses the appropriate 
form of the collision operator L, and considers 

Z (x,c . .) = J.- f"" f"" e - (c; + c;) Cz h (x,c) dcy dcz , 

11' -00 -00 

(2) 

to be the basic unknown, and thus reduces the problem to 
one of solving 

¥CO + Ocx(a/ax) Z (x,cx) + Z (x,ex) 

= fflt2 f~ "" e-c; Z(x,cx)dc" , (3) 

subject to the boundary conditions 

Z [ - (d /2) sgnc ... ,cx ] = 0 . (4) 

In Eq. (3) the mean-free-time is denoted by O. In the next 

-'Permanent address: Instituto de Pesquisas Energeticas e Nucleares, 
Cidade Universitaria, Sio Paulo, Brasil 

section we use the FN method to deal with Eqs. (3) and (4) 
and thus to establish a concise result for the ftow rate Q. 

II. ANALYSIS 

In regard to Eqs. (3) and (4), we prefer to let p. = c x' 

r = x/O, 0 = d /0 and thus to consider 

¥CO + p.(a/ar) Z(r,p.) + Z(r,p.) 

(5) 

and 

Z [ - (8/2) sgJllL,p.] = 0, p.e{ - 00,(0) . (6) 

If we substitute 

Z(r,p.) = ¥CO [~- 2rp. + 2p,2 - W/4) - 2Y(r,p.)] , 
(7) 

into Eqs. (5) and (6) then we see at once that Y(r,p.) is the 
solution of 

p.(a/ar) Y(r,p.) + Y(r,p.) = 1T-
1J2 f: "" e-f" Y(r,p.) dp., (8) 

subject to 

Y( - a,p.) = Y(a, - p.) = p.2 + ali, Ii> O. (9) 

where 2a = 8. In order to simplify the calculation of the flow 
rate Q. we first wish to note several useful relationships con­
cerning some moments of Y(r.Ii). If we let 

Y" (r) = 1T-
1/2 f: 00 e - 1" Y(r,p.) p'a dli , (10) 

then we can multiply Eq. (8) by exp( - p.2) and integrate 
over allp. to deduce that Y J( r) is a constant, say Y J (a). Multi­
plying Eq. (8) by Ii exp( - p.2) and integrating over all Ii, we 
find 

(d Idr) Y2(r) + Y1(a) = 0 , (11) 

which, after we multiply by r and integrate over r from - a 
to a, yields 

f: a Y2(r) dr = 2aY2(a). (12) 

If we multiply Eq. (8) by p.2 exp( - p.2) and integrate over p., 
we find 

(13) 
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which we can integrate over T to find, after using Eq. (12), 

[a Yo(T)dT=4Yla)+4aYia). (14) 

Now since the flow rate is 

Q(a) = - _1_ r q(T) dT, 
"da J-o 

(15) 

where the macroscopic velocity is 

q(T) = 11"-1/2 f: 00 e _I-" Z (T,JJ) dll , (16) 

we can use Eqs. (7) and (15) to express the flow rate simply in 
terms of surface quantities, i.e., 

a 1 2 
Q(a) = 3- 2;+ a2 [Y3(a)+aYia)]. (17) 

If we use 

and 

Y2(a) =11"-1/2 100 

1l2 e-I-" Y(a,JJ)dll+i+11"-lt2 ~, 
(ISa) 

Y3(a) = 11"-1/2 LOO 113 e-I-" Y(a,JJ) dll- i a _11"-1/2, 

(ISb) 

in Eq. (17) we can write 

Q(a)=!!-. __ 1_ +11"-I/2(I_~) +1T-1/2~ 
3 2a a2 a2 

xi"" 1l2e-I-" Y(a,JJ){J.l+a)dll, (19) 

so that Q (a) finally is expressed in terms only of Y(a,JJ),1l > O. 
We now wish to consider the boundary-value problem 

defined by Eqs. (S) and (9). The desired symmetrical solution, 
Y(T,JJ) = Y( - T, - Il), can be expressed in terms of the ele­
mentary solutions8 as 

Y(T,JJ) 

= A11"-1/2 + Loo A (v)[; (v,JJ) e - Tlv +; ( - v,JJ) eTlv ) dv, 

(20), 

where 

; (v,ll) = 11"-1/2 vPv (_1_) + 11"-1/2 p(v)45(v - Il) . 
v-Il 

(21) 

Here 

ply) = 11"1/2 (ev> - 2v LV ee' dx ). (22) 

and the expansion coefficients A and A (v) are to be deter­
mined by the boundary condition, Eq. (9). To proceed with 
the method of elementary solutions we would substitute Eq. 
(20) into Eq. (9) and regularize the resulting singular integral 
equation to obtain ultimately a Fredholm-type integral 
equation for A (v). Since we have expressed the desired flow 
rate Q(a) in terms of Y(a,JJ), [see Eq. (19)] we do not need 
Y(T,JJ) for all T, and thus we do not pursue the method of 

2761 J. Math. Phys., Vol. 21, No. 12, December 1980 

elementary solutions further. Instead, we pay special atten­
tion to establishing Y(a,JJ). Since the functions; (v,JJ) are 
orthogonal, in the sense that 

f_oo"" rl-";(v,JJ);(v',JJ)lldll=O, v#v', (23a) 

and 

J: "" e _I-" ¢J (v,JJ) Il dll = 0 , (23b) 

we can multiply Eq.(20), evaluated at ". = ± a, by 
Il exp( - 1l2); ( - v,JJ) and integrate over all Il to find 

f: "" r 1-" ; ( - v"u) Y(:F a"u) Il dll 

=A (v) N( - v) e'F alv , (24) 

where N ( - v) is a normalization factor that can be eliminat­
ed between the two forms of Eq. (24) to yield 

J: "" e _I-" ; ( - v"u) Y( - a"u) Il dll 

= r 2alv f: "" rl-"; ( - v"u) Y(a"u)f.l df.l, (2S) 

or, after we use Eq. (9), 

L"" r 1-" ¢J (v,f.l) Y(a,f.ll f.l df.l + e - 2a/v 

xL"" e _I-" ; ( - v"u) Y(a,JJ) f.l df.l = K (v) . 

(26) 

Here the known function K (v) is given by 

K (v) = L"" e _1"; ( - V"u)(f.l2 + af.l) f.l dll + e -2a/v 

xL"" e-I-"; (V"u)(f.l2 + Of.l)f.l dll. (27) 

In a similar manner, we can mUltiply Eq. (20), evaluated at 
T = a, by Jl exp( - Jl2), and integrate over all Jl to find 

100 

e-I-"Y(o,JJ)f.ldJl= L"" e-I-"(1l2+af.l)f.l df.l. 

(28) 

Equations (26) and (2S) constitute a singular integral equa­
tion and a constraint to be solved to establish Y(a"u). It is 
clear that the methods of Muskhelishvi1i9 could be used to 
convert Eqs. (26) and (2S) to a Fredholm-like integral equa­
tion for Y (a,JJ). However, we prefer here to introduce the F N 

method7 and thus to substitute the approximation 

Y(a,JJ) =f.l(f.l + a) o (a) e- 2al
l-' 

N 

+ I aa [1-(-ltO(ale- 2all']f.la , f.l>O, (29) 
a=O 

where the constants aa are to be determined, into Eqs. (26) 
and (2S) to obtain 

ato aa [ Ba(vl - o (a)( - l)a Da(v) 

+e-2alv[Aa(v)-0(a)(- ItCa(V)]] =R(v), (30) 
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and 
N 

L aa [Ka - 8 (a)( - It Ta+ d2a)] 
a=O 

= K2 + aKI - 8 (a)[ T3(2a) + aT2(2a)] , 

where a known function is 

R (v) = A2(V) + aA I(V) - 8 (a) [D2(V) + aDI(v)] 
+ e - 2a/v{ B2(V) + aBI(v) 

(31) 

- 8 (a)[ C2(v) + aCI(v) 1l . (32) 

Here we have used the definitions 

vAa(v) =11'112 f" e-I-"r/J(-v,J.t)j.ta+ldj.t, (33a) 

vBa (v) = 11'1/2 f" e - 1-" r/J (v,J.t) j.ta + 1 dj.t , 

(33b) 

VCa (v) = 11'1/2 i"" e - 1-" r/J ( - v,J.t) j.ta + 1 e - 2a/1-' dj.t , 

(33c) 

vDa(v) = 11'1/2 i"" rl-"r/J(v,J.t)j.ta+l e-2a/l-'dj.t, (33d) 

Ka = fa"" e - 1-" j.ta + 1 dj.t , 

and 

(34) 

(35) 

In order to establish a solution that is accurate for all values 
of a, we include in Eq. (29) a term mUltiplied by the step 
function 

8(a) = 1, O<a<a., 

8(a) = 0, a>a., 

(36a) 

(36b) 

where a. is to be selected, as discussed in the next section. It 
is apparent that 

n! 
K 2n = -, n = 0,1,2, ." , 

2 
(37a) 

and 

K = 11'1/2 1.3.5 .. ·(2n + 1) 
2n + 1 2n + 2 • 

(37b) 

We note that 

Bo(v) = Ao(v) = r"" e-I" j.t ~, Jo j.t + v 
(38) 

and that the remaining B a (v) and Aa (v) can be readily gener­
ated from 

Ba(v) = vBa _ 1 (v) -Ka _ 1 , 

and 

Aa(v) = - vAa _ 1 (v) + K a _ 1 • 

In addition 

Co(v) = e-I-' e - 2all-' j.t ~, i"'" d 

o j.t+v 
Do(v} = e - 2alv Bo(v) 
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(39) 

(40) 

(41) 

50
"" -' [e - 2all' - e - 2alv ] 

- j.te I' dj.t , 
o j.t-v 

(42) 

(43) 

and 

(44) 

If we now choose N values of vetO, 00 ), say v p, then clearly we 
can solve the system of algebraic equations 

ato aa [Ba(Vp ) - 8(a)( - It Dalvp) + e-2alvfj 

and 

X [Aalvp) - 8 (a)( - It Ca(Vp)]] 

= R (vp), f3 = 1,2,3, .. ·,N, 

N L aa [Ka - 8 (a)( - It Ta + 1 (20)] 
a=O 

(45a) 

(45b) 

to find the required constants {aa ). One of the more attrac­
tive features of the F N method is that the known coefficients 
in Eqs. (45) are very simply expressed. Note, for example, 
that the half-width a is not required in Aa (v) and Ba (v) and 
that the functions Aa (v) and Ba (v) are simple combinations 
of polynomials and the function Bo(v). For a>a. it is thus 
evident that very little computer time will be required to 
compute the coefficients {aa ). For a < a. the coefficients in 
Eqs. (45) involve also the functions Ca(v), Da(v) and Ta(2a); 
however as can be seen in the next section only a low value of 
N is required for a <a. to establish accurate results. 

We note that the idea of using the Placzek Lemma 10 and 
approximating unknown surface distributions by polynomi­
als has been used in the fields of kinetic theoryll.12 and neu­
tron transport theory. 13 The F N method, with 8 (a) = 0, 
clearly is related to this earlier work though it differs sub­
stantially in the way the required constants are determined. 

III. NUMERICAL RESULTS 

Of course to solve the system of equations given by Eq. 
(45) we first must select N values of VpE(O, 00). To have a 
simple and effective scheme we take the v p' f3 = 1,2,3, .. , , N, 
to be the N positive zeros of the Hermite polynomial H2N lS ). 
If we substitute Eq. (29) into Eq. (19) we find that our solu­
tion, by the F N approximation, is 

Q (a) = !!... + 11'-1/2 [1 + 28 (a) T3(2a)] + J:.... 11'-1/2 
3 a 

X [ato aa [Ka+ 1 - 8(a)( - It Ta+ 2(2aj] 

-111'1/2 + 28 (a)T4(2a)] + :211'-1/2 

X [ato aa [Ka+2 - 8(a)( - It Ta+ 3 (2a)] 

- I + 8 (a) Ts(2a)] . (46) 
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TABLE I. The flow rate Q(a). 

2a 8 (a) 

Fo F2 F4 F6 

0.001 1 4.2736 
0.01 1 3.0495 3.0496 
0.1 1 2.0314 2.0327 
0.5 1 1.5952 1.6018 1.6019 
1.0 1 1.5264 1.5385 1.5387 
2.0 1 1.5761 1.5944 1.5948 
3.0 1 1.6893 1.7099 1. 7104 1.7105 
5.0 0 1.9504 1.9881 1.9905 1.9906 
7.0 0 2.2708 2.2932 2.2947 2.2948 
8.0 0 2.4304 2.4498 2.4510 2.4511 
9.0 0 2.5906 2.6081 2.6090 2.6091 

10.0 0 2.7514 2.7677 2.7685 2.7685 
20.0 0 4.3850 4.3969 4.3973 4.3974 
30.0 0 6.0381 6.0489 6.0492 6.0492 
40.0 0 7.6976 7.7077 7.7080 7.7081 

100.0 0 17.684 17.693 

In Table I we show, in addition to the results ofBoffi et ai.,s 
and Loyalka et ai.,6 the values obtained by using the solu­
tions ofEq. (45) in Eq. (46). In addition to the results for 
various orders of the F N approximation we list as "present 
work" the stable results we believe to be correct to within 
± 1 in the fifth significant figure. 

We have found that the approximation given by Eq. (29) 
with 8(a) = 1 works well for all values of 20 listed in the 
table. However for 20>5.0 we were able to obtain Q (a) accu­
rate to five significant figures with 8 (a) = 0 and thus with a 
greatly reduced requirement for computation time. If the 
desired accuracy in Q (0) is reduced to four significant figures 
then 8 (a) = 0 can be used for all 20> 1.0. Finally we note that 
the F N solution developed here is especially simple with 
8(a) = o since only Bo(v) and the recursive formulas, Eqs. (39) 
and (40), are required to define the matrix elements in Eqs. 
(45). 

ACKNOWLEDGMENT 

One of the authors (CES) is grateful to the Centre d'E-

2763 J. Math. Phys., Vol. 21, No. 12, December 1980 

Q(a) 

F. FlO "Present 
work" Ref. 5 Ref. 6 

4.2736 4.2736 
3.0496 3.0497 
2.0327 2.0327 2.0327 
1.6019 1.6019 1.6018 
1.5387 1.5387 1.5386 
1.5948 1.5948 1.5948 
1.7105 1.7105 1.7105 

1.9906 1.9907 1.9907 1.9907 1.9907 
2.2948 2.2949 2.2949 2.2948 2.2949 
2.4511 2.4512 2.4512 2.4510 
2.6092 2.6092 2.6090 2.6092 
2.7686 2.7686 2.7684 2.7686 
4.3974 4.3974 4.3971 
6.0493 6.0493 6.0479 

7.7081 
17.693 

tudes Nucleaires de Saclay for kind hospitality and partial 
support of this work. This work was also supported by 
CNEN and IPEN, both of Brasil, and the U.S. National 
Science Foundation through grant ENG 7709405. 

'c. Cercignani and A. Daneri, J. Appl. Phys. 34, 3509 (1963). 
2C. Cercignani, J. Math. Anal. Appl. 12,254 (1965). 
3P.L. Bhatnagar, E.P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954). 
4K.M. Case, Ann. Phys. 9,1 (1960). 
5y. Boffi, L. De Socio, G. Gaffuri, and C. Pescatore, Meccanica 11, 183 
(1976). 

·S.K. Loya1ka, N. Petrellis, and T.S. Storvick, Z.A.M.P. 30, 514 (1979). 
7C.E. Siewert and P. Benoist, Nucl. Sci. Eng. 69,156 (1979). 
·C. Cercignani, Ann. Phys. 20, 219 (1962). 
9N.I. Muskhelishvili, Singular Integral Equations (Noordhoff, Groningen, 
The Netherlands, 1953). 

IOK.M. Case, F. de Hoffmann, and G. Placzek, Introduction to the Theory of 
Neutron DiffUSion, Yol. 1 (U.S. Government Printing Office, Washington, 
D.C., 1953). 

"J.K. Buckner and J.H. Ferziger, Phys. Fluids 9,2315 (1966). 
12S.K. Loyalka and J.H. Ferziger, Phys. Fluids 10, 1833 (1967). 
"P. Benoist and A. Kavenoky, Nucl. Sci. Eng. 32, 225 (1968). 

Siewert, Garcia, and Grandjean 2763 



                                                                                                                                    

Operator methods for time-dependent waves in random media with 
applications to the case of random particles 

K. Furutsu 
Radio Research Laboratories, Koganei-shi, Tokyo 184, Japan 

(Received 24 April 1980; accepted for publication 20 June 1980) 

The random medium is represented by the operator, constructed from the characteristic 
functional of the medium, and this representation is shown to considerably facilitate the 
formulation of various equations of waves in random media, as well as obtaining the physical 
insight into the equations. A specific application is made to waves in the medium of random 
particles, and the equations obeyed by the characteristic functional of wave are derived with the 
aid of the effective medium method. Here, the optical condition is exhibited by the condition of an 
operator in space and time. Independent of this operator method, the general theory is extended, 
in an unperturbative way, for the equations of the second-order coherence functions, being given 
in a form of the Bethe-Salpeter equation, and the coherent potential equations are formulated for 
the basic matrices of two kinds appeared in the equations. The explicit expressions of these 
matrices are obtained, on utilizing the coherent potential approximation, and are shown to be 
exactly the same as those obtained by the effective medium method, in both cases of weak­
scattering limit and of random particles. Finally, on employing the appropriate Fourier 
representations in space and time, the theory is presented in a few different forms, one being 
particularly suited to derive the equations of multifrequency coherence functions. 

1. INTRODUCTION AND PRELIMINARIES 

The statistical theory of waves in random media has 
been extensively developed in terms of the mutual coherence 
function of wave for the typical random media of both turbu­
lent air where the scattering of wave is weak and made most­
ly in the forward direction, and random particles where the 
scattering by each particle is usually strong and described in 
terms of the scattering matrix. In either case, the mutual 
coherence function of wave has been shown to obey the equa­
tion of a form of the Bethe-Salpeter equation,I-5 and further 
to obey the ordinary transport equation which can be de­
rived from the former equation to a good approximation.6 

In case of turbulent air, the higher order coherence 
functions of wave also have been investigated in connection 
with the saturation of irradiance scintillation, the probabil­
ity distribution of irradiance, etc., and the governing equa­
tions have been systematically derived with the exact solu­
tions of all orders in the special case when the medium 
structure function can be given in the parabolic form. 7 In 
case of random particles, on the other hand, no higher order 
coherence functions have been investigated nor any system­
atic way of deriving their governing equations. 

Since the complete statistical informations of a wave in 
random media can be obtained through the characteristic 
functional of wave, the basic problem is reduced to finding 
the equations satisfied by this functional, provided the char­
acteristic functional of the medium is on the other side. Here, 
to find those equations, the medium has been represented by 
the operator, constructed from the characteristic functional 
of the medium, which partiCUlarly facilitates obtaining the 
expectation value for any functional of the medium.7 Here, 
in the case of the media obeying the Gaussian statistics, this 
operator representation of the medium leads to the previous 

formula, which has been extensively used to derive the equa­
tions of the coherence functions ofwave.3

•
8 Also for the me­

dium of random particles, the corresponding representation 
has been found in the time-independent case9 and employed 
to derive the equation for the mutual coherence function of a 
wave. 

With the replacement of the medium and also wave­
functions by the corresponding operators, the equations for 
the characteristic functional of a wave are found to preserve 
the same forms as the original wave equations. This is a con­
sequence of the more general correspondence principle es­
tablished between any equations which hold when the medi­
um is deterministic and the corresponding equations when 
the medium is probablistic; this is the case, e.g., of the equa­
tion of continuity of a wave, the equations of energy-momen­
tum conservation, constructed according to the Lagrangian 
principle, etc.7 

In this paper, the random medium is first represented 
by the operator in terms of the characteristic functional of 
the medium. which is described on the same footing in space 
and time, and its explicit expressions are derived for both 
cases of weak-scattering limit and of random particles (Sec. 
2). The basic equations obeyed by the characteristic func­
tional of a wave are then derived together with the corre­
spondence principle (Sec. 3). In Sec. 4, the specific applica­
tion is made to obtain the explicit equations satisfied by the 
first and second order statistical Green's functions in the 
medium of random particles, where exclusive use is made of 
the operator techniques together with the effective medium 
method. In Sec. 5, entirely independent of the above opera­
tor method, the general theory is extended for the same 
Green's functions, where two basic matrices are introduced 
and explicitly defined in an unperturbative manner; these 
matrices are shown to satisfy the optical condition in the 
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generalized sense. In Sec. 6, the coherent potential equations 
are formulated to find the two basic matrices according to 
the definitions in Sec. 5 and their explicit expressions are 
obtained, on utilizing the coherent potential approximation 
which has been used successfully for the impurity problems 
in solid physics, to show their exact equivalence to those by 
the effective medium method introduced in Sec. 4. Finally in 
Sec. 7, the equations satisfied by the characteristic functional 
of a wave are derived for the medium of random particles, 
based again on the effective medium method, and the optical 
condition is shown to be exhibited by the condition imposed 
on a space-time operator. 

We employ the following notations: The space coordi­
nate vector is denoted x = (XI' x2, x3 ), the time by t, and 
X = (x, t) represents the space-time coordinate vector. The 
space-time element of volume is defined by dx = dx dt with 
dx = dx ldx2dx3• The wave function is designated by tP(x) 
and is assumed to satisfy an equation of the form 

[L (ia/ax) - q(x)]tP(x) = j(x), 

(1.1) 

[L *( - ia/ax) - q(x)]"'*(x) = j*(x). 

Here, the asterisk stands for the complex conjugate, and 
q(x) = q*(x) designates the medium, including the random 
part;j(x) is the external source of a wave and, in the case of 
the scalar wave, 

L (ia/ax) = L *( - ia/ax) = (+ :J2 -(~ y. (1.2) 

where c is the wave velocity. 
In the case when N particles are enclosed in a finite 

space of volume V, and qu(x) is the contribution from one 
particle characterized by the symbol a, then, q(x) in Eq. (1.1) 
is given by 

N 

q(x) = L qUj(x), (1.3) 
j=1 

where aj is the particular value of a, specifying thejth parti­
cle involved. For example, when the particles have time­
independent structures and are all moving with a constant 
velocity v, then, qu(x) is given in the form 

qu(x) = q(x -a), a = vt + a, (1.4) 

where a is the space coordinates of the center of the partick, 
and the other parameters, necessary to specify various parti­
cle structures and properties, have been suppressed. 

2. OPERATOR REPRESENTATION OF RANDOM 
MEDIUM 

It is known that the complete statistical information of 
any random medium q(x) can be obtained, if the medium is 
stationary in space and time, from the characteristic func­
tional, defined by 

Zq[P] = (exp[fdXP(x)q(X)]), Zq[O] = 1, (2.1) 

where ( ... ) stands for the statistical averaging of the quantity 
referred to over all possible values of the medium q(x), and 
p(x) is an arbitrary function. Whence 
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L5P~X)rZq[p]lp=o = (qn(x», n=1,2,3,···, (2.2) 

and, for any functionalf[q] of q(x), 

f[M8p]Zq [P] Ip=o = (f[q]), (2.3) 

giving the average value (f[q» in terms of Zq [p]. 
Although the expression (2.3) provides us with a conve­

nient means of evaluating the statistical average value off[q] 
when it is explicitly given, this is not the case whenf[q] is 
implicitly given, e.g., through its governing equation. To ob­
tain an alternative expression convenient particularly in the 
latter case, we first note the following relation, valid for an 
arbitrary function c(x): 

Zq[M&]f[c] = (exp[fdXq(X) &~X)]f[C]) 
= (! ..!..[fdXq(X~]nf[C]) 

n =on! &(x) 
= (f[c+q]). (2.4) 

Here, in terms of the operator q(x) defined by 

q(x) = Zq [M&]c(x)Z q-l [M&], (2.5) 

when Zq = Zq[8 /&], 

Z qc2(x)Z q-I = (Zqc(x)Z q-I )(Zqc(x)Z q-I) = q2(X), 

(2.6) 

Zqcn(x)Z q-l = qn(x), n = 1, 2, 3, "', 

and therefore also 

Zq [M&]f[c]Z q-l [M&] =f[ZqcZ q-l] =f[q], 
(2.7) 

which enable us to exhibit the result (2.4) by7.11 

(f[c+q]) =f[q]Zq[M&] =f[q], (2.8) 

since, in the last derivation, there is nothing for Zq [8/&] to 
operate on. 

From Eq. (2.8), we learn that the statistical average of 
any functionalf[q] of q(x) can be found simply by replacing 
q(x) by the operator q(x), and therefore also that 

([c(x) + q(x)]f[c + q]) = q(x)f[q] = q(x)(f[c + q]), 
(2.9) 

which is particularly convenient in finding (q(x)f[q» for giv­
en (f[q]). 

Here, obtaining the explicit expression of q(x) is facili­
tated by introducing the cumulant of Zq[p], defined by 

e [p] = In{Zq [p]}, (2.10) 

and hence, in terms of the conventional notation for the 
cummutator [A, B] = AB - BA, Eq. (2.5) gives 

q(x) = exp{e [8/&]}c(x)exp{ - e [8/&]} 

= c(x) + [e, c(x)] + (112!)[ e, [e, c(x)]] + .... (2.11) 

Here, 

[e [8/&], c(x)] = q(x, M&), (2.12) 

with 

q(x,p)=(M8p(x))e [p] = (M8p(x))lnZq [P], (2.13) 
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and therefore it follows that, on the right-hand side of Eq. 
(2.11), the nonvanishing terms are only the first two terms, 
yielding 

q(x) = c(x) + q(x, 8/&). (2.14) 

Here, the operators q(x) at all points in space and time are 
commutable with each other, i.e., 

[q(x),q(x')] = Zq [8/&] [c(x)c(x') - c(x')c(x)] 

(2.15) 

as follows directly from the definition (2.5), exhibited by the 
similarity transformation of c(x). 

A. Gaussian medium 

With the definition (2.10), we obtain, when (q(x) = 0, 

f) [p] =! J dXI dX2 (q(xdq(x2)p(xdp(x2) 

+ iJ dXI dX2 dX3 (q(X I)q(X2 )q(X3) 

Xp(X I)P(X2)P(X3 ) + ... , (2.16) 

which gives, according to the definition (2.13), 

q(x,p) = J dX I (q(x)q(xd)p(xd 

+! J dXI dx2(q(x)q(X I)q(X2)P(XI)P(X2) + .... (2.17) 

Therefore, when the contributions of the second- and high­
er-order terms on the right-hand side ofEq. (2.17) are negli­
gible, we find, according to Eq. (2.14), 

q(x)-c(x) + SdX'D(X - x,~, 
&(x') 

D (x - x') = (q(x)q(x'», (2.18) 

which describes the medium obeying the Gaussian statistics, 
as may be seen directly by applying the formula (2.8) to 
evaluate Zq[p] according to the definition (2.1). Whence, 

Zq [p] = exp[S dx p(x)q(x) ] 

= exp{S dx p(x) [C(X) + S dx' D(x -x') &:x')]}' 

(2.19) 

which, as c~, tends to 

Zq [p] = exp[! S dx dx' D (x - X')P(X)P(X')]. (2.20) 

with the aid of the formula 

exp(A + B) = exp(A )exp(B)exp(HB, AD, (2.21) 

valid for arbitrary operators A and B when the commutator 
[B, A ] is commutable with both A and B, being the present 
case of A = 

J dx p(x)c(x) and B = J dx dx' p(x)D (x - x')lj/&(x'). 

Here, the formula (2.9) with the expansion (2.17) for 
the term q(x, 8/&) in q(x), suggests that the assumption that 
the Gaussian statistics are obeyed will give a good approxi-
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mation to the real random medium when the magnitude of q 
is small enough so that the accumulated effect of q(x) over 
the range of its correlation distance is negligibly small for 
(/[q]). The relation (2.9) with q(x) given by Eq. (2.18) is 
equivalent to that previously obtained.3

•
8 

B. Multi-component random medium 

When the medium is composed of two independent ran­
dom components, as given by 

(2.22) 

then, by Eq. (2.1) 

Zq [P] = (exp{S dx p(x)[qt(x) + q2(X)] n = ZI [p ]Z2 [p], 

(2.23) 

Zj [p], j = 1, 2, being the characteristic functional for qj 
alone, and hence 

q(x,p) = 8:rx) In{ZI[P]Z2LP]} =ql(x,p) +q2(X,P), 

qj(x,p)=_8_lnZj [p], j= 1,2, (2.24) 
8p(x) 

q(x) = c(x) + ql(x, 8/&) + q2(X, 8/&), (2.25) 

which shows that the contributions from the independent 
components of random medium are simply added up to con­
struct q(x, 8/&) in q(x). 

c. Medium of random particles 

We suppose that N particles are randomly distributed 
in a space of volume V without any correlation to each other, 
allowing, strictly speaking, even overlapping of particles, 
and also that, as in Eq. (1.3), the contribution from each 
particle to the total q(x) is made through the function q a (x). 
Here, the symbol a represents the set of parameters charac­
terizing the structure of one particle and therefore includes 
the space coordinates of particle's center, say, a at a particu­
lar time, besides other parameters specifying, e.g., its size, 
shape, orientation, trajectory in space and time, etc. There­
fore, the characteristicfunctional Zq [p], defined by Eq. (2.1) 
with q(x) given by Eq. (1.3), is found, in the manner similar to 
Eq. (2.23), to be 

Zq[P] = j[ItV-I!vdaj (exP[SdXP(x)qaj(X)])' 

= [v-I!vda (exp[JdXP(X)qa(X)])'r, (2.26) 

where the bracket ( ... )' means the averaging over all possible 
properties of the involved particles, excluding that over the 
center coordinates a. 

Here, as V-oo and N-oo, keeping a constant density 
of particles n = N IV, Eq. (2.26) tends to 

Zq [p] = exp [ n J da {( exp[S dx p(x)qa (X)])' - I}]. 

(2.27) 

Thus, according to Eq. (2.13), 

q(x,p) = n J da (qa(x)exp[J dx' P(X')qa(X')])', (2.28) 
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and hence, by Eq. (2.14), q(x) is found to be given by 

q(x) = c(x) + q(x, 81&), 

q(x,8I&) = (qa(x)exp[f dx' qa(x') &:x')]) a' 

in terms of the notation 

(2.29) 

("')a=nJ da ( .•. )'. (2.30) 

The expression (2.29) will be exclusively used in Secs. 4 
and 7 to find various statistical equations of a wave in the 
medium of random particles. '2 

3. EQUATIONS SATISFIED BY THE CHARACTERISTIC 
FUNCTIONAL OF A WAVE 

In exactly the same way as for random media, the com­
plete statistical description of the wave function ¢(x) and of 
the complex conjugate wave function "'*(x) in a random me­
dium can be derived from the characteristic functional of a 
wave, defined bylO 

Z U*,J] = (exp{J dx [}(x)¢(x) + J*(x)",*(x)] D· (3.1) 

To find the equations obeyed by Z U* ,.7.1, we assume the 
wave equations ofthe form (Ll), i.e., 

[L (ialax) - c(x) - q(x)] "'(x) =j(x) (3.2) 

and the corresponding complex conjugate wave equation, 
where c(x) is an infinitesimal function and is to vanish in the 
final results. Here, it is straightforward, on employing 

~ZU7* 7] 
I5Jix) ,J 

= (¢(x)exp{f dx' [}(x')¢(x') + J*(X')"'*(X')]}), (3.3) 

and also the wave equation (3.2), to find 

({[L (ialax) - c(x) - q(x))8II5J(x) - j(x)} 

X exp{J dx' [}(x')¢(x') + J*(x')",*(x')] }) = 0, (3.4) 

where, from the formula (2.9), 

([c(x) + q(x))exp{ }) = q(x)Z U*,J). (3.5) 

The above result can be expressed in a compact form by 
introducing the operators, defined by 

15 15 
"'(x) = l5j(x)' "'*(x) = I5J*(x) , (3.6) 

with the commutation relations 

["'(x),](x')] = [",*(x),}*(x')] = l5(x - x'), 

[",(x),J*(x')) = [",*(x),j(x')) = [",*(x), "'(x')) = O. (3.7) 

Whence 

([L (ialax) - q(x)) "'(x) - j(x)}Z U*,J) = 0 (3.8) 

and, in the same way, 
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{[L *( - ialax) - q(x)) "'*(x) - j*(x)}Z U*,J) = 0, 
(3.9) 
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which, together with Eq. (3.8), constitutes the basic equa­
tions of Z[T*,.7.I. The time-independent version ofEqs. (3.8) 
and (3.9) are exactly the same as previously obtained by an 
entirely different method.7 

Comparing Eqs. (3.8) and (3.9) with the original wave 
equations in Eq. (1.1), we immediately find the obvious one­
to-one correspondence; more generally, it is not difficult to 
show that, if the relation Q ["', ",*, q] = 0 holds among "', "'*, 
and q when the medium is deterministic, then 

Q ["', ",*, q)Z U*,J) = 0, (3.10) 

when the medium is probabilistically given, and Eq, (3.8) is 
regarded as the particular case of when . 
Q = (L - q)'" - j = O. For another example, the equation of 
continuity of the scalar wave, satisfyingEq. (1.1) with (1.2), is 
given in the form 

± ~Fj + ~"'*j - ",j*) = 0, (3.11) 
j=O aXj 2 

wherexo = ct, c = wave velocity, a laxi = (alax" alax2, 
alax3, - alaxo) and 

Fj = ~[",*~ '" -~ "'*], j = 0, 1, 2, 3. (3.12) 
2 ax' ax' 

Therefore, Z U* ,.7.1 also satisfies the equation corresponding 
to Eq. (3.11): 

r ± ~Fj + ~"'*j - ",j*)]Z U*,J) = O. (3.13) 
~=oaXj 2 

Here, Fj is the same function of "', ",*, and q as Fj is of "', "'*, 
andq. 

In the same way, we could construct the energy-stress 
tensor of a wave according to the Lagrangian principle and 
find the related conservation equations also for Z U* ,.7.1. In 
this case, however, the equations contain the first-order de­
rivatives of q(x) in space and time, in constrast with the equa­
tion of continuity (3.13), showing that neither energy nor 
momentum is conserved when the medium fluctuates in 
space and time, as is generally the case of moving media. 

In the power series expansion of Z U* ,.7.1 with respect to 
J*(x) and](v), i.e., 

Z[/*,.7.I = ! -:-fdX, dx2···dx,.,. dy, dY2,·,dyv 
"",v= ojl.vI 

Xm,.,.v(x" ''', x,.,.;y" "',Yvll*(xIlT*(x2) 

.. :1*(x,.,.1l(v,1l{Y2)··:l(yv), (3.14) 

the expansion coefficients are directly related to the mo­
ments of wave functions as: 

m,.,.v(x"x2, "', x,.,.; Y"Y2' "',Yv) 

= < "'*(x "",*(x2)···",*(x,.,. )"'(VdtPtv2)"''''(vv)' (3.15) 

Here, since Eqs. (3.8) and (3.9) for ZU*,.7.I contain the 
undesirable operator 151 &(x) through q(x), the next task is to 
find such an operator !Co, (x Ix') which is free from 151 &(x) but 
a functional of],]*, "', and "'* instead, defined by [Cf. Eqs. 
(7.9) and (Btt)] 

q(x)"'(x)Z Ic=o = fdX' !Co,(xlx')"'(x')Z U*,J) , 

by invoking an appropriate approximation. This enables us 
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to eliminate ~ /&(x) from Eqs. (3.8) and (3.9) and further to 
derive the equations for the moments ml''Y upon substitution 
of the expansion (3.14). 

On the other hand, a formal solution ofEqs. (3.8) and 
(3.9) is obtained by introducing the symbolic Green's func­
tion Gq and G:, defined according to the equations 

[L (ia/ax) - q(x)]Gq(xlx') = ~(x - x'), 

(3.16) 

[L *( - ia/ax) - q(x)]G;(xlx') = ~(x - x'), 

with the given boundary condition. Here, the solutions are 
functionals of the operator q(x) and therefore these Green's 
functions are also operators involving ~ /&(x); Gq and G: 
can be defined alternatively by the integral equation 

Gq(xlx') = Go(xlx') + J dx" Go(xlx")q(x")Gq(x" Ix'), 

(3.17) 

where Go(xlx') is the ordinary Green's function, obeying 

L (ia/ax)Go(xlx') = ~(x - x'), (3.18) 

with the given boundary condition. Here, it will be noted 
that, in virture of the mutual commutability of the operators 
q(x) at all points in space and time, as exhibited by Eq. (2.15), 
Gq and G: are also mutually commutable and therefore can 
be treated in exactly the same way as the ordinary Green's 
functions. 

Thus, in terms of the symbolic Green's functions satis­
fying Eq. (3.16), Eqs. (3.8) and (3.9) can be exhibited by 

~ Z U*,]] = fdX' Gq(xlx'V(x')Z U*,]] (3.19) 
~J(x) 

and its complex conjugate equation, whose formal solution is 
obviously 

zrl*,l1 = exp{J dx dx'(/(x)Gq(xlx'V(x') 

+ J*(x)G:(xlx'V*(x')] }Zo, (3.20) 

where 

Zo = Z r.T*']] 11* =}=o = 1. (3.21) 

Here, q(x) is given by Eq. (2.29) in the medium of random 
particles and by Eq. (2.18) in media obeying the Gaussian 
statistics. The expression (3.20) could be derived more di­
rectly from Eq. (3.1) with Gq and G: replaced by Gq and G:, 
respectively, according to the rule (2.8). 

The moments of wave functions of various order are 
obtained from Eq. (3.20), in the form 

(r/J(x) = J dx' G (x Ix'V(x'), 

(.,,*(x) = f dx'G *(xlx'V*(x'), 

(3.22) 

( "'*(x\)r/J(x2) 

= f dxj dXi G\I(x\; x2Ix;; xiV*(x; V(xi}, etc., 
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where 

G(xlx') = Gq(xlx')Zo, G*(xlx') = G:(xlx')Zo, 

(3.23) 

G\I(x\; x2Ix;; xi) = G:(xdX;)Gq(x2Ixi)Zo, etc., 

and the auxiliary function c(x) is to vanish in the final results. 

4. STATISTICAL GREEN'S FUNCTIONS OF THE FIRST 
AND SECOND ORDERS IN MEDIA OF RANDOM 
PARTICLES 

The first order statistical Green's function G (xix'), de­
fined by Eq. (3.23), obeys the equation 

[L (ia/ax) - q(x)]G (xix') = 8(x - x'), (4.1) 

as directly follows from Eq. (3.16). Here, on the left-hand 
side, q(x) is given by Eq. (2.29) and therefore the contribu­
tion from the term of q(x, 8/&)G (xix') is expressed, by vir­
tue of the term c(x) contained in q(x) and in terms of the 
notation 

(4.2) 

as: 

q(x, 8/&)G(xlx') = q(x, 8/&)Gq(x Ix')Zo 

= (qa(x)Gq+a(xlx'»aZO' (4.3) 

with the aid of the Taylor expansion similar to that in Eq. 
(2.4). 

Here, the right-hand side ofEq. (4.3) can be exhibited in 
a compact form in terms of the conventional scattering ma­
trix, defined as follows: Let Ga + b(xlx') be the Green's func­
tion in a medium a + b, and also Ga + b be the matrix defined 
by its matrix elements G a + b (x Ix') with respect to the coordi­
nates x and x', then the equation of G a + b is expressed, in 
matrix form, by 

(L - a - b )Ga + b = 1, (4.4) 

and the solution can be given in the form 

Ga+b = Gb [1 + T!Gb]. (4.5) 

Here, the scattering matrix T! expresses the effect caused by 
the scatterer a existing in the medium b, and there are several 
relations connecting a, b, and T ~ as: 

aGa+ b = T~Gb' Ga+ba = GbT~, (4.6) 

T~ = a{l - Gbar\ = (1 - aGb)-\a (4.7) 

= a + aGba + aGbaGba + "', 
a = (1 + T~Gb)-\T~ = T~(1 + GbT~tl. (4.8) 

Thus, applying Lemma 4.6 to the right-hand side of 
Eq. (4.3), the result can be exhibited, in terms of the notation 

by 

J!(xlx") = T~(xlx") la=q". b=q' (4.9) 

q(x, 8/&)G(xlx') = f dx" (T~(xlx")Gq(x"lx')aZo 

= fdX" (J!(xlx")aG(x"lx'). (4.10) 

Here, we introduce the matrix M, having the matrix 
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elements M (x Ix'), defined by 

q(x)G (xix') I c = 0 = q(x, 6I&)G (xix') I c = 0 

= f dx" M(xlx")G(x"lx'), (4.11) 

or qG = MG, c = 0, in matrix form. Here, on comparing Eq. 
(4.11) with (4.10), we find that, if the ~ m~t?x is neg~gibly 
correlated with the incident wave, the expliCit expression of 
M may be given by 

M(xlx") = (~(xlx")a - (T~(xlx")a 

= nf da (T~(xlx")', (4.12) 

which has been obtained simply upon substitution of the 
matrix M for the operator q(x) in ~. Here the above ap­
proximation will be valid when the dimensions of the parti­
cles are sufficiently small in comparison with the coherence 
distance of the wave, allowing G; - G At, n = 1,2, 3, ... , in­
side the particle q a (x), and also when the correlation between 
its scattering matrix and the incident wave is negligibly 
small; the latter is possible since the effect of medium fluctu­
ation on the scattering properties of the particles is only 
through those parts of the medium in the immediate neigh­
borhood of each particle, while the fluctuation of the inci­
dent wave is due to the accumulated effect of medium fluctu­
ation along the wave path. 

The substitution of Eq. (4.11) in Eq. (4.1) yields 

L(ia/ax)G(xlx') - f dx" M(xlx")G(x"lx') = «5(x -x'), 

(4.13) 

or, in matrix form, 

(L-M)G=I, (L·-M·)G·=l. (4.14) 

Here, the latter equation is the complex conjugate of the 
former and, following the notations introduced in Eqs. (4.4)­
(4.8), G = GM • 

Equation (4.12) provides us a means of finding M for a 
given qa(x), being one particle's contribution to the whole 
medium q(x). Another means of finding M will be shown in 
Sec. VI in connection with the coherent potential 
approximation. 

We can employ the same method also to find the equa­
tion satisfied by the second order Green's function and thus, 
if G I1 introduced in Eq. (3.23) is expressed, in matrix form, 
by 

GI1(I; 2) = G:(I)Gq (2)Zo, (4.15) 

the multiplication of both sides ofEq. (4.15) to the left with 
L .( 1) - q.( 1) and the subsequent use of Eq. (3.16) on the 
right-hand side, yields 

[L ·(1) - q(I)]GI1 (1; 2) = <5(I)Gq (2)Zo = <5(I)G (2), 
(4.16) 

where <5 (I) denotes the unit matrix with respect to the co­
ordinates XI' having the number 1, and similarly G (2) the 
matrix with respect to x 2• 

To evaluate the second term on the left-hand side ofEq. 
(4.16), we can employ the same procedure as used in Eq. 
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(4.3) and hence 

q(l, 6I&)GII(1; 2) = (qa(1)G: +a(1)Gq+ a (2»a Zo. 
(4.17) 

Here, by formulas (4.5) and (4.6), 

qa(1)G: + a(1) = ~·(1)G:(I), 

Gq + a(2) = [1 + Gq(2)~(2)]Gq(2), 
(4.18) 

which, upon substitution into the right-hand side of Eq. 
(4.17), yields 

(~·(1)[1 + Gq(2)~(2)])aG:(1)Gq(2)Zo 
= [(~·(I»a + Gq(2)(~·(I)~(2»a ]GII(1; 2), 

(4.19) 

where use has been made ofthe commutability ofthe matri­
ces having different numbers of coordinates. 

Here, the consideration similar to that taken in deriving 
Eq. (4.12) can be applied to the right-hand sideofEq. (4.19), 
to obtain the approximate expression 

q(1, «5/&)GII (1; 2) 

= [(T~·(I»a + GM(2)(T~·(1)T~(2»a ]GII(1; 2), 
(4.20) 

where the operator q has simply been replaced by the definite 
matrix M on the right-hand side. 

Thus, in terms of the notation 

M I1(1; 2) = (T~·(I)T~(2»a = n fda (T~·(1)T~(2»', 
(4.21) 

Eq. (4.16) becomes, on using Eq. (4.12) after putting 
c(x) = 0, 

[L (1) - M·(I) - G(2)MI1(1; 2)]GI1(1; 2) = <5(1)G (2), 
(4.22) 

which, with the aid ofEq. (4.14), can be given also in a sym­
metrical form as 

GII(1; 2) = G ·(1)G (2)[ 1 + M II(1; 2)GI1(1; 2)],(4.23) 

being given in a form of the Bethe-Salpeter equation. 
In the same way, we obtain the equations of the other 

Green's functions ofthe second order as 

G02(1, 2) = G (I)G (2)[ 1 + M 02(1, 2)G02(1, 2)], 

(4.24) 

G20(1, 2) = G ·(1)G ·(2)[ 1 + M 20(1, 2)G20(1, 2)], 

where 

M 02(1, 2) = Mro(1, 2) = (T~(1)T~(2»a. (4.25) 

The Green's functions of various orders hold the trans­
lational invariance after setting c(x) = o. 

5. GENERAL THEORY OF THE MUTUAL COHERENCE 
FUNCTION OF A WAVE 

In Sec. 4, the equations obeyed by the first and second 
order statistical Green's functions have been found to be giv­
en completely in terms of the matrices M, MIl' and 
M02 = M 20·, where Mis defined by Eq. (4.11) and is approxi-
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mated, based on the operator method, by Eq. (4.12) while the 
others are approximated by Eqs. (4.21) and (4.25). In this 
section, the general theory is extended, independently of the 
previous operator methods, to see how these matrices are 
strictly defined in the unperturbative sense, and also the rela­
tion inherent between the matrices. 

According to the definition (4.11), the matrix M is de­
fined, in view offormula (2.9), by 

, (q(x)Gq(xlx'» = f dx" M(xlx")(Gq(x" Ix'» (5.1) 

in terms of the ordinary Green's function Gq (x Ix'), satisfying 
Eq. (3.16) with q replaced by q, and therefore, in matrix 
form, by 

(qGq)=M(Gq), (qG:)=M*(G:), (5.2) 

the latter being the complex conjugate of the former. Hence, 
in terms of the new quantities 

J1q = q - M, J1q* = q - M*, (5.3) 

the equation for Gq is rewritten by 

(L - M - J1q)Gq = 1, (J1qGq) = 0, (5.4) 

whose solution can be given in the form 

Gq = G + J1Gq, G = GM = (L - M)-I, (5.5) 

J1Gq = GJ1qGq, (J1Gq) = 0, (5.6) 

where G and J1Gq give the coherent and incoherent parts of 
the Green's function, respectively. 

Here, on employing the expression (5.5) with (5.6) for 
Gq (2) and the complex conjugate expression for G :(1), we 
immediately find the equation obeyed by G 11(1; 2) 
= (G:(I)Gq(2» strictly in the form (4.23), withM11(1; 2) 

redefined by 

(J1q*(I)J1q(2)G :(I)Gq(2» = M ll(1; 2)(G :(1)Gq(2», 
(5.7) 

and hence also 

(t/I*(1)t/J(2» = (t/I*(1» (t/J(2» + G*(I)G(2) 

XM11(1; 2)(t/I*(I)t/J(2». (5.8) 

Here, the matrices M and M ll (1; 2) are not entirely 
independent and, to see this relation, we observe, on using 
the expression (5.5) for Gq (2) together with Eqs. (5.6) and 
(5.7), that 

(J1q*(I)G:(1)Gq(2» = (J1q*(1)G:(1)J1Gq(2» 

= G(2)M11(1; 2)(G:(1)Gq(2», 
(5.9) 

or, on using Eq. (5.3) in the left-hand side, 

(q(I)G:(1)Gq(2» = [M*(1) + G(2)M11(1; 2)]G11(1; 2), 
(5.10) 

and, in the same way, that 

(q(2)G*(I)G (2» = [M(2) + G*(1)M11(1; 2)]G11(1; 2). 
q q (5.11) 

Thus, on letting the coordinates XI of (1) and X z of (2) 
coincide in Eqs. (5.10) and (5.11), we find the relation 

{M*(I) -M(2) - [G*(I) - G(2)]M11(l; 2)}lx, =x, = 0, 
(5.12) 
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in order that the two expressions become identical. 
Here, it is straightforward to show that the above rela­

tion guarantees the equation of continuity (3.11), as may be 
shown first by exhibiting Eq. (5.8) in two ways, one being 

[L (1) - M *(1) 1<t/I*(I)tP(2» 

=j*(I)(tP(2» + G(2)M11(1; 2)(t/I*(1)t/J(2», 

and the other the complex conjugate equation with the co­
ordinates (1) and (2) interchanged, and then by deriving their 
difference with the aid of the relation (5.12). The relation 
(5.12) gives the optical condition in the sense that the ab­
sorbed waves due to the imaginary part of M are perfectly 
compensated by the same amount of the scattered waves due 
to the term of M 11 • 

6. COHERENT POTENTIAL EQUATIONS 
FORMANDM11 

The basic matrices M and Mil in the equations of the 
first and second order Green's functions, are explicitly de­
fined according to Eqs. (5.2) and (5.7) or (5.10), while, inde­
pendently of these definitions, they have been found to be 
given approximately by Eqs. (4.12) and (4.21) in the case of 
random particles. Here, it will be noticed that the latter ap­
proximate expressions can be obtained on the more general 
basis according to the former definitions, by utilizing the 
coherent potential equations as described in the following. 

The Green's function G q' obtained as the solution of 
Eq. (5.4), can be exhibited in terms of the scattering matrix 
T'iq for J1q, defined by Eq. (4.6) and (4.7), by 

J1qGq = TZGM , T~ =(I-J1qGM )-IJ1q, (6.1) 

and hence Eq. (5.6) is rewritten as 

J1Gq = GTZG, G = GM , 

with the condition 

(T~) =0. 

(6.2) 

(6.3) 

Here, G = GM is defined by Eq. (4.14) in terms of the un­
knownM, and therefore the condition (6.3) provides us with 
an equation for determining the matrix M. 

To find the corresponding equation for determining 
M11 we employ, on both sidesofEq. (5.7), the expression (6.1) 
with the condition (6.3) and hence 

(T~t(I)TZ(2)G *(I)G (2) 

=M11(I; 2)[1 + G*(I)G(2)(TZ*(I)TZ(2)] 

X G *(I)G (2), (6.4) 

which gives the explicit expression of Mil' given by 

Mll(l; 2) = (TZ*(I)TZ(2) 
X [1 + G*(I)G(2)(TZ*(I)TZ(2)]-I. (6.5) 

Thus, the matricesM andMII could be found according 
to Eqs. (6.3) and (6.5), by utilizing the approximation similar 
to that used in Sec. 4; this sort of approximation has been 
called the coherent potential approximation in solid physics 
and been successfully used to treat the impurity problems. 13 

A. Simple example: Weak-scattering limit 

From Eq. (6.2), the scattering matrix T'iq can be given 

K. Furutsu 2770 



                                                                                                                                    

by 

(6.6) 

where the second term in the parenthesis means the effect of 
.Jq itself to give the effective incident wave on .Jq. Hence, 
averaging both sides ofEq. (6.6) and using the condition 
(6.3), 

(6.7) 

Therefore, in the weak-scattering limit where q is small 
enough to retain only the first non vanishing term on the 
right-hand side of Eq. (6.7), we obtain 

M-(qGq). (6.8) 

To obtain the matrix MII(I; 2) according to Eq. (6.5), 
we again employ the expression (6.6) for both TZ*(l) and 
TZ(2) to obtain 

(TZ*(1)TZ(2» = (.Jq*(l).Jq(2) 

X [1 + Gt(1)TZ*(l)][l + GM (2)TZ(2)]), (6.9) 

which becomes, on neglecting the correlation between .Jq 
and the effective incident wave, 

(TZ*(1)TZ(2» = (.Jq*(l).Jq(2» 

X [1 + Gt(I)GM (2)(TZ*(l)TZ(2»], (6.10) 

in virtue of the condition (6.3). 
Thus, according to the definition (6.5), we find the sim­

ple expression 

MII(l; 2) = (.Jq*(l).Jq(2» - (q(l)q(2» , (6.11) 

to the lowest order of q, independently of the statistics 
obeyed by q(x). Here, it will be noted that, on the right-hand 
side of Eq. (6.10), the last factor [ ] cannot be replaced by , 

unity since the second term in this factor means that part of 
the incident waves on q(l) and q(2), contributed from the 
incoherent part of waves scattered within the range of the 
coherence distance of wave,i.e., the range in which G t (1) 
and GM (2) are appreciable. The expression (6.11) has been 
known as the ladder approximation. 

B. Coherent potential approximation for M and M11 In 
case of random particles 

It can be shown that the matrices M and Mil given by 
the coherent potential equations (6.3) and (6.5) are equivalent 
to those given by Eqs. (4.12) and(4.21) according to the effec­
tive medium method, as far as the incoherency is assumed 
between the incident and scattered waves by the random 
medium, as it is also the case of Sec. 4. The proof is given in 
AppendixA. 

7. EQUATIONS FOR HIGHER-ORDER COHERENCE 
FUNCTIONS OF A WAVE IN MEDIA OF RANDOM 
PARTICLES 

The equations obeyed by the coherence functions of 
wave higher than the second order, can also be derived fol­
lowing the procedure similar to that used in Sec. 4 for the 
first and second order functions. However, it turns out to be 
more simple to first find the e'l!:la!!ons obeyed by the charac­
teristic funcitonal of wave, Z U* ,1J, and then, upon substitu­
tion of the moment expansion (3.14), to derive the coherence 
equations of various orders. 

We begin with the basic equation (3.8) and hence, on 
using the expressions (2.29) for q(x) and (3.20) for Z [J*,J], we 
obtain 

[q(x) - c(x)]l/J(x)Z U*,J] = q(x, 8!8c)f dx' Gq(x Ix')j(x')Z U*,J], (7.1) 

which becomes, in the same manner as in Eq. (4.3), 

(f dx' qa(x)Gq+ a (X1x')j(x')exp[f dX 1 dX2 {/(xl)Gq+ a (XdX2)j(X2) + ]*(xl)G:+ a (xdx2)j*(X2)}]) a ZOo 

Here, in terms of the notation (4.9), 

qa(x)Gq+a(xlx') = f dx"T~(xlx")Gq(x"lx'), 

Gq+ a(Xd X2) = Gq(xI!x2) + fdX' dx" Gq(xdx')~(x'lx")Gq(x"lx2)' 
by virtue of the formulas (4.5) and (4.6). Hence, Eq. (7.2) further becomes 

(f dx' dX"T~(xlx')Gq(X'lx")j(x")exp[f dX 1 dX2 dX3 dX4 {AXIlGq(xllx2)~(x2Ix3)Gq(x3Ix4)j(x4) + ]*(x l)G:(x 1Ix2) 

X~*(x2Ix3)G:(X3Ix4)j*(X4)}]) a Z U*,]]· 

Here, from Eqs. (3.6) and (3.20), it follows that 

[l/J(x)]"ZU*,J] = [fdX'Gq(X1x')j(X')]"ZU*,J], n= 1,2,3,···, 

and hence Eq. (7.5) can be exhibited by 

JV( exp [f dx 1 dX2 dX3 ~x IlGq (x Ilx2)~ (x2 Ix3 )l/J(X3) + ]*(x IlG:(x Ilx2)T~*(X2Ix3)l/J*(X3) } ] f dx' T~ (x Ix') ) a 

X l/J(x')Z U·,J]. 
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Here, the StmboV stands for the ordering of the referred function of]'J*, 1jI, and 1jI* in such a manner that, in its power 
expansion,j andj* are always to the left of the operators 1jI and 1jI*. 

Thus, on replacing the operator q by the definite matrix M, as has been done in the previous equations (4.12) and (4.20) or 
(4.21), we finally obtain Eq. (7.1) with (7.7), expressed in the form 

q(X)1jI(X)Z U*,J] Ie = 0 = f dx' "oI(xlx')1jI(x')Z U*,J] Ie = 0' 

where 

(7.8) 

Kotlxlx') = A'(exp[f dXldX2dX3~XtlGM(XIIX2)T~(X2IX3)"'(X3) + J*(XI)Gt(XtlX2)T~.(X2IX3)"'*(X3)}] T~(xlx')) a' (7.9) 

Thus, when c(x) = 0, Eq. (3.8) is exhibited by 

[L (ialax)1jI(x) - f dx'''oI(xlx')1jI(x') - j(X)]Z U*,J] = 0, 

and, in the same way, Eq. (3.9) by 

(7.10) 

[L *( - ialax)",*(x) - f dX'K IO(xlx')1jI*(x') - j*(X)]Z U*,J] = 0, (7.11) 

where KIO(xlx') is the same as K01(xlx') with the factor T~(xlx') replaced by T~·(xlx'). 

Equations (7.10) and (7.11) are the basic equations 
obeyed by the characteristic functional of wave. Here, one of 
the methods of solving those equations is obviously to substi­
tute the moment expansion (3.14) and derive the equations 
for mil-v of various orders, but the equations rapidly become 
complicated with the increase of their orders in the present 
case, although they can be given in a compact form in the 
case when the medium can be assumed to follow the Gaus­
sian statistics (Appendix B). Equation (4.1'3) for the first or­
der Green's function is derived from Eq. (7.10) simply by 
puttingJ* = J = O. 

As far as the irradiance and its moments are concerned, 
only the symmetrical moments mvv with the same order for 
"'* and ",become necessary, while Eqs. (7.10) and (7.11) are 
not given in a form quite convenient for their derivation and 
therefore are expected to be unified to an equation symmetri­
cal with respect to 1jI* and 1jI. This process will be facilitated 
by introducing an operator similar to "01' defined by 

K = A'(exp[J dX I dX2 dX3 ~XtlGM(XIIX2)T~(X2Ix3)1jI(X3) 

+ J* (x tlG t(xtlX2)T~*(X2Ix3)1jI*(X3)}]) a' (7.12) 

and also the associated operators, defined, in matrix form, by 

Kmn(l, 2, ... , m; 1,2, ... , n) 

= A'(T~*(1)T~·(2) ... T~·(m) 

X T~(1)T~(2) ... T~(n)exp[ ] )a' (7.13) 

where exp[ ] is the same as for K in Eq. (7.12). Here, with 
the aid of the commutation relation (3.7), it is straightfor­
ward to obtain the following commutation relations: 

[1jI(x), Kmn ] = f dX I dX2 G (XIXI)Km,n + dXllx2)1jI(X2), 

(7.14) 

["''''(x), Kmn ] = f dXI dX2 G *(XlxtlKm + I,n (x l lx2)"''''(X2), 
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where all the unconcerned coordinates have been 
suppressed. 

Here, in matrix form, Eq. (7.14) is expressed by 

[",(2), Kmn ] = G (2)Km,n + 1(2)",(2), 

["'*( 1), Kmn ] = G *( 1 )Km + I,n (1 )"'*( 1), 

and Eqs. (7.10) and (7.11) by 

(7.15) 

([L (2) - "01(2)]",(2) - j(2)}Z = 0, (7.16) 

([L *(1) - KIO(l)]",*(l) - j*(1)}Z = 0, (7.17) 

which still keep the original form of the wave equation (1.1) 
in terms of the operators. 

Here, on multiplying Eq. (7.17) to the left with ",(2) and 
subsequently using the commutation relation (7.15), we find 

([L *(1) - KIO(l) - G(2)KI1(1; 2)]",*(1)",(2) 

- j*(1)",(2)}Z = 0, 

and, in the same way, from Eq. (7.16) 

{[L (2) - "01(2) - G *(1)KI1 (1; 2)]",*(1)",(2) 

- j(2)",*(1)}Z = o. 

(7.18) 

(7.19) 

Here, Eq. (4.22) for GI\(1; 2) is directly derived from Eq. 
(7.18) by putting]* = J = O. 

Thus, the subtraction of Eq. (7.19) from Eq. (7.18) 
yields an equation of the form 

{[L (1; 2) + V(I; 2)]",*(1)",(2) + J(1; 2)}Z = 0, 
(7.20) 

where 

L (1; 2) = (12)[L *(1) - L (2)], (7.21) 

V(1; 2) = (i/2){KoI(2) -K\O(1) + [G*(1) - G(2)] 

XK II(1; 2)}, (7.22) 

J(1; 2) = (i/2)U(2)",*(1) - j*(1)",(2)]. (7.23) 

Here it is noticed that, when the coordinates x I of (1) 
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and X 2 of (2) coincide in Eq. (7.20), the equation should be 
reduced to Eq. (3.13), representing the equation of continu­
ity of wave. This implies that, ifV(xl; x2Ix;; xi) designates 
the matrix element ofV(l; 2), the relation 

V(X I ; x2Ix;; xi) lx, =x, = 0, (7.24) 

should hold independently of x I' and x 2'. 

Here, according to Eqs. (7.22) and (7.1S), V(l; 2) can be 
derived from K, defined by Eq. (7.12), which is composed of 
the single-particle scattering matrix T~, the first order 
Green's function GM , and their complex conjugates, and, in 
Appendix C, the proof of the relation (7.24) is given in terms 
of the relation existing among those quantities, i.e., the opti­
cal condition of T~, M * =l=M, in the generalized sense, 
equivalent to Eq. (S.12). This becomes more explicit by put­
ting]* =] = O,in which case, Kto(1) = M*(I), K01(2) = M(2), 
and KII(I; 2) = M II (1; 2) by Eqs. (4.12) and (4.21), reducing 
the condition (7.24) with Eq. (7.22) to the condition (S.12) in 
terms of those in the effective medium approximation intro­
duced in Sec. 4 

To derive the higher order moment equations for mvv , 

v;;.2, we first need to evaluate the commutator of the form 

[",*(3)",(4), V( 1; 2)] = V'( 1; 213; 4)",*(3)",(4). (7.2S) 

Here, from the expression (7.22) for V(I; 2), it is found to be 

V'(I; 213; 4) = G*(3)V to(l; 213) + G(4)VoI(I; 214) 
+ G*(3)G(4)VII(1; 213; 4) 

=1= V'(3; 411; 2), (7.26) 

with the new operator V mn' defined, in terms of the notation 
Kmn in Eq. (7.13), by 

V mn(l; 213, ... ; 4, ... ) = F[Km,n+ d2) - Km+ l,n(l) 

+ {G*(I) - G(2)}Km+ I,n+ dl; 2)], (7.27) 

where the total numbers of the coordinates 3, ... , and 4, ... , 
are m for the complex conjugate wave functions and n for the 
original wave functions, and these coordinates have been 
suppressed on the right-hand side ofEq. (7.27). 

Here, by virtue of the condition (7.24) for V(I; 2), the 
conditions exhibited by 

V mn(l; 213, ... ; 4, ... ) lx, =x, = 0, (7.28) 

V'(1;213;4)lx,=x, =0, (7,29) 

also hold in the same sense. 
Thus, on multiplying Eq. (7,20) to the left by ",*(3)",(4) 

and using the commutation relation (7.2S), we find 

{[L (1; 2) + V(I;2) + V'(I; 213; 4)]",*(1)",*(3)",(2)",(4) 

+ J(I; 2)",*(3)",(4)}Z = 0, (7.30) 

while, from Eq. (3.14), the moments of the wave functions 
are given by 

mJlv (l, 3, ... , 2p, - 1; 2, 4, ... , 2v) 

= "'*( 1 )",*(3 ) ... ",*(2p, - 1 )",(2)",(4).··",(2v) 

xZ U*,j] IJ=1* =0' (7.31) 

To ~ve~tigate the pronounced features ofEq. (7.20) in 
the casej = j* = 0, it is convenient to first introduce the 
relative coordinates r l = (rl' t l ) andpi = (PI' TI), defined by 
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r l = X2 - XI' PI = !(X2 + XI)' 

yielding 

.[ a a 1 a a] L(I'2)=1 -.-----
, ar l apI c2 atl aTI ' 

(7.32) 

(7.33) 

and also the matrix elements V(x l ; x2Ix;; xi) ofthe matrix 
V(I; 2)=V(I; 2) for] = J* = 0, of the form V(rllpl - P; Ir;), 
as is required by the translational invariance of V(I; 2); fur­
ther, the condition (7.24) is exhibited by 

V(rllpl -pi Ir;) I" =0 = 0, ] =]* = O. (7.34) 
Here, when the space-time change of the wave func­

tions are mostly due to their phases, with a sufficiently slow 
change of their amplitudes, then, it follows that the change 
of (I,b*(XI)tP(X2) with respect to the coordinates PI is negligi­
ble, as compared with the change with respect to r l, and 
therefore also that V(I; 2) [to be substituted forV(I; 2) in Eq. 
(7.20)] can be approximated by a new matrix, defined by the 
matrix elements 

V(rllr;) = J: '" dp; V(rtiPI - P; Ir;), (7.3S) 

being a matrix with respect to only the coordinates r l and r;. 
In view of that, in the present case of random particles, 
V (r lip I - P; I r; ) is a very short range function, different 
from zero only within the range where IpI - P; I and 
I T I - T; I are of the order of the particle diameters and the 
propagation time of wave through the particles, respectively, 
or smaller. Thus, Eq. (7.20) becomes expressed, when 
]=]* =0, by 

i[~' ~ - ~~~]ml1(rl'Ptl ar l apI c atl aTI 

+ Jdr; V(rtlr;)mll(r;,PI)+J(rl,PI)=O. (7.36) 

Here, in the particular case where V(rllr; ) depends on tl 
and t; only through the difference t I - t ;, then, the fre­
quency of the wave function with the periodic time factor eiwt 

is not changed by the scattering and, in terms of the 
notations 

TI=i~.~, 
arl apI 

VI(rllr;)= Jdt; V(rllr;)exp[iw(t; -tl)]' (7.37) 

Eq. (7.36) is further simplified, on replacing - ialatl---+<u, to 
the form 

[ ~ ~ + TI + vl ]ml1 (TI) +J(TI) = 0, (7.38) 
c aTI 

where the matrix VI is defined by the matrix elements in Eq. 
(7.37), being a matrix with respect to only the spatial coordi­
nates r l and r;. 

Equation (7.30) also can be simplified by the same pro­
cedure, on first introducing the additional coordinates 

r~ = X 4 - X 3, P2 = !(x4 + x 3), 

PI2 =PI -P2' P = !!PI +P2)' (7.39) 

with the time components t2, T2' T12' and T, respectively, 
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which are all (exceptp) translationally invariant and there­
fore permit the elements of the matrix V', when] = 1* = o. to 
be given in the form 

V'(r l• r2.pdp -p'lr;. r;,P(2); 

then, this is replaced. on integrating with respect to p' as in 
Eq. (7.35). say. by V'(r l, r2,pd'i. 'i.pi2) and. in case of the 
same situation as in Eq. (7.37). further by a matrix with re­
spect to only the spatial coordinates. given by the matrix 
elements 

V I2 (Ch C2• Pl2lcl , ci. P(2) = fd1"12 fdt l dt; 

xexp[iw(t; +t2 -tl-t2)]V'(rl.r2.PI2Irl,'i,PI2)' 
(7.40) 

which, in view of the condition (7.29), tends to zero as c 1-0 
(although not for c2-o). Thus. from Eq. (7.30), we finally 
find an equation, corresponding to Eq. (3.38), in the form 

[; a~1 + TI + VI + V I2 ]m22(1"I,T2) +J I2 (1"h T2) = O. 

(7.41) 

Here. the matrix elements of V 12 are given by Eq. (7.40) with 
the condition VI = V12'( '# V21 ') = 0 for CI = 0, and the co­
ordinatescv c2, PI, P2 have been suppressed;J 12 provides the 
source term. 

Also with respect to the time coordinate 1"2' we obtain 
the equation similar to Eq. (7.41) and therefore. letting 
1" I = T 2 = T. the equation with respectto Tis found (since the 
two equations are linear in a/aT I and a/aT 2, respectively), to 
be 

[; :1" + TI + T2 + VI + V2 + VI2 ]m22(1") + Jd1") = 0, 

(7.42) 

with 

V12 = V I2 + Vii = V2I> m22(T)=m22(1"IJT211-r.=T,=-r· 
In order to derive the next order moment equation from 

Eq. (7.30). we need to evaluate the commutator of 
V'(I; 213; 4) and 1\1*(5)1\1(6), which gives rise to a higher 

order correction of V I2 due to the interaction with "'*(5)"'(6) 
and involves the additional factors T~·(5) and T~(6) in the 
( ••• ) a average, besides those of V' . Therefore, when the con­
tribution from this commutator is neglected, all the higher 
order moment equations are systematically obtained in the 
form 

[ ~ ~ + i (1j + ~) + i Vij]m vv (1") = O. (7.43) 
c a1" }=I ;>}=I 

over the region of vanishing wave source. Here, all the spa­
tial coordinates cj • Pj.j = 1.2, ...• v. have been suppressed. 
and 1f, ~ and Vij are the same as those in Eq. (7.42), being 
functions of a very short range of the order of the particle 
diameters. It is noted that, in order that the symmetries of 
Eq. (7.43) with respect to the original coordinates Xl of the 
even numbersj = 2,4, ... , 2vand those of the odd numbers 3, 
5, ... , 2v - 1, are respectively secured without violating the 
condition (7.29), all the terms ofV'(I; 213; 4) in Eq. (7.26) are 
inevitably necessary and consequently given to the fourth 
order of T~ and T~*. 
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8. SUMMARY AND DISCUSSION 

The random medium q(x) in the wave equation (1.1) 
can be represented by the operator q(x), as given by Eq. 
(2.14) with (2.13) in terms of the characteristic functional Z q 

[P] of the medium, and this representation particularly facili­
tates obtaining the expectation value of any functionalf[q] of 
q(x) in space and time; the latter is simply obtained accord­
ing to Eq. (2.8), and the associated relation (2.9) is especially 
convenient in finding (q(x)f[q]) when (f[q]) is given. Here, 
the operator q(x) at different points in space and time are 
mutually commutable and therefore can be treated in entire­
ly the same way as the ordinary functions. The explicit ex­
pression of q(x) is given by Eq. (2.18) in the weak-scattering 
limit and by Eq. (2.29) in the medium of random particles, 
while. when the medium is composed of several independent 
components. q(x) is obtained according to Eq. (2.25). 

On the other hand. when the random medium is pre­
scribed by the characteristic functional Zq [P]. the equations 
obeyed by the characteristic functional of wave. Z 11* ,.ii. are 
given by Eqs. (3.8) and (3.9) which are exhibited in terms of 
the medium operator q(x) and also the wave operators "'(x) 
and ",*(x). defined by Eq. (3.6). Here, these equations pre­
serve the forms ofthe original wave equations (1.1) with the 
replacement of "'. "'*. and q by",. "'*. and q. respectively. 
This is a consequence of the more general correspondence 
principle (3.10). and the latter could be applied also. e.g .• to 
the equation of continuity (3.11). the equations of conserva­
tion for the energy and momentum of a wave, constructed 
according to the Lagrangian principle, etc. In this connec­
tion, it should be noted that the energy and/or momentum of 
a wave are generally not conserved in media fluctuating in 
time and/or space. whereas the equation of continuity (3.11) 
always holds independently of the medium fluctuation. 

The equations for Z 1I*,.ii thus obtained contain the un­
desirable operator 8 /&(x) through q(x) and therefore the 
next task is to introduce the new operators KoI(X) and KlO(X), 
as defined by ~ (7.8). which are free of 8/ &(x) but are 
functionals ofj,j*, "', and "'. instead. To this end, the basic 
assumption has been made that, as generally accepted in the 
random media, the correlation between the incident wave 
and the scattered wave is negligible, and this enables KOi to be 
given by Eq. (7.9) in case of the random particles while by Eq. 
(B 11) in the case of the weak-scattering limit. 

Thus, it follows that the resulting equations for Z U*,.ii 
still preserve the forms of the original wave equations with 
the replacement ofthe variables by the corresponding opera­
tors, as exhibited by Eqs. (7.10) and (7.11). and this corre­
spondence principle facilitates getting the physical insight 
into the equations, leading, e.g., to Eq. (7.20), which is given 
in a form symmetrical with respect to the operators '" and 
",*, and which tends to the equation of continuity (3.13) in 
the special situation of when the two coordinates of (1) and 
(2) coincide; the latter restriction requires the operator 
Vel; 2) to satisfy the condition (7.24), as proved strictly in 
Appendix C. and turns out to be equivalent to the optical 
condition (5.12) in the generalized sense. When] =]* = 0, 
Eq. (7.20) is reduced to Eq. (5.8) for the mutual coherence 
function of a wave. 
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Independently of the operator methods, the general 
theory is extended specifically for the equation satisfied by 
the mutual coherence function of a wave in Sec. 5, and the 
basic matrices M and Mil are strictly defined according to 
Eqs. (5.2) and (5.7) in an unperturbative manner. The matri­
ces thus defined satisfy the optical condition (5.12) rigorous­
ly, and the resulting equation for the coherence function nec­
essarily has a form of the Bethe-Salpeter equation. In Sec. 6, 
the coherent potential equations are constructed to evaluate 
the matrices M and MIl according to the definition in Sec. V, 
and their explicit expressions are obtained, where use has 
been made of the usual multiple scattering theory for a 
many-particle system, together with the coherent potential 
approximation which has been successfully used in solid 
physics to treat the impurity problems. 13 It turns out that 
their expressions are precisely the same as those obtained by 
the effective medium method introduced in Sec. 4. 

So far the various equations have been treated on the 
same footing in space and time, but they could have been 
exhibited in terms of those in the wave number space, by 
means of the Fourier transformation for all the functions 
involved, according to 

j(k) = f dx exp [ik·x V(x), k = (k, w), 

(S.l) 
k = (kl' k2' k3 ), k·x = k·x - wt. 

The only alteration necessary for this case is the replacement 
ofthefunction/(x)ormatrixm(xllx2)byj(k )orm(kl IK2),and 
dx by dk = (21T)-4dkdw in all the equations, giving rise to 
convolution integrals in case of space-time diagonal matri­
ces. For example, in the weak-scattering limit, Eq. (B9) with 
(B5) would be replaced, on using the specific forms 
M(xlx') =M(x -x') andG(xlx') = G(x -x'), by 

{[L (k) - M(k )]*(k) - l(k) 

-f dk' 15 (k ')Q(k ')*(k - k ')} Z U*,j] = 0, (S.2) 

with 

Q(k ) = f dk' U( - k ')0' (k ')*(k ' + k ) + j*( - k ') 

XG*(k')**(k' + k)], (S.3) 

and the commutation relations 

[*(k ),fl- k')] = (21T)4~(k - k 'I, 
[*(k), **(k 'I] = 0, etc. (S.4) 

I t is also possible to utilize the wave number representa­
tion with respect to the time only, and this is particularly 
convenient in the case when the medium is dispersive in time 
while its temporal fluctuation is slow enough to be negligible 
within the wave period. In this case, the medium can be well 
represented by the Fourier transf()rm q(x, w) with respect to 
the time, and, with the replacement of/(x)~/(x, w) and 
dx-(21T)-ldxdw, various equations preserve their original 
forms of the equations, described on the same footing in 
space and time. 
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In the special case in which (1) L (ia/ax) in the wave 
equation is linear with respect to ia / at, as in the Schrooinger 
equation, or, when it is time-independent, with respect to the 
particular component ofia/ax in the direction of wave prop­
agation, as in the forward-scattering approximation, and 
also (2) the coherence distance of wave in time or space is 
long engough compared with the corresponding correlation 
distance of the medium, then, the equation satisfied by 
Z [1*, Ji can be given in a form of the Fokker-Planck equa­
tion,14 showing that the wave is effectively described by the 
Markov process.S,IS 

The equation for Z [1* ,Ji may be solved in terms of the 
moment equations of wave of all orders, in view of the expan­
sion (3.14), but obtaining their solutions for all the orders is 
practically impossible even in the weak-scattering limit and 
with the definite frequency of wave, except the special case 
when the medium structure function can be given in the 
parabolic form. In the latter case, the exact solutions have 
been obtained for all the orders, with the resulting irradiance 
distribution given by the Rice-Nakagami distribution with 
respect to the logarithm ofirradiance.7.16.17 But, the assumed 
model of the medium merely gives rise to the wandering of 
the wave beam without any deformation of the wave beam 
cross-section, and therefore the model's major interst is 
mathematical rather than physical. 18.19 

On the other hand, as the medium fluctuation becomes 
sufficiently large, the moments ofirradiance tend to be given 
by asymptotic expressions, and the latter have been investi­
gated as a function of the order of moment by different meth­
ods,20,21,22 based on the Kolmogorov spectrum ofturbu­
lence. However, in order that the obtained expression be 
valid, it turns out that the larger the order becomes, the larg­
er the medium fluctuation becomes; in fact, in comparison 
with the experimental values so far obtained, the expression 
is applicable only up to the third order moment, at most,21 
and, ignoring this fact, it leads to the exponential distribu­
tion of the irradiance. Experimentally, however, the irradi­
ance distribution observed in the optical propagation 
through turbulent air, has been known to be very close to the 
log-normal distribution, and the theoretical basis for this dis­
tribution has been found to be the applicability of the cluster 
approximation to the solutions of the moment equations, 
particularly when the essential part of the medium is de­
scribed by the Kolmogorov spectrum of turbulence. 23 This 
approximation enables us to exhibit the high order moments 
ofirradiance in terms of the lower order moments in an effec­
tive way, and the theory shows a very good agreement with 
the experimental values so far obtained.24 

The analytical study for the second order moment of 
irradiance in turbulent air also has been tried to obtain the 
expression applicable to the entire range of medium fluctu­
ation, particularly in connection with the saturation phe­
nomenon ofirradiance scintillation, but seems to have been 
unsuccessful. So far the numerical method has been used to 
obtain the result for two-dimensional space2S and recently 
the Monte Carlo method for three-dimensional space. 26 

The equation for the mutual coherence function of a 
wave is practically most important, and satisfies the equa-
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tion of a form of the Bethe-Salpeter equation, independently 
of the statistics obeyed by the medium (Sec. 5). Consequent­
ly, the equation is still difficult to solve in its original form, 
but, to a good approximation, the ordinary transport equa­
tion is known to be derived from this B-S equation under the 
condition that the scattering cross-section of medium under­
goes a negligibly small change for the change of wave fre­
quency of the order of the coherence frequency of the wave 
(or the extinction coefficient times wave velocity) and also of 
the frequency of space-time change of the wave intensity. 
Here, since this condition is fulfilled in most cases of interest, 
obtaining the average intensity of wave can be effected by 
solving the space-time transport equation. It is furthermore 
known that, in the particular case when the forward-scatter­
ing approximation is possible, the equation of the mutual 
coherence function of wave and the transport equation are 
precisely equivalent,27 and this is also the case of space-time 

1 . 28 problems, e.g., of pu se wave propagation. 

APPENDIX A: DERIVATION OF M AND M" FROM THE 
COHERENT POTENTIAL EQUATIONS (6.3) AND (6.5) 

According to Eqs. (5.3) and (6.3), 

(AI) 
a 

where l:a means the summation over all the particles in­
volved. Here, on referring to the multiple-scattering the­
ory,13 we may put the scattering matrix T~ for.dq in the 
form 

T'iq = rQa + Q - M' (A2) 
a 

Here, Qa represents the effective scattering matrix due to the 
particle qa and, similarly, Q _ M that due to the part - M, 
obeying respectively the equations 

Qa = T:[ 1 + GM(,~a Qp + Q -M) J. (A3) 

Q- M = T~M[ 1+ GMfQa]. (A4) 

where T: is the scattering matrix for q a alone in the definite 
medium M, as defined by Eq. (4.7). Equations (A2), (A3), and 
(A4) are interpreted as follows: The total wave scattered by 
.dq is a sum of contributions coming from each particle and 
from the part - M. Each particle contribution Qa is given 
by the particle Tt;: matrix applied to an effective wave. This 
effective wave consists of the incident wave and of the contri­
butions from all the other particles and also from - M. The 
contribution from - M is also given formally by the matrix 
T ~ M applied to an effective wave which consists of the inci­
dent wave and of the contributions from all the particles. 

Here, averaging both sides of Eq. (A2), 

(AS) 
a 

and. to evaluate the right-hand side according to Eqs. (A3) 
and (A4), we make the basic assumption that the correlations 
between Tt;: and Qp, {3 :f.a, are negligible, as made in Sec. 4 
when deriving Eq. (4.12) as well as in the usual coherent 
potential approximation for disordered alloys. 13 Hence. the 
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averaging ofEq. (A3) and the subsequent use ofEq. (AS) 
yields 

which gives 

(Qa) = [1 + (Tt;:)GM ]-I(T~)-(T~), (A7) 

as the volume Vof the entire space tends to the infinite, since 
(T~) contains the averaging over the particle's center a and 
is given by V-Ifda (T~)', as in Eq. (2.26), tending to zero as 
V-co. 

In the same way, from Eq. (A4), we obtain 

(Q-M) = T~M[1- GM(Q_M)]' (AS) 

which gives 

(Q-M) = [I + T~MGM ]-IT~M = -M. (A9) 

Thus, from Eqs. (AS), (A 7), and (A9), we find 

M = f (T~) = NV-1f da (T~)', (A 10) 

which is exactly the same as given by Eq. (4.12). 
To obtain the matrix MII(I; 2), we first employ the ex­

pression (A3) with Eq. (A2) to find, with the aid of the condi­
tion (AS) and the incoherency between the incident and scat­
tered waves, 

(Q:(l)Qa(2» = (T~*(l)T~(2» 

X [I - G%,(I)(Q:(I» - GM(2)(Qa(2» 

+ G%'(l)GM(2)({T~*(l) - Q:(l)} 

X{T~(2) - Q,,(2)})], (All) 

which, as V --. co, tends to 

(Q:(l)Qa(2» = (T~*(1)T~(2»F(I; 2), (AI2) 

where, since Qa is negligible as compared with T~ in view 
ofEq. (A2), 

F(1; 2) = I + G%'(1)GM(2)(T~*(l)T~(2». (A 13) 
In the same way, 

(Q:(l)Qp(2» = (T~*(1»(T:(2»F(I; 2), a:f.{3. 
(AI4) 

On the other hand, expressing the right-hand side ofEq . 
(A4) in terms of T~ and Q _ M by use ofEq. (A2), Q _ M can 
be exhibited, in virtue of the relation (A9), by 

Q _ M = - M [I + GMT~]. (AIS) 

Hence 

(Q '!. M(l)Q _ M(2» = M *(l)M (2)G %,(1) 
XGM(2)F(1; 2). (A16) 

With exactly the same procedure, we find from Eqs. (A3) 
and (AIS) that 

(Q:(I)Q _M(2» = - (Tt;:*(l)M(2)F(I; 2). (A17) 

Thus, from Eq. (A2), 

(T~*(I)T~(2) 

= ([ fQ:(t) + Q'!.M(I)][ ~Qp(2) + Q _M(2)]), (AIS) 
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where the right-hand side becomes, on employing Eqs. 
(Al2), (A14), (A16), and (A17), 

([ ~T~*(l) - M*(l)][ ~T:(2) - M(2) ])F(l; 2), 

(A19) 

which, in virtue ofEq. (AIO), further becomes 

}) (T~*(l)T~(2» - (T~*(1)(T~(2» ]F(l; 2). 
a 

(A20) 

Here the terms (T~*(1»(T~(2» become negligible as 
V-+oo. Thus, according to Eq. (6.5), Eq. (A18) [with the 
right-hand side given by Eqs. (A20) and (A13)] provides us 
with 

MII(l; 2) = L (T~*(1)T~(2», V = 00, (A21) 

which becomes the same as Eq. (4.21) with the replacement 
l:a ( ... )-+nfda( .. ·)'. 

Thus, the effective medium method introduced in Sec. 4 
is found to be equivalent to the coherent potential approxi­
mation, but the former is more simple and straightforward 
than the latter, in the present case at least, in both the meth­
od and the physical interpretation. 

APPENDIX B: EQUATIONS FORZej",/] IN MEDIA 
OBEYING GAUSSIAN STATISTICS 

So far we have considered only the case of random par­
ticles. Also in the other typical case of the media obeying the 
Gaussian statistics, the various equations can be formulated 
in entirely the same way, even much more simply than in the 
former case. In Appendix B are summarized the equations 
necessary to derive the equation for Z U* ,Jj, together with the 
equations of coherence functions of wave derived from. 

When the medium fluctuation can be assumed to obey 
the Gaussian statistics, the medium operator q(x) is given by 
Eq. (2.18) and theref~e,_to eliminate the operator o/&(x) 
from Eq. (3.8) for Z [j* ,Jl, the only term it is necessary to 
evaluate becomes, on using Eq. (3.20), 

~ o( ")Z U*']] = JdXdx' [}(X){~q(xlx')l;(x') 
uex &(x") f' 
+ J*(X){&~,,)G:(XIX')y*(X') Jz U*']1. (B1) 

Here, from Eq. (3.16), 

o 
--G (xix') = G (xlx")G (x"lx') &(x") q q q , (B2) 

and hence, with the aid of the relation (3.19) and the nota­
tions (3.6), the right-hand side ofEq. (BI) can be written as 

J dx Olx)Gq(xlx"),¢(x") 

+ J*(x)G:(xlx"),¢*(x")]Z U*,]]· (B3) 

Here, to the same approximation as used when deriving Eq. 
(7.8) from Eq. (7.7),Gq andG:inEq. (B3) maybe replaced by 
the definite Green's functions GM and G tt, respectively, 
yielding Eqs. (BI) with (B3) in the form 
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_0 -Z U7* 7] = Q(x")Z U7
*, 7], (B4) 

&(X") ,J J 

where e(x) = a and 

Q(x) = f dx' [}(x')G (x' Ix)'¢(x) + ]*(x')G *(x'lx),¢*(x)] (B5) 

obeys the commutation relations 

['¢(x), Q(x')] = G(xlx'),¢(x'), 

[,¢*(x), Q(x')] = G*(xlx')'¢*(x'). (B6) 

Thus, when e(x) = 0, use of Eq. (2.18) with Eqs. (B4)­
(B6) leads to the result 

q(x)'¢(x)Z = '¢(x)q(x)Z = f dx' D (x - x'),¢(x)Q(x')Z 

= fdX' [M(xlx'),¢(x')+D(x-x')Q(x'),¢(x)]Z, (B7) 

where 

M (xix') = D (x - x')G (xix'), 

M*(xlx') = D(x - x')G*(xlx'). (BS) 

Hence, Eq. (3.8) is finally exhibited by 

[L (ialax)'¢(x) - J dx' M(xIX')'¢(X')]Z U*,]] 

= ~(X) + fdX' D(x -X')Q(X')'¢(X)]Z U*,]], (B9) 

and Eq. (3.9) by the complex conjugate equation. 
Here, the substitution ofthe moment expansion (3.14) 

in Eq. (B9) yields the equation for the moments of wave func­
tions, m 1'", with respect to one of the coordinates of the origi­
nal wave functions, say YI' as 

L(ialayIlMl'v(xl, ... ,XI';YI' ... ,yv) 

- f dy; M(vlly; )ml'''(x l , ... , xl';Y; 'Y2' ... ,y,,) 

-jtJ dx; D (vI - x;JG *(xj Ix;) 

- tIdY; D (vI - yj) 
j#1 

xG(vjly;Jml'v(x l , ... , XI';YI' ... ,y;, ... ,y,,) 

= j(vIlml'.,,- dXI' ... , XI';Y2, h, ... ,y,,). (BIO) 

The corresponding equation with respect to anyone of 
the coordinates of the complex conjugate wave functions, 
say x I' is also obtained in the same form from the complex 
conjugate to Eq. (B9). 

Finally, Eq. (B9) and its complex conjugate equation 
can be combined into the form ofEq. (7.20) with !C1O(1), 
1Co1(2), and !C1I(l; 2) replaced, in matrix elements, by 

!CII(X I ; x2Ix;; x;) = D (XI - X2)0(X I - xi )0(X2 - x;), 

!C1O(xllxi) =M*(xllx;) + fdXD(XI -x)Q(x)8(x l -xi), 
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1C0I(x2 Ixi) = M(x2!xi) + J dx D(x2 - X)Q(x)l5(X2 - xi), 

(Bll) 

which, in view of Eq. (BS), explicitly satisfies the condition 
(7.24). 

APPENDIX C: PROOF OF THE CONDITIONS (5.12) AND 
(7.24) IN THE EFFECTIVE MEDIUM APPROXIMATION 

In view of the definition (7.22) with Eq. (7.13), the con­
dition (7.24) is proved if we can show the relation 

{T!'(2) - T!,*(l) + [Gt-(l) - GM (2)] 

X T:*(I)T:(2)}lx.=x, =0. (Cl) 

which, on averaging by ( ... ) a' also becomes the condition 
(5.12) in view ofEqs. (4.12) and (4.21). To prove Eq. (Cl). we 
first introduce the unitary matrix UA.' defined by its matrix 
element 

UA.(x!x') = exp[iA,·xI2]8(x -x'). 

and then define the matrixAA. for any matrixA. by the 
transformation 

AA. = UA.AUA.-I, 

whose matrix elements are therefore given by 

AA.(x!x') =A (xlx')exp[iA,.(x -x')/2]. 

(C2) 

(C3) 

(C4) 

Here. since qa(x) is a diagonal matrix. it follows that qa.A. 
= qa' Generally. the relation 

(AB .. ·C)A. =AA.BA. .. ·CA.. !A.(A.B .... )=!(AA..BA., .. ·) 
(C5) 

holds. 
Here. we also introduce the Hermitian conjugate ma­

trix A t of A. defined by the matrix elements 
A t(xlx') = A *(x'lx). and hence, by Eqs. (C2) and (C3), 

ul=UA.-1, Al=UA.AtUA.-l=(Ath· (C6) 
Particularly, the matrix elements of G A. and G t_ A. are given 
by 

GA. (xix') = G (x - x')exp[iA'(x - x')/2]. 

G t_ A. (x Ix') = G *(x' - x)exp [iA,.(x' - x)/2]. (C7) 

The T: matrix for q a in the medium M is connected to 
qa' according to the formula (4.S). by 

qu = T:(l + G T:)-l = (1 + T:tGt)-IT:t, (CS) 

where the last expression is the Hermitian conjugate of the 
former. Hence. performing the unitary transformation of 
Eq. (CS) by UA. and U _ A.. separately. the use of the formula 
(C5) leads to 

qa =qa.A. = T~A.(1 + GA.T~A.)-l 
=ga.-A. = (1 + T~~A.Gt_A.)-IT~~A. , (C9) 

which gives the relation between T~A. and T~~ A. as 

VA.==T~A. - T~~A. + T~~A.(Gt_A. - GA.)T~A. = O. 
(ClO) 

whose matrix elements are given. on reference to Eq. (C7), by 
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+ J dx dx' [G *(x' - x)eU'(X' - x)/Z - G (x - x')eiA..(X - x')/2] 

X T:*(xlx1)T:(x'Ix2)eU'(x+x' -x, -x,)12 = O. (Cll) 

Thus, on mUltiplying both sides ofEq. (Cll) by ex­
p[iA,,{(x l +xz)l2 -pj] and then performing theA integra­
tion over the entire range of ex> >,,1, > - ex>. we obtain. say, 
vp(X1!X2), given by 

vp(x1Ix2) = T:(x1Ix2)8(x1 - p) - T!,*(x2!x1)8(x2 - p) 

+ fdX dx'[G*(x' -x)8(x' -pI - G(x -x')8(x -pI] 

X T:*(xlxt!T:(x'lx2) = O. (CI2) 

which is equivalent to Eq. (Cl) since, for arbitrary function 
!(x1; x 2). the relation holds. in matrix form. as 

J dX1 dX2Vp(Xl!X2)(XI; x2) = {T:(2) - T:*(l) 

+ [G*(I)-G(2)]T:*(I)T:(2)}r(I; 2)lx,=x,=p =0. 
(C13) 

The relation (CI2) corresponds to the usual optical con­
dition, indicating that the total scattering cross-section is 
proportional to the imaginary part of the scattering ampli­
tude. but is more general in the two points that v p (x llx2) = 0 
not only for arbitrary XI and X2 but also for arbitrary p and 
further for any absorbing medium. described by a complex 
M; for the latter point. the Fourier transform of G * - G. say 
G *(s) - G (s) = [L (s) - M *(S)]-I - [L (s) - M (S)]-I. tends 
to 217-;8[L (s)] as M-o, and therefore the integral in Eq. 
(C 12) tends, when integrated with respect top over the entire 
range. to be contributed to only by those components ofthe 
Fourier transform of the integrand obeying L (s) = 0, or 
from the "shell" components. Here, on the other hand. when 
M i= 0 andlor the change with respect to the coordinates p is 
large enough. the off-shell components also become impor­
tant enough to make appreciable contributions to the 
integral. 
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The energy levels and wave functions of the Schrodinger equation involving the potential 
x 2 + Ax2

/( 1 + gx2
) are calculated by the variational method, for any range of A and g, without 

having to resort to numerical quadrature. Using properly scaled (in A and g) harmonic oscillator 
functions as a basis set, an easy to compute analytical expression of the current Hamiltonian 
matrix element is derived. Perturbative results are also given. 

I. INTRODUCTION 

Recently, special interest has been drawn to the resolu­
tion of the following eigenequation: 

(:X22 
- V(x) + E )tP(X) = 0, (1) 

where 

(2) 

Interest in this type of interaction arises in several areas 
and these have been summarized by Mitra 1 and Kaushal2

• In 
particular, this type of potential occurs when considering 
models in laser theory.3.4 The ground state and the two first 
energy levels were first computed by Mitra,1 for a large range 
of A andg (A, g = 0 to 1(0) within the variational Rayleigh­
Ritz framework. Properly A-scaled harmonic oscillator ei­
genfunctions have been chosen as a basis set for the represen­
tation of the Hamiltonian operator. By repeated use of the 
recurrence formula for the Hermite polynomials, it has been 
shown by Mitra that the current variational matrix element 
can be obtained by a recursive procedure from the knowl­
edge of one unique matrix element H 11' Nevertheless, it was 
possibly overlooked by Mitra that this Hl1 can be directly 
expressed in terms of the Error function. Therefore Mitra 
had to resort to numerical quadrature for obtaining H 11' and 
encountered some difficulties, especially for large values of 
g. Furthermore, the above recursive procedure could lead to 
numerical instabilities and therefore further discussion, 
based on some other algorithm may be necessary, even 
though the actual results for the eigenvalues may not differ 
significantly. 

On the other hand, Kaushal2 has used a relatively com­
plex perturbation algorithm in order to obtain an asymptotic 
expansion of the eigenspectrum but had to restrict the calcu­
lation to rather small range of g (g = 0 to 1) and large range 
of A (A = 0 to 1(0). At the same time, the work of Kaushal 
may be questionable in that the author expands 1/(1 + gx2

) 

in a power series for gx2 < I, but does not present any esti­
mate on the error made in restricting the domain of x in this 
way. 

It is shown, in the present paper, that as long as the 
harmonic oscillator eigenfunctions are used as basis set, the 
current matrix element of the Hamiltonian can be calculated 
exactly for any value of A and of g without having to resort 
numerical integration. Taking advantage of a two-parameter 

A and g-scale transformation, the determination of the spec­
trum of the eigenequation (1) is reinvestigated both within a 
variational and a perturbational scheme. 

II. METHOD 

It seems quite reasonable to consider the eigenequation 
(1) as a perturbed (and properly scaled via b) harmonic oscil­
lator wave equation 

(::2 - b 2X
2 + Ev )~v = 0 (3) 

and to use a basis set for a variational procedure or a Ray­
leigh-Schrodinger perturbation scheme, the well-known 
orthonormal eigenfunctions 

~v = (!.) 1/4(_1_) 1I2e - bX'12H
v
(b 1/2 x), (4) 

1T 2Vv! 

where v = 0, I, 2, ... and Hv is a Hermite polynomial of 
degree v. 

The associated eigenvalues are 

Ev = 2b (v + 1/2). (5) 

Since ~v involves a polynomial and since the eigenequa­
tion (1) is of even parity, it follows that, either in a variational 
or in a perturbation treatment, the critical part of the calcu­
lation is the evaluation of the following basic integral: 

Ik = 2(!.)112 roe e - bX'(b 1/2 xfk dx. (6) 
1T Jo 1 + gx2 

A. Analytical expression of the basic integral 

It is easily found that h can be determined from the 
very simple recursion relationship 

I k+
1 

= - !.h +2(!.)I!2~bk+1 
g 1T g 

X 100 

e - bX'X
2k dx (7) 

or 

1 = - ~(I _ (2k-l)!!). 
k + 1 g k 2k (8) 

This relation yields 

( 
b )k k - I (2s _ 1 )!! ( b )k - 5 

Ik = - - 10 - L. --. 
g 5~ 0 25 g 

(9) 

Finally, the only integral to be calculated is 
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10 = 2( 7Tb )112 rO= e ~ bx' dx (10) Jo 1 +gx2· 

It should be noted that Mitra, I also found that the central 
element to be computed wasHll = 10 • The integral (to) sim­
ply defines the complementary error function, Erfc (see, for 
instance, Ref. 5, p. 302), namely 

10 = {iTzif'Erfc(z) with z = (b Ig)1/2. (11) 

The Erf or Erfc = 1 - Erf functions have been, for 
many years, extensively and accurately calculated and tabu­
lated (see, for instance, Refs. 5-8). Furthermore, series and 
asymptotic expansions are available.s.9 •

10 For large z, the fol­
lowing asymptotic expansion of 10 can be useds; 

Io~1 + m~l( - t(2m -1)!!(~r· (12) 

On the other hand, for small z, one can uses 

10 = fozif'(1 - _2_z I (- t ~m ). (13) 
V1i m=O m!(2m + 1) 

Let us mention that we have verified formula (13) for b = 1, 
g = 100 (i.e., z = 0.1). Limiting ourselves to m up to 3, we 
found 10 = 0.15889286. From tables and expression (11), we 
obtained exactly the same result up to the last figure. 

One can also use the following Hasting's formula 

2 S 
10 = -z I,aJ; + €(z); I€(z) I ..;;1.5X 1O~7, (14) 

V1T ;=1 
where 

t = 1/(1 + pz); p = 0.3275911; a l = 0.254829592; 

a2 = - 0.284496736; 

a3 = 1.421413741; a4 = - 1.453152027; as = 1.061405429. 

At the expected limit of accuracy, one obtains 

10 = 0.15889290. 
From a comparative study of the accuracy of all these 

formulas for several ranges of z, we found that the most con­
venient expression (except for really very small z) is the one 
given by Henrici 10 

2 I,= (1I2)n 1 I -z 
0- n =0 (n + I)! L n~ 1I2( - z2)L n~;~2( -~) 

(15) 

where (a)n = a(a + 1)(a +2) •.• (a + n -1); (a)o = 1. The 
associated Laguerre polynomial L n~ 112 as well as the factor­
ials are very easily generated by recursion. 

B. Choice of the scale transform 

It is clear that for g<A and also for very large g, (1) 
mainly behaves as an oscillator wave equation (3) with 
b 2 = 1 + A or b 2 = 1 respectively. Hence, a physically good 
scaling has to depend simultaneously upon A and g. In order 
to extract a harmonic potential from the second term of V (x) 
[Eq. (2)], one can replace gx2 by its average and choose, for 
each state "u" to be computed, 

b 2 = 1 +a = 1 +A/(1 +g(u + 112». (16) 

Nevertheless, the drawback of this choice is the creation of a 
nonorthogonal basic set. In order to avoid this disadvantage, 
we have chosen a unique average scaling a = A 1(1 + g12) 
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which is well adapted to most low lying states. Of course, if 
one is interested solely in one specific state, for example "u", 
it is more convenient to choose a = A I( 1 + g(u + 112». 

It is interesting to compare our scaling formula (16) 
with that of Mitra I and Kaushal, 2 b 2 = 1 + A. In Table I, the 
zeroth order ground state energies, which are obtained when 
alternately using Mitra's scaling and ours (16), are com­
pared with the exact value. It appears that, iffor smallg both 
scalings are fairly good, for large g the former scaling fails to 
predict even the order of magnitude of the exact ground state 
energy. Our scaling gives the correct order of magnitude of 
the energy levels for all A and g values. 

C. Representation matrix of the Hamiltonian 

Since the eigenequation (1) is of even parity, one can 
treat separately even and odd states and distinguish between 
the even and odd normalized basis set 

( 
b )1/4 n ¢2n = - e ~ bx'/2 I, d ~~)(b lt2xfS, 
7T s=o 

(17) 

( 
b )114 n A.. = _ e~bx'12" d(l)(b 1/2X)2s+1 

~2n + 1 £.. ns , 
7T s=o 

where the d <,:;) and the d~) are the coefficients of the normal­
ized Hermite polynomials of degree 2n and 2n + 1, 
respectively, 

d<':;) = (-)" +s22s~ ny' (2n)! 1«2s)!(n - s)!), 

(18) 

d~~) = (n + 1I2) 1/2d<':;)/(s + 112). 

Setting b 2 = 1 + a, the potential V(x) [Eq. (2)] can be rewrit­
ten as 

V(x) = b 2X2 + [((A - a)x2 - agx4 )/(1 + gx2)]. (19) 

TABLE I. Zeroth order ground state energies calculated from different 
scaling procedures 

(a) g-dependent scaling E = V I + ,1./(1 + g/2); 
(b) exact value; 

(c)E=~ 

~ 0.1 10 100 200 

(a) 1.0465 1.3973 3.2440 9.8101 13.8375 
0.1 (b) 1.0432 1.3805 3.2503 9.9762 14.1032 

I 
(a) 1.0328 1.2910 2.7688 8.2260 10.0499 
(b) 1.02426 1.2324 2.7823 9.3594 13.4687 

(a) 1.0083 1.0801 1.6330 4.2031 5.8595 
10 (b) 1.0059 1.0592 1.5800 5.7939 9.2811 

100 (a) 1.00098 1.00976 1.0936 1.7207 2.2184 
(b) 1.00084 1.00841 1.0840 1.8363 2.6631 

(a) 1.000495 1.00494 1.04833 1.4107 1.7263 
500 (b) 1.00044 1.00442 1.04419 1.4413 1.8812 

(c) 1.0488 1.4142 3.3166 10.050 14.177 
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ru TABLE II, The first four energy levels for different values of A and g in increasing order of excitation (Jacobi diagonalization of an 18 X 18 matrix), ..., 
(Xl 
ru 

I-
0.1 0.5 1 2 5 10 20 50 100 200 500 

~ 
g 

3: 1. 04317371 1. 20303955 1. 38053180 1.68561740 2.38954155 3.25026122 4.51242099 7.0686947 9.97618009 14.1032168 22.3084299 a 
?' 3.12008186 3.57080929 4.07988301 4.96859933 7.05096392 9.61906641 13.3973600 21.0607383 29.7811911 42.1612060 66.7760954 
-0 0.1 . 5.18109479 5.87158370 6.66791910 8.08680404 11.4848086 15.7293363 22.0055699 34.7638297 49.2926905 69.9231255 110.945882 =r 
'< 7.23100998 8.12187144 9.16656747 11. 0627486 15.7066621 21.5910055 30.3432738 48.1814982 68.5130522 97.3906193 154.818813 JI> 
< 1. 03121454 1.15156359 1. 29295052 1. 55104915 2.19211847 3.01685429 4.25506611 6.79278953 9.69215782 13.8139887 22.0149518 
l2- 3.07390256 3.36380139 3.71390237 4.37658192 6.12105873 8.48227060 12.1236133 19.6850376 28.3625979 40.7156819 65.3089021 
~ 0.5 5.09306915 5.46321387 5.92063165 6.81529745 9.32076345 12.9480334 18.7961421 31. 2380423 45.6365729 66.1860474 93.6226964 
z 7.10585043 7.52788119 8.05237875 9.09000674 12.0931670 16.6793649 24.4519211 41.549253 61. 5 778732 90.2681487 147.546529 
? .... 1.02418675 1.11858946 1. 23237205 1.44732998 2.01300219 2.782330 3.977692 6.47811496 9.35941803 13.4687482 21.6587477 
,N 3.05165067 3.25584210 3.50742053 3.99841495 5.37944 7.417506 10.7906303 18.1287122 26.705965 38.992519 63.528936 
0 1 5.05928655 5.29506292 5.58986086 6.17851432 7.92192614 10.7010259 15.698561 27.3753456 41.4410998 61. 7775337 102.558118 CD 
n 7.06549833 7.32454029 7.64831681 8.29493343 10.224358 13.3883239 19.409653 34.6454207 53.839093 82.0052851 138.855208 CD 
3 
r:r 1. 01789466 1.0870649 1.170485 1. 331863 1.782435 2.442570 3.534937 5.931990 8.758278 12.827070 20.979385 !!l 3.031773 3.186776 3.329042 3.649514 4.593627 6.09516618 8.838714 15.497575 23.743326 35.803455 60.139256 .... 2 CD 5.035846 5.175886 5.34849066 5.6940304 6.739675 8.490523 11. 94156 21. 395858 34.257779 53.80779 93.926914 (Xl 
0 7.03474084 7.226541 7.381135 7.750547 8.868673 10.732244 14.448137 25.294215 41. 494948 67.626030 122.80434 

1.009787 1.048807 1.0972941 1.193317 1. 47402433 1.918909 2.7446638 4.7584713 7.342857 11.215761 19.168545 

5 3.01608085 3.0803718 3.1606623 3.320997 3.80001389 4.5915684 6.152962 10.586344 17.1828134 27.99277 51.18189 
5.01560022 5.0780463 5.1562048 5.312852 5.78531644 6.5803330 8.1988138 13.107241 21.205211 36.237616 72.140082 
7.0169852 7.0849202 7.1698253 7.339591 7.8485497 8.695784 10.39439 15.451712 23.895738 40.581092 85.176092 

1.0059428 1.0296851 1.05929700 1.1183019 1.293580 1.5800249 2.132445 3.6443906 5.793947 9.2811627 16.73919 

10 3.0088109 3.04405055 3.0880908 3.1761407 3.4400419 3.8790372 4.7537844 7.350187 11.572198 19.551651 39.580823 
5.00828042 5.0414117 5.0828477 5.1657921 5.415200 5.8327692 6.6746838 9.2463907 13.62879 22.490906 48.071034 
7.0090376 7.04518677 7.0903704 7.1807285 7.4517292 7.9031549 8.8051293 11.504728 15.988706 24.95478 51. 883453 

1.0034334 1.0171614 1.0343083 1.068558 1.1709608 1.3404716 1.6751703 2.6454669 4.157188 6.850189 13.278094 

20 3.0046566 3.023282 3.0465640 3.093123 3.2327765 3.4654425 3.9304376 5.3226407 7.633095 12.212003 25.5030372 
5.0043275 5.0216391 5.0432824 5.0865814 5.2165782 5.4335727 5.8688196 7.1846197 9.409245 13.950132 27.870513 
7.0047083 7.0235415 7.0470827 7.0941635 7.235395 7.4707439 7.9413024 9.3518730 11. 699220 16.382007 30.39511 

1.001569 1.0078473 1.0156933 1.0313808 1.0784008 1.1566708 1.3127555 1. 7774654 2.5401081 4.0209960 8.1288805 

50 3.0019372 3.0096860 3.0193720 3.0387439 3.0968584 3.1937121 3.3874053 3.9683697 4.9362526 6.8704990 12.659978 
5.001808 5.0090444 5.0180891 5.0361795 5.0904585 5.18094088 5.3620252 5.9060391 6.8154661 8.6452110 14.220266 
7.001943 7.0097191 7.0194382 7.0388763 7.0971901 7.1943775 7.3887445 7.9717804 8.9432892 10.885480 16.706681 

z 1.0008411 1.0042054 1.0084106 1.0168203 1.0420438 1.0840643 1.1680354 1.4193826 1.8363850 2.66311244 5.0840857 
m 100 3.0009831 3.0049158 3.0098317 3.0196635 3.0491587 3.0983170 3.1966324 3.4915694 3.9830992 4.9660377 7.9138556 
CD 5.0009257 5.0046377 5.0092755 5.0185512 5.0463792 5.09276246 5.1855409 5.4639723 5.9283525 6.8584230 9.6605099 

= 7.0009845 7.0049224 7.0098449 7.0196899 7.0492246 7.0984491 7.1968972 7.4922353 7.9844448 8.9687849 11. 921169 ii' 
III 1.0004420 1.0022101 1.0044203 1.0088404 1.0221001 1.0441967 1.0883796 1.2208439 1.4413330 1. 8812271 3.1920300 :l 
CI. 
Gl 200 3.0004955 3.0024779 3.0049558 3.0099115 3.0247789 3.0495579 3.0991156 3.2477883 3.4955736 3.9911350 5.4777444 
m 5.0004729 5.0023648 5.0047296 5.0094592 5.0236482 5.0472970 5.0945959 5.2365039 5.4730537 5.9462928 7.3672267 
CD 7.0004958 7.0024791 7.0049583 7.0099166 7.0247916 7.0495833 7.0991665 7.2479157 7.4958292 7.9916496 9.4790563 III 
III 
ii' 1.00011849 1.0009245 1.0018491 1.0036983 1.0092456 1.0184910 1.0369811 1.0924449 1.1848632 1.3696191 1.9232260 

SOO 3.0001992 3.0009963 3.0019926 3.0039852 3.0099630 3.0199260 3.0398520 3.0996301 3.1992601 3.3985199 3.9962969 
5.0001928 5.0009640 5.0019279 5.0038559 5.0096399 5.0192799 5.0385600 5.0964009 5.1928043 5.3856183 5.9641161 ru 7.0001992 7.0009964 7.0019928 7.0039857 7.0099644 7.0199288 7.0398576 7.0996440 7.1992879 7.3985755 7.9964367 ..., 

(Xl 
N 



                                                                                                                                    

Using the definition (6) of /k and the recursion relation 
(8), one obtains the following expression of the current Ha­
miltonian matrix element between basis functions, even and 
odd respectively (see Appendix), 

~~ = bcSnm (4n + 1) 

~ ~ (p)d(p)r + £.- £.- d ns ml s + 1 + 1 , 
s=OI=O 

(20) 

n m 
~ ~d(l)d(l)r + £.- £.- ns ml s+ 1+2' 

s=OI=O 

where 

r
k 

= ~/k -!!.. (2k -I)!! (21) 
b b 2k 

Finally, using (8) the Knm are very easily computed 
recursively either by hand or by a very simple routine in 
terms of /0 [Eq. (15)]. 

III. RESULTS AND DISCUSSION 

Eigenvalues and eigenfunctions of wave equation (1) 
have been obtained on the basis of scaled orthonormal har­
monic oscillator functions by the variational method for a 
large range of g and A (g, A = 0.1 to 500). Moreover, since 
our zeroth order energies (see Table I) are in good agreement 
with the order of magnitude of the exact v8.lues, we have 
verified the accuracy of the results given by a traditional 
Rayleigh-SchrOdinger perturbation calculation (first and 
second order). (We have considered that the values obtained 
by Mitra and corroborated afterwards by our variational cal­
culations converge towards the exact values.) 

A. Variational calculations 

Since the basis set is orthonormal, it is well known that 
the variational procedure reduces to the diagonalization of 
the even (or odd) Ji1' nm matrix representation. We have used 
the Jacobi diagonalization procedure for different sizes of 
N XN matrices (N = 4 to N = 18). It is worthwhile to note 
that for N = 4, we obtain an overall accuracy of three signifi­
cant figures. For N = 16, our results are identical with those 
calculated by Mitra (except for a discrepancy for the first 
excited state wheng = 0.5, A = 100). In order to obtain eight 
significant figures, the calculations have been performed for 
N = 18. The first six energy levels for different values of A 
and g (A = 0.1 to 500, g = 0.1 to 500) are given in Table II. 

B. Perturbational results 

Using perturbation theory, we have numerically dia­
gonalized the Hamiltonian matrix. We found that either for 
smallglb ratios (this is the case, in particular, wheng is small 
and A is large), or for large glb ratios, the eigenvalues thus 
obtained compare favorably with the exact values, even 
when the perturbation process is limited to the first order. In 
this last case, analytical expressions of the energies are very 
easy to obtain in terms of /o(b, g) and glb (or big). For the 
ground state and the two first excited states, for instance, one 
obtains 

a A 
E(v=O)=b- - - -(/0-1), 

2b g 
(22) 

TABLE III. Perturbative results for the gound state energies (a) first order [Eq. (22)]; (b) second order; (c) exact value; (d) Kaushal (Ref. 2) 

~A 0.1 0.5 10 50 100 

a 1.0432 1.2034 1.3814 3.25114 7.0689 9.9768 

0.1 
b 1.04318 1.20312 1.3807 3.25066 7.0689 9.9763 
c 1.04317 1.203039 1.380532 3.250261 7.068696 9.97618 
d (1.04305) (1.20290) (1.38045) (3.250244) (7.068692) (9.9761778) 

a 1.0315 1.1547 1.3001 3.03Q6 6.7977 9.7023 
b 1.03140 1.1523 1.29459 3.0231 6.7973 9.6960 

0.5 c 1.03121 1.15156 1.29295 3.01685 6.79278 9.69215 
d (1.032) (1.103) (1.263) (3.0139) (6.7922) (9.69185) 

a 1.0248 1.1239 1.2446 2.8190 6.4929 9.3860 
b 1.0246 1.1207 1.2361 2.7989 6.4928 9.3727 
c 1.0241 1.1185 1.2323 2.7823 6.4781 9.3594 
d (1.015) (1.100) (1.227) (2.754) (6.472) (9.3567) 

a 1.00596 1.0302 1.0613 1.6439 3.8029 5.9362 
10 b 1.00594 1.0297 1.0593 1.5907 3.7266 5.9098 

c 1.00594 1.02968 1.059297 1.580025 3.64439 5.7939 

a 1.00157 1.00788 1.01584 1.1671 1.8781 2.731 
50 b 1.00157 1.007848 1.10569 1.1570 1.7916 2.588 

c 1.001569 1.007847 1.01569 1.15667 1.77746 2.540108 

a 1.00084 1.00421 1.00845 1.0874 1.4665 1.949 
100 b 1.00420 1.00841 1.0841 1.4222 1.8504 

c 1.011406 1.41938 1.8364 
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TABLE IV. Perturbative results for the first three excited states energies (a) first order [Eqs. (22) and (23)]; (b) Kaushal (Ref. 2) to be compared to the exact 
values in Table II. 

A. 
g v 0.1 0.5 10 50 100 

3.1201 3.5725 4.0834 9.621 21.073 29.810 
(3.1189) (3.5695) (4.0789) (9.61843) (21.06057) (29.78110) 

2 5.1823 5.8852 6.6974 15.7789 34.7789 49.298 
0.1 (5.175) (5.864) (6.661) (15.7228) (34.7621) (49.29177) 

3 7.2288 8.1233 9.189 21.618 48.160 68.503 
(7.208) (8.093) (9.132) (21.554) (48.1716) (68.5079) 

3.073 3.366 3.724 8.509 19.785 28.657 
(3.061) (3.362) (3.459) (8.40) (19.663) (28.3514) 

2 5.098 5.5147 6.053 13.586 31.562 45.783 
0.5 (5.022) (5.311) (5.852) (12.560) (31.016) (45.521) 

3 7.101 7.531 8.098 17.144 41.324 61.194 
(6.916) (7.011) (7.556) (15.675) (41.170) (61.321) 

3.050 3.255 3.513 7.478 18.228 27.138 
(2.976) (3.049) (3.305) (6.754) (17.952) (26.615) 

2 5.130 5.346 5.7318 11.937 28.413 42.022 
(4.801) (4.499) (4.634) (9.355) (26.779) (41.030) 

3 7.061 7.322 7.674 14.168 34.667 52.991 
(6.489) (5.448) (5.212) (10.091) (33.092) (52.802) 

E (v = 2) = 5 [b - ~] - ~ 
2b g 

X{[ ~ +2; +2(;r)(Io-l)+ (; - ~)}, 

perturbational treatment of the wave equation (1) could be 
more conveniently tackled in the framework of the "per­
turbed ladder operator method". 11 Analytical results will be 
given elsewhere. 

Finally, one can say that, after properly scaling the har­
monic oscillator basis set, eigenvalues and eigenfunctions of 
the wave equation (1) can be obtained for a wide range A and 
of g without difficulties. (The coefficients of the eigenfunc­
tions are not given here but are available on request to the 
authors.) Indeed the computer program for the calculations 
is straightforward: double precision is sufficient and only a 
few seconds of computer time (IBM 168) were needed in 
order to obtain the results of Table II. 

(23) 

E(V=3)=7[b- ~] +~ {[3; +4(;r + ~(;r] 
X (10 - 1) + [ ~ ( ; r + ; + 1 ]), 

where b 2 = 1 + a; a = AI( 1 + g/2). For small glb ratios, 
one can use these formulas in conjunction with the asymp­
totic expression ( 12) of 10 , and then determine the energies as 
a series of glb< 1. Only a few terms (3 to 4) are needed in 
order to obtain a good degree of accuracy. For large glb 
ratios, the same formulas (22) and (23) can be used in con­
junction with (13) or (14) and yield an expansion of the ener­
gies in powers of g I b <. 1. 

First order and second order energies for the ground 
state are furnished in Table III in comparison with the exact 
values. From Table IV, it is shown that the first excited states 
energy levels which are obtained from our simple formulas 
(22) and (23) are, on the whole, closer to the exact values than 
those obtained by Kaushal2 from a more complex formula. 
This is certainly due to the introduction of the g-dependent 
scaling [Eq. (16)]. 

It should be noted that, from the expression (20) of 
,;y nm , second order energies can also be obtained by a series 
expansion in big (or glb). Nevertheless, in our opinion, a 
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APPENDIX 

Using the definition (6) of I k , one gets by termwise inte­
gration of the product tP2n (X)tP2m (x), 

(tP2n I (A - ~ ~2g~2 agx41 tP2m ) 

= ~ ~ dIP)d IP ) 
~ L.. ns mt 

s= 01 = 0 

(
(A - a) ag ) 

X b Is + 1 + 1 - b2 Is + 1 + 2 • 

Using the recursion relation (8), one can write 

I _ ~(I _ [2(s + t + 1) - 1] !! ) 
s + 1 + 2 = g S + 1 + J 2S + 1 + I • 

From (S) 
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(t,62,,1- ::2 + b2x21t,62m) = b6"ml4n + 1). 

Finally, one obtains the expression (20) of ~:~. Obviously, 
~:~ is derived in the same way. 
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Exactly solvable eigenvalue problem with hypergeometric 
eigenfunctions a},b} 

Michael J. King and Fritz Rohrlich 
Department of Physics, Syracuse University, Syracuse, New York 13210 

(Received 29 April 1980; accepted for publication 7 August 1980) 

A SchrOdinger equation with a momentum dependent interaction leads to exact solutions 
I/Je L 2(R3,d 3X ) with radial parts of the wave function which are hypergeometric functions and 
their appropriate analytic continuations. The normalization integrals are obtained in closed form. 

The Schrodinger equation to be discussed below arises 
in the relativistic two-body problem of a Hamiltonian for­
mulation of dynamics in which the interaction is momentum 
dependent. 1 The corresponding classical interaction has the 
form -/P(x.p), where x and p are relative positions and 
momenta. Its solution is presented here for at least three 
reasons: The method of solution is somewhat unconvention­
al, the wave functions are physically acceptable despite a 
singularity on the interval [0, 00 ), and the normalization inte­
grals, although apparently not known in the literature, can 
be obtained in closed form. The whole problem is an instruc­
tive application of the theory of hypergeometric functions. 

1. THE DIFFERENTIAL EQUATION 

We consider the equation 

[V2 - P2(x·V)~rd ]tP(x) = -7]tP(x), 

where the ordered differential operator is defined by 

(X,V)~rd = [~(x.V + V.xW 

= (xx·V)·V + 4x·V + ~. 
The first term can be written as 

X 2V2 + L 2 - 2x.V, 

where 

L= -ixXV. 

The differential equation (1) thus becomes 

(1) 

[V2 - P2(X2V2 + 2x·V + L 2 + ~)l "'", = -7]"'",. (2) 

This equation separates in spherical coordinates, 

1 00 I 

"'",(x) = - L L c7'Y7'(O,cp )Re", (r). 
r I=Om=~1 

The radial functions RI",(r) satisfy 

(1 -/Pr)R i~ - 2/PrR i", + (7] -lp 2
-

=0, 

1(I+l))R r I", 

which is conveniently written in terms of the dimensionless 
variables 

alParts ofthis work are contained in a Ph.D. thesis by the first author 
(Syracuse University, 1980). 

"Supported in part by a grant from the National Science Foundation. 

Plv(p) = RI",(r);Vp, 

in the form 

(3) 

~ ((l - p2) ~ PIV ) + (v( v + 1) - I (I P~ I) )PIV = O. 

For smallp the centrifugal term will dominate for alII> O. It 
is therefore convenient to separate the behavior at the origin 

Plv(p) = /+ Iglv(p), 

leading to 

(l - p2)gi~ + 2 (I ;.J... - (I + 2)p 'Iv 

+ [v(v+l)-(I+I)(1+2) jglv =0. 

(4) 

The equation reduces to the hypergeometric equation by the 
substitution 

t p2, ulv(t) glv(p). (5) 

One finds 

t(1 - t)ui~ + [c - (a + b + 1)t juiv - abulv = 0, (6a) 

where 

a=!(i+v)+I, b==W-v)+!, c=a+b. (6b) 

The square integrability requirement on Rlv(r), 

Rlv(r)EL 2( [0, 00 ),dr), 

translates via (3), (4), and (5) into 

ulv(t)EL 2([0,00 ),t 1+ 112 dt). 

(7a) 

(7b) 

The problem is to find those values of v for which the solu­
tions U lv of (6a) satisfy (7b). 

2. THE EIGENVALUES 

The hypergeometric differential equation (6a) has a so­
lution which is analytic in the complex t plane cut along the 
real axis from t = 1 to t = + 00. At t = 1 it has a logarith­
mic singularity. This solution consists of the hypergeometric 
function 

Ulv(t) I = F(a,b;a + b;t), 
1<1 

(8) 

which is analytic in It I < I, and its analytic continuation G/v 

into the rest of the cut plane. Since the singularity at t = 1 is 
only logarithmic 
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UI,,(t) I eL 2([0,I],t l+l12 dt). 
1<1 

(9) 

The problem of satisfying (7b) consists in finding suit­
able..t and v such that ul..,(t)1 I> I defined by 

ul,,(t) I = lim [AGI,,(t + iE) + (I - A )G1,,(t - iE)], 
I> I .--+0 

(10) 

satisfies the condition 

ul,,(t) I eL 2([ 1, co ),t 1+112 dt). (11) 
I> I 

Now the analytic continuation of (8), GI,,(t), for It I > 1 and 
valid in I arg( - t 1I < 'IT' is3 

GI,,(t) 

= r(b+a)F(b-a) 1 F(a l-b'l-b+a.~) 
r(b)2 ( - t t " , t 

+ r(a+b)r(a-b)_1_ 
r(a)2 (_ t)b 

XF(b,l-a,l-a+b;+) . 

From (6b) we see that these two terms require v> -! and 
v< -!, respectively, in order to satisfy (11); one of them 
must be eliminated. Since the solution is symmetric in a and 
b, it is arbitrary which one survives: the result will be the 
same. We choose to eliminate the second term. Equation (10) 
then requires 

1m + =0, I. ( A 1 -A ) 
E-+O (_ eiE)b [ _ e'12". - E)] b 

which can be satisfied only with A = ! and 

cos1fb = 0, 2b = - 2k + 1 (k integer). 

I t follows, therefore, from (6b) that ( 11 ) will be satisfied when 

..t =!, v = I + 2k ==n>O (k integer). (12) 

The last inequality results from the above-mentioned re­
quirement v> -!. The eigenvalues v are thus determined 
and give with (3), 

71 =/F[v(v +1) +!] =p2(n + !)2. (13) 

3. THE EIGENFUNCTIONS 

Substitution of the result (12) into (8) and (10) leads to 
the eigenfunctions U ln (t) where 

uln(t) I =F[W+n)+I;W-n)+V+~;tl' (14a) 
1<1 

I 
r(l+~)r(-n-!) 1 

uln(t) = ---=---..,..-....::..---~-
1>1 r(! - k)2 (_ t)I+k+1 

XF(W + n) + q + k;n + Pit). (14b) 

These must now be normalized. 
The normalization integral 

f"R7n(r)dr= 1 becomes !1°O U~n(t)tl+ll2dt= 1. 

(IS) 

These integrals cannot be found in the customary tables. 
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However, they can be expressed in terms of known functions 
as follows. 

The differential equation (6a) can be written in "Sturm­
Liouville" form as 

!!... [tC(I- t)a+b-c+ I dF] =abtC-I(I- t)a+b-cF, (16) 
dt dt 

Here we wrote 

F ==F (a,b;c;t ) 

instead of UI" since the following will be valid also when 
c = a + b is not satisfied. 

Let F ==F (a,b;c;t ) be a solution of (16) when a,b,c are 
replaced by a,b,c. Then one easily derives by integration by 
parts the identity 

fdt FF [abtC-I(l - t)a+ b- C - abt<- 1(1 - t )ii+b-<] 

= [tC(I- tt+b- c+ IFF' _ t«I- tj0+b-<+ IFF'] IP 
a -f: dt F'F'[t C(1 - tt+ b-c+ 1_ t«1 - t )o+b-<+ I]. 

If one choses 

a + b = a + b, c = c 

the last integral vanishes identically and one finds2 with 
a=a +e, b=b-e 

eta - b + e) f dt F(a,b;c;t )F(a + e,b - e;c;t)t C - I 

X(I-tt+ b- c 

= tC(l- t)a+b-c+ I W(a,b;c,e;t)r , 
a 

where W(a,b;c,e;t) is the Wronskian 

W( b· .)= I F(a + e,b - e;c,t) a, ,c,e,t - , 
F (a + e,b - e;c;t) 

F,(a,b;c;t) ,. 
F (a,b;c;t) 

(17) 

A special case of this result is obtained in the limit e-o. 
One then finds 

lim ~ W(a b·c·e·t) , , , , 
0-+0 e 

= - F 2(a,b;c;t)!... (!...lnF(a + e,b - e;c;t») • 
at ae .=0 

so that one has the integral 

(a - b) fdt F 2(a,b;c;t)t C- I(1 _ t)a+ b- c 

= - tC(1 _ ty+b-C+IF2(a,b,c;t) 

X (~lnF(a + e,b - e;c;t») ,P . (18) 
aeat 0=0 a 

The integrals needed for (15) are the special case of this re­
sult when a + b = c. 

For this special case one needs the right-hand side of 
(18) near t = 1 as approached from below and from above. 
From standard expansions3 one deduces with 
2(a - b) = 2n + 1 from (6) and (12) 
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fdttl+1/2UTn(t)= 2n~1 B- 2(a,b)[",'(b)-""(a)], 

(19a) 

f'" dt t 1+ I12UTn(t) 

2 
= --B -2(a,b )[""(a) + ""(1 - b)], (19b) 

2n + 1 

whereB (a,b ) is the Gaussian beta function; '" is the logarith­
mic derivative of the gamma function. Since 

""(b) + ""(I-b) =~, 

for b =! - k, the sum of the two integrals (19) is 

f" UTn(t )t l+ 112 dt = 2:~ 1 B - 2(a,b). (20) 

The correctly normalized wave function satisfying (14) is 
therefore 

Uln(t) = (lhT)~2n + 1B [W + n) + q(l- n) +!] 
xuln(t), (21) 

with uln(t) given by (14). This can also be written as 

U ln (t) I 1<1 = (lhT)~2n + 1B [W + n) + 1,W - n) +!l 

XF[ W + n) + 1,W - n) + V + 1;t 1, (22a) 

= (lhT)~2n + 1B [W + n) + 1, - n - U 
X 1 

( _ t )(112)(1 + n) + I 

xF [W + n) + q(n -I) + !;n + 1; + ] . (22b) 

The normalized radial functions R ln (r) are expressed in 
terms of these functions by 

R ln (r) = Vp ({3r)1 + I Uln (/J2r). (23) 

4. DISCUSSION 

Our results can be summarized by saying that the 
Schrodinger equation (2) has the eigenvalues 77 given by (13) 
and the eigenfunctions 

tfI::I(X) = J... R ln (r)Y'!'(O,q;). 
r 

The R In are given in terms of hypergeometric functions by 
Eqs. (22) and (23). The energy eigenvalues depend only on 
the quantum number n which is a non-negative integer. The 
angular momentum quantum number can take on all values 
1= n -2k;>0 where k is an integer. 
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However, there are various additional points of interest. 
For distances r such that {3r > 1 the eigenfunctions must be 
defined as averages of the two edges of a branch cut from 
{3r = 1 to + 00. Furthermore, the eigenfunctions have a 
logarithmic singularity at {3r = 1. This does not cause diffi­
culties in physical interpretation because the probability is 
well defined over any finite interval..:1r including the point 
{3r = 1. 

Furthermore, the normalization problem led to the 
derivation of a new class of integrals over two hypergeome­
tric functions. These are given by (17) for finite e and by (18) 
for the limit e-o. 

Of some interest is also the special case I = O. For that 
case the equation for the radial part of the wave function 
reduces to 

d ( dPon ) - (l_p2)- + n(n + I)Pon = 0, 
dp dp 

which is Legendre's equation, and n must be an even integer 
according to (12). The solutions are now given by the Le­
gendre functions of the second kind Qn (p). More precisely 
one obtains from (22) and (23) the result 

Ron(r) = (2hr)Vp V 2n + 1 Qn({3r), (24) 

using the known relations3 between the Legendre functions 
and the hypergeometric functions. The normalization of 
(24) can be checked from known integrals.4 

After completion of this work our attention was drawn 
to a paper which deals with an interaction that is the same as 
ours when a certain parameter is suitably chosen.s However, 
their solution (for that special case) differs from ours because 
they restrict the domain of t to [0,1 J while we have no such 
restriction. Their quantization condition is therefore also 
different from ours. 

1M. King and F. Rohrlich, Phys. Rev. Lett. 44, 621 (1980); a more detailed 
discussion of the relativistic Hamiltonian dynamics of which this is a very 
special example is contained in M. King and F. Rohrlich, "Relativistic 
Hamiltonian Dynamics II: Momentum Dependent Interactions, Confine­
ment, and Quantization", Ann. Physics (to be published). 

2This result for the special case of negative integer a and a + e was apparent­
ly first obtained by I. I. Hirschman, Jr., Proc. Am. Math. Soc. 8, 286 (1957). 

3 A. Erdelyi et al., Higher Transcendental Functions (McGraw-Hill, New 
York, 1953), Vol. I; Handbook 0/ Mathematical Functions, edited by M. 
Abramowitz and I. A. Stegun (U. S. National Bureau of Standards, Wash­
ing, D.C., 1964). 

41. S. Gradshteyn and I. M. Ryzhik, Table o/Integrals, Series, and Products 
(Academic, New York, 1965). We note that formula 7.113.2 in this refer­
ence is incorrect and does not agree with 7.112.4 in the limit v = u. 

'M. Lakshmanan and K. Eswaran, J. Phys. A 8,1658 (1975). 
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K-surfaces in the Schwarzschild space-time and the construction of lattice 
cosmologies a) 

Dieter R. Brill, John M. Cavallo, James A. Isenberg b) 

Department of Physics. University of Maryland. Col/ege Park. Maryland 20742 

(Received 7 August 1979; accepted for publication 10 December 1979) 

We investigate spacelike spherically symmetric hypersurfaces of constant mean curvature K 
(which we call K-surfaces) in spherically symmetric static spacetimes. We obtain the differential 
equation satisfied by these surfaces from a variational principle. The spacetime Killing vector 
leads to a first integral in the form of a conservation of energy for a particle moving in an effective 
potential. An embedding of the K -surfaces' intrinsic geometry in flat space likewise follows from 
an effective potential motion. We apply the formalism to the Schwarzschild solution, and display 
results of numerical integrations for a variety of K-surfaces and their flat space embeddings. We 
use these to construct "lattice" cosmological models, and obtain a foliation of K-surfaces of such 
models with large scale behavior of both the open and closed Friedmann type. 

I. INTRODUCTION 

Hypersurfaces of constant mean curvature K (called K­
surfaces in this paper) have long been considered interesting 
objects in studying the dynamics of space-time. 1 However, 
there is a dearth of explicit examples offamilies of nontrivial 
K-surfaces in inhomogeneous space-times. 

Given a single K-surface, one can obtain a local K-sur­
face foliation by solving an elliptic equation on the lapse 
function. This approach has been exploited by Estabrook et 
al. 2 for maximal surfaces (K = 0), and more recently by 
Eardley and Smarr for surfaces of K #0. 

Alternatively, it is well known that eachK-surface sepa­
rately satisfies a variational principle. In this paper we use 
this principle as a computational tool to find directly the 
family of spherically symmetric K-surfaces in any spherical­
ly symmetric static space-time. We discuss in detail the be­
havior of these surfaces in SchwarzschiId-Kruskal space­
time. 

The behavior of K-surfaces (K #0) in Schwarzschild­
Kruskal spacetime differs from that of maximal surfaces 
both in the asymptotic and in the inner regions. Asymptoti­
cally, the K-surfaces become null and go to null infinity of, 
whereas maximal surfaces-like the familiar t = const slices 
of Schwarzschild space-time-go to spacelike infinity io. In 
the interior region, regular spherically symmetric maximal 
slices do not exist2 in the region r < 1.5m, whereas regular 
K-surfaces can approach the singularity at r = 0 arbitrarily 
closely if jK j is large enough. In fact, we show numerically 
that the entire spacetime can be foliated by K-surfaces. A 
K-surface foliation therefore suggests itself as particularly 
adapted to radiation problems, and for studying the regions 
of large curvature in a more general asymptotically flat 
space-time. 

The importance of K-slice foliations in cosmological 
space-times is well motivated by the Friedmann example 

a)Supported in part by the National Science Foundation under grants PHY-
7906940 and PHY-7909281 

h)Present address: Department of Applied Mathematics. University ofWa­
terloo, Waterloo, Ontario, N2L 3GI. 

and by the fact that, even locally, closed spacetimes cannot 
be foliated by maximal slices. Thus, the K-slices of Schwarz­
schild are useful if one wants to patch the Schwarzschild 
space-time onto a closed cosmological model. We discuss 
this problem in the context ofbuiIding "lattice cosmological 
models." 

II. VARIATIONAL PRINCIPLE FOR K = CONSTANT 
SURFACES 

To obtain the variational principle for K-surfaces in 
space-time we generalize another well-known extremum 
property: In Euclidean space the spheres have constant 
mean curvature, and they have the least surface area for a 
fixed enclosed volume. Similarly, in space-time we extremize 
the three-dimensional area A (S) of the hypersurface S, hold­
ing constant the 4-volume VIS, Sd enclosed by S together 
with any fixed surface S l' We use a Lagrange multiplier to 
include this constraint in the variational principle and 
obtain4 

OJ = 0, (Ia) 

with 

I =A (S) +A (S,Sd = Is nJ1- d3SJ1- +AL d
4

V. (Ib) 

Here S is any (finite) achronal surface subject to variation 
with fixed boundary. SI is a fixed hypersurface, homotopic 
to S, with identical boundary, and n J1- is a field of unit vectors 
normal to Sand SI' A (S) is the three-dimensional area of S, 
and VIS, Sd is the four-dimensional volume bounded by S 
and SI' The arbitrariness of SI corresponds to an arbitrary 
additive constant in I. Alternatively, one can make the 
unique choice SI = H - (S), the past horizon of S. The vari­
ational principle (1) then agrees with that of Goddard. 5 

To show that Eq. (1) leads to K-surfaces, note that the 
boundary of V is S - S]J and use the divergence theorem to 
rewrite I as an integral over V 

I=A (S) -A (Sd +AV(S,Sd +A (SI) 

= L [n";" + A] d
4
V + A (SI)' (2) 
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The variation of this expression can vanish for arbitrary vari­
ations of S only if the integrand vanishes everywhere on S. 
However, on S, the divergence of the unit normal is related 
to the mean curvature K. Hence, we have 

n'\11 + A = - K + A = O. (3) 

This shows that K is constant and its value is just the La­
grange multiplier A. 

III. APPLICATION TO SPHERICALLY SYMMETRIC 
STATIC SPACE-TIME 

The variational principle (1) provides a convenient way 
to derive the equation for K-surfaces in spherically symmet­
ric static space-times, and particularly to find first integrals 
of this equation. In suitable coordinates the metric takes the 
form 

ds2 = - B (rJdt 2 + C (r)dr2 + r2(d() 2 + sin2() difJ 2). (4) 

Let the spacelike surface S be described by t = t (r, (), ifJ ), and 
choose for SI the surface t = O. The variational principle 
then becomes 

15 f [.I + A (B (r)C (r))1/2t (r)]r2sin() dr d() difJ = 0, (5) 

where 

.I 2: = - Bt; - (BC 1r2)[d + (t,p/sin())2] + C (6) 

is positive for a spacelike surface, and SUbscripts denote par­
tial derivatives. The variational equation obtained from Eq. 
(5) by varying tis 

- Ar2(BC )1/2 = - (Br2trl.I)r + (BC sin()tal.I )a /sin() 

+ (BCt,pI.I),p/sin2(). (7) 

To simplify this equation we restrict attention to spherically 
symmetric hypersurfaces t = t (r). The resulting ordinary dif­
ferential equation can be integrated once with respect to r, 
and then solved for the "rate of change of proper time with 
proper distance" dt * Idr* = (B IC)1/2tr: 

(dt*ldr*)2 = (H -Jf/[(H - J)2 + Br4], (8) 

where 

J : = A r [B (u)C (u)] 1/2u2 du (indefinite integral), 

and H is a constant of integration. 
If Band C are negative ("inside the horizon"), the 

spherically symmetric spacelike surface S is more appropri­
ately described by r = r(t ), and the variational principle (I) 
takes the Lagrangian form (with r = : drldt) 

0= 15 f L dt = 15 f [r2( - B + Cr)1I2 - J] dt. (9) 

Here we can also obtain a first integral: because L is time 
independent, the Hamiltonian H : = ii.aL I ar) - L is 
conserved: 

H = Br2( - B + Cr)-1/2 + J = const. 

The solution of Eq. (10) for dr* I dt *, i.e., 

(dr*ldt*)2-Br4(H-J)-2= 1, 

(10) 

(11) 

is equivalent to Eq. (8). Thus, either Eq. (8) or Eq. (11) can be 
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used to solve for K-surfaces, both inside and outside the hori­
zon [except in special cases like t (r) = const, where the in­
verse r(t) does not exist]. Equation (11) is partiCUlarly useful 
for a qualitative discussion, because it is analogous to the 
energy conservation law for a particle of unit total energy 
moving in a potential given by the second term on the left. 

For given H, K, the surfaces differ only by isometry. 
Therefore the intrinsic metric r and extrinsic curvature 
K = -!.2' n r are uniquely determined: 

rijdxidx! = BCr
4 

dr2 + r2d!1 2 (12) 
(H - J)2 + Br4 ' 

K/ = K + 2(H - J)r- 3(BC)-1/2, 

K,/=K/= -(H-J)r-3(BC)-1/2. (13) 

IV. ISOMETRIC EMBEDDINGS 

The intrinsic geometry of two-dimensional Rieman­
nian spaces can often be visualized by an isometric embed­
ding in three-dimensional flat space. The embedding condi­
tion is that the geometry inherited by the surface as a 
subspace of flat space be the same as the surface's given in­
trinsic geometry. In general, the embedding is local only and 
cannot be extended to the whole two-dimensional space. 

To visualize a spherically symmetric three-dimensional 
surface by means of an embedding it is customary to sup­
press one of the angle variables and embed the resulting "re­
duced" two-dimensional spacelike surface. For the 
K = const surfaces of interest here we find that the positively 
curved portions of the reduced surface can be embedded as a 
rotationally symmetric surface in three-dimensional Euclid­
ean space. The negatively curved portions can be similarly 
embedded in three-dimensional Minkowski space. 

The intrinsic geometry of the spacelike K -surfaces can 
be read off from Eq. (4), and by setting difJ = 0 we find the 
metric of the corresponding reduced surface 

de? = [C - B (dt Idrf]dr2 + r2d() 2. (14) 

Let the metric of flat Euclidean or Minkowski space be writ­
ten in cylindrical coordinates z, r, ifJ: 

d1 2= ±dz2+dr2+r2d()2. (15) 

Let z(r) describe an axially symmetric surface, and on this 
surface equate dl 2 and de? to find the embedding condition 

± (dzldr)2 +1 = - B(dt Idr)2 + C. (16) 

To solve explicitly for z(r) we substitute (dt Idrf from Eq. 
(8); the problem then reduces to a quadrature. 

Like Eq. (11), the isometric embedding equation can 
also be written as an "energy conservation law" for potential 
motion 

( 
dr)2 r4BC 

± dz + r4B (C _ 1) _ (H _ J)2 + 1 = 0, (17) 

a form which is useful for a qualitative analysis of the re­
duced surface. 

V. EXAMPLES OF SPHERICALLY SYMMETRIC 
K-SURFACES 

In all asymptotically flat space-times, the spherically 
symmetric K-surfaces which are not confined by horizons 
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1lI 

(a) 

(c) (d) 

FIG. I. (a) A family of K-surfaces with K = 2 and various values of H in a Kruskal diagram. The throat of all surfaces is on the v axis, and the value of H for 
each surface is given in the table below. The surfaces that do not reach the sigularity at r = 0 have H values in the range H _ = - 1/6<.H <.H + = o. n871. (h) 
Various K-surfaces which are not reflection symmetric about the v axis. Surfaces VI and VII are reflection symmetric about the axes shown. Each axis 
intersects its surfaces at its throat, as defined by its intrinsic geometry. Surface IIX has no reflection symmetry and terminates at the singularity. (c), (d) 
Penrose diagrams of these surfaces. The transformation to the coordinates u', v' used here, as well as in Fig. 4 and 6, is given by~: = Htan-

1
(u + v) 

± tan - I(U _ v)). The slope of these surfaces near f+ is determined by the value of K. They dip in the interior to avoid the singularity. 

Surface =# I II III IV V VI VII IIX 
K = 2 2 2 2 2 - 2 2 1.2 
H= -0.166667 -1/12 1/2 H+ 1/2 0.166667 -0.166667 3/4 

have a common asymptotic form-that of K-surfaces in 
Minkowski space-time. In Minkowski space-time the only 
everywhere smooth, spherically symmetric K-surfaces cor­
respond to the integration constant's value H = 0, and they 
are the familiar constant-interval hyperboloids (analogs of 
spheres in Euclidean geometry), which become lightlike at 
1' __ 00. If H 1= 0, the surfaces become lightlike also at the 
(space) origin l' = 0, and hence they are singular there. They 
can be obtained by numerical integration ofEq. (8) with 
B = C = 1 (even if K = 0 the solution is an elliptic integral). 

Our main application concerns the Schwarzschild solu­
tion. Here we find (Fig. 1) a larger variety of K-surfaces, 
depending on the value of H. The regular surfaces corre­
spond to a limited range of H values H _ <,H <,H +; for values 
outside this range the surfaces hit one of the singularities at 
l' = O. (Contrary to the situation in Minkowski space-time, 
there is a curvature singularity at l' = 0 in the Schwarzschild 
space-time. Hence, surfaces which are "irregular at l' = 0" 
are of some interest in the latter space-time). Whereas in 
Minkowski space-time all the regular surfaces are homogen­
eous (invariant under Lorentz transformations), only some 
of the surfaces in Schwarzschild space-time-namely those 
with H = H + and H = H _ - are homogeneous (invariant 
under t-translation and space rotations). However, all the 
regular surfaces have an inversion symmetry about their 
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"throat," characterized in the simplest cases by symmetry 
across the v axis in the Kruskal diagram. 

Although numerical integration is necessary to obtain 
these surfaces explicitly, some of their properties can be 
qualitatively understood: The Schwarzschild version of Eq. 
(11), obtained by settingB = lIC= 1-111', 

(d1'*ldt*)2 = (1 -lI1't2(drldt)2 

= 1 + r(1' -1)(H - iKrt2 (18) 

or 

(dr*ldt *)2 + VCr) = 1 

can be considered as the energy equation for a particle with 
total energy unity, in an effective potential VCr) 
= - r(r -1)(H -tKrt2 (Fig. 2). Here we have set 

2m = 1 without loss of generality, since this amounts to us­
ing new dimensionless variables rl2m, t 12m, H 14m2, and 
2mK. For example, the l' = const K-surfaces mentioned 
above correspond to "unstable equilibria" of the potential: 
V(H, K, 1') = 1 and dV Idr(H, K, 1') = O. Now for 1'> 1, Vis 
negative definite, so there are no corresponding l' = constK­
surfaces. However, for any 1'< 1, 

K 2 = (4Ir)(r - i)2/(1 - 1'), H 2 = (r 19)(1' - D2/(1 - r), 
(19) 

gives us such a surface.6 K-surfaces which do not satisfy Eq. 
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FIG. 2. Plot ofetfective potential V(r) = - r'(r -l)(H - !Kr')-2 for the 
curves shown in Fig. 1. 

(19) mayor may not contain a "turning point" at which 
V = 1 [and therefore (dr* Idt *)2 = 0]. Surfaces with no such 
point necessarily reach the singularity. 

Because of the asymptotic flatness of Schwarzschild, 
those K-surfaces which escape to r-infinity asymptotically 
resemble the hyperboloids in Minkowski space. We note that 
since V(r)<O for all r> 1, if a given surface reaches r> 1, it 
necessarily reaches infinity in r. For large r we have 
V(r)- - 9IK 2,z,andhencethesolutionofEq. (IS) becomes 
the hyperboloid 

,z = t 2 - (3IK 1
). (20) 

The surfaces plotted in Fig. 1 were obtained by numerical 
integration ofEq. (IS), or of the equivalent differential equa­
tion in terms of the Kruskal coordinates 

u = (r _1)1/2 er/2cosh(t /2), v = (I' _1)1/2 e r12sinh(t /2), 

which takes the form 

Au+Eu - = ---'--- with E: = H - !Xr" 
du Au +Ev 
du 

A 1 : = E 2 + r3(r -1). (21) 

To fix the sign of A we demand that K be the divergence of 
the future pointing normal (or convergence of past pointing 
normal). Surfaces of positive K are then concave up in the 
asymptotic regions t = + (r + (3IK)2)1/2. This rule about 
the sign of A leads to a smooth surface through the turning 
point (whereA 2 = 0), and implies that A switches sign at this 
point. 

A particular K-surface is specified, and hence can be 
integrated by computer, if we giveH, K, one "point" (I', t) on 
the surface, and the sign of A. [This latter choice specifies on 
which side of the throat of this K -surface the point (r, t ) will 
be.] We can regard r as a parameter within the surface; there­
fore,the spherically symmetric K-surfaces in Schwarzschild 
space-time form a three-parameter family. One parameter is 
the surface's constant mean curvature K itself, another the t­
translation from some fiducial surface (e.g., that surface, of 
the same K and H, whose throat occurs at u = 0). The third 
parameter H measures how much the intrinsic and extrinsic 
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curvature varies on the K-surface. This is shown by Eq. (13) 
which becomes in the Schwarzschild case (or for any spheri­
cally symmetric metric with Be = 1) 

K/ = K 13 +2H 1r3, Kf)° =K",'" =K 13 - H 1r3. 
(22) 

When H = 0, the extrinsic curvature tensor has the covar­
iant constant, isotropic, "pure trace" form Kab = !Kgab . 
Similarly, when H = 0 the Ricci tensor has the simple form 

R/ = -2mlr3 -2K2/9, 

(23) 

i.e., the Schwarzschild maximal slice value supplemented by 
the isotropic, covariant constant tensor - (2K 2/9)gab' The 
intrinsic metric is given by Eq. (12): 

rijdxidxj = (1 -2mlr +K 2rI9y1d,z + rd{)2. (24) 

(This is the unique family of spherically symmetric three­
dimensional metrics with constant scalar curvature 
R = 2K 2/3, which also occurs as the geometry of the maxi­
mal, t = const slice of the "Schwarzschild solution" with 
nonvanishing cosmological constantA = K 2/3). In the gen­
eral case, when H =f. 0, we can consider the value H to be a 
measure of the deviation from this "homogeneous and iso­
tropic" behavior of the curvatures. 

For each fixed value of K there exist values H. and H_ 
such that all surfaces with H < H_ or H > H. contain one and 
only one singularity, while those with H_ < H < H. contain 
either two singularities or none at all. TheH = H.or H = H_ 
surfaces are the homogeneous, r = const sufaces ofEq. (19) 
(see also Fig. 1). From the explicit form of A 2 ofEq. (21), we 
see that the constant values r ± corresponding to H ± must 
satisfy 0 < r_ < .75 < r. < 1. Further, we find that for K > 0 all 
nonsingular surfaces (H_ < H < H.) which intersect the re­
gion u > 0 have minimum r greater that r., while the nonsin­
gular, K> 0, surfaces intersecting u < 0 have minimum r 
greater than r_. The maximum values for r on the double­
singular surfaces obey similar inequalities.6 

For any given K-surface, there is a corresponding em­
bedding which may be obtained by integrating Eq. (17) eval­
uated for the Schwarzschild case 

± (drldz)2 = 1 - r4/[r3 - (H - !Kr3n (25) 

The appropriate sign for (dr I dZ)2 is determined by the sign of 
the right-hand side ofEq. (25). This also determines whether 
the embedding is Euclidean or Minkowskian. Note that it 
often happens that part of a given surface requires Euclidean 
embedding while the rest requires Minkowskian embedding. 
This happens with some ofthe surfaces of Fig. 1. In Fig. 3, 
we give the embeddings of the surfaces in Fig. 1. All are 
obtained numerically. However, Eq. (25) is simple enough to 
permit a qualitative analysis by the "particle in a potential" 
analogy similar to the above analysis ofEqs. (IS) and (21). 
We omit the details. 

Can one foliate the Schwarzschild space-time using 
K-surfaces? Previous experience with attempts to foliate 
with maximal slices indicates that while the region outside 
the horizon is easily filled (indeed, one may use a set of sur­
faces that all have the same Hand K ), filling the inner region 
is more difficult. 
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FIG. 3. Embeddings of the K-surfaces in Fig. 1. Solid curves show Euclid­
ean embeddings, dotted curves show Minkowskian embeddings. Curves 
need to be rotated about the z axis to generate the embedded surfaces. Note 
that surfaces VI and VII of Fig. 1 (b) have the same embedding as surface I of 
Fig. I(a). 

It has been conjectured, however, that if the full set of 
values of K is used, then a foliation can be achieved. Numeri­
cal support for this conjecture is provided by the family of 
slices sketchep in Fig. 4. For simplicity, all slices were cho­
sen with the throat at u = O. Note that the foliation must 
consist entirely of r = const surfaces for K.;;;O (see figure cap­
tion). We thank the referee for pointing out that the exis­
tence of such foliations can, in fact, be proved on the basis of 
the results of Eardley and Smarr. 3 They show that any K­
surface foliation of the exterior (not only spherically sym­
metric) with constant K approaches the corresponding 
r = r. surface in the limit. It can therefore be extended to a 
complete foliation, as above, by r = const surfaces down to 
r=O. 
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VI. CONSTRUCTION OF LATTICE UNIVERSES USING 
K-SLICES 

Whereas K-surfaces in asymptotically flat space-times 
are relatively unfamiliar, such surfaces have always been 
used in relativistic cosmology, typically as the spaces seen by 
comoving observers. An interesting connection between 
these two realms is provided by "lattice universes." The K­
surface foliations of Schwarzschild space-times prove to be 
quite useful for the construction of such models. These slices 
provide the original Lindquist-Wheeler7 lattice universes 
with a smooth foliation of constant "extrinsic time," which 
corresponds closely to the Friedmann comoving time. In ad­
dition, a larger class of models can be built from K-slices of 
Schwarzschild than from maximal (K = 0) slices. 

Lattice universes are space-times consisting of a num­
ber of Schwarzschild regions (appropriately truncated at 
some finite, time-dependent radius) which are patched to­
gether as closely as possible-so that the violation of the 
Israel matching condition8 is minimized. Explicitly, Lind­
quist and Wheeler built their version by (a) choosing a (finite 
spherical) maximal hypersurface S from Schwarzschild, (bl 
fitting together N copies of S (with a "comparison hyper­
sphere" serving as a template for the fitting) to form an initial 

(a) 

FIG. 4. Foliation ofSchwarzschild-Kruskal spacetime by K-surfaces in 
Kruskal (a) and Penrose (b) diagrams. Only a few typical surfaces are shown. 
Whereas there is some arbitrariness (e.g., in the location of the throat) for 
the surfaces in the past of r = 105m, all surfaces in the future of r = l.Sm 
must be of the r = const type. Namely, since the future r = 0 singularity 
corresponds to collapse (converging normals), surfaces with K < 0 must lie 
to the future of surface with K> O. However from the concavity of K-sur­
faces in the asymptotic region as discussed in the text, one knows that K­
surfaces which emerge from the horizon reach J~ if K > 0, and J- if 
K <0. Hence, in a foliation, K-surfaces of both signs cannot reach nult" 
infinity. 
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(0) 

(b) 

FIG. 5. Embedding diagrams oflattice universes. Figure 5(a) shows the 
typical paraboloid of revolution, generated by the parabola P, which has the 
intrinsic geometry of the equatorial plane of a maximal (t = const) surface 
in the Schwarzschildsolution. This surface can be matched only to "com­
parison hyperspheres", of which two examples SI' S2 are shown, but not to a 
"comparison hyperplane". Figure 5(b) shows how some K-surface embed­
dings do match to a comparison hyperplane H. Two copies of the embedded 
surface are shown to illustrate adjacent cells of a lattice universe. The curve 
generating the surface is half of curve I of Fig. 3. All surfaces are shown only 
up to their throat, and should be continued symmetrically on the top. 

surface SN, and (c) evolving SN into a space-time by letting 
the N regions effectively free fall into each other. Such a 
scheme can never produce an exact solution to Einstein's 
equations because of the irremovable gaps between the 
packed spheres. Nevertheless, Lindquist and Wheeler show 
that a remarkably good approximation can be achieved, one 
measure of which is the accuracy with which the dynamics 
follows that of the "comparison Friedmann model." 

The Lindquist-Wheeler scheme, based on maximal 
slices, can only produce lattice universes which approximate 
the positive curvature (3-sphere) Friedmann models. This 
follows from the fact that the initial surface S N of the lattice 
spacetime constructed from maximal slices is necessarily a 
surface of maximum expansion (recall that the only Fried­
mann universes which contain such a maximal slice are the 
positive curvature models). Figure 5, which shows how the 
embedding diagrams of the N copies of S patch together, 
further illustrates this point. We note also that in the Lind­
quist-Wheeler scheme, only the original "t = 0" surface can 
be smoothly constructed from maximal slices; later and ear­
lier tSchwarzschild = const surfaces have discontinuous slopes 
at the cell boundaries. 
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If, however, we use general K-slices rather than maxi­
mal slices only, then we can build lattice space-times which 
approximate Friedmann cosmologies of every sort-nega­
tive curvature and flat versions as well as the positive curva­
ture types. The construction scheme for these generalized 
lattice space-times is basically the same as that of Lindquist 
and Wheeler. Note, however, that the nonmaximal K-slices 
permit us to follow the evolution of the lattice space-time 
into the future and past, using a preferred, smooth time 
choice. We now describe how this is done, using as an exam­
ple a lattice model which approximates a (intrinsically) flat 
Friedmann cosmology. 

Any K-slice SKin Schwarzschild for which there exists 
a radius Po at which the imbedded surface becomes horizon­
tal (i.e., dz/drlr=po = 0) may be used as the basic cell for the 
initial surface. Such a K-surface (truncated at r = Po) can be 
matched smoothly onto the "comparison hyperplane" 
(which is simply flat Euclidean 3-space E 3); we can therefore 
construct the initial slice for our lattice model by packing 
copies of SK (2-spheres packed in E 3). Of course, with equal 
approximation we could identify cell boundaries and obtain 
a closed lattice universe with 3-torus topology, containing 
one or several Schwarzschild masses. 

As in Lindquist and Wheeler, the dynamical evolution 
of the cell boundaries must be radial free fall in order to fulfill 
the Israel matching conditions8 at the point of contact of cell 
boundaries. We therefore findp(t) by solving the Schwarz­
schild radial geodesic equation. Its solution is 

= - - +2-t 2 ( P )312 (p )112 
m 3 2m 2m 

-In + r, ( 
(p/2m)1/2 +1 ] 
(p/2m) +1 

(26) 

where r is chosen so that t = to where p = Po. [Note that Eq. 
(26) describes radial free fall for a particle at escape velocity, 
i.e., which reaches infinity with vanishing speed. This is ap­
propriate only for the flat Friedmann example now being 
discussed.] The relation r = pit ) from Eq. (26) of course does 
not determine a slice, since we still need H and K. One rela­
tion between H and K is obtained by demanding that the 
slices be smooth across the cell boundaries for all times. 
Since all cells are equivalent and symmetric, this means that 
the slice is orthogonal to the pathp(t) ofthe boundary. This 
relation can be visualized even more directly as the demand 
that the embedding of the evolving slice stay "horizontal" at 
r =p(t): 

(27) 

We might try to complete the job of determining the evolving 
slices by demanding that K match that of the appropriate 
comparison hyperplane. Such a condition is consistent with, 
but not required by, the Israel junction conditions. (For the 
present case, these conditions demand that r rr' r 99' r "''''' 
K 99' and K "'",all be continuous. However, they permit K r r' 

and therefore also K, to be arbitrarily discontinuous.) If we 
do this, we find K (t) = 3(2m/p(t )3)lf2 and H = 0 (all time). 
Thus, the extrinsic curvature is isotropic not only on the 
boundary (where it matches that of the comparison hyper-
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plane), but everywhere. However, these surfaces have the 
undesirable feature of intersecting each other, and they are 
not all symmetric across the same throat u = O. A successful 
alternative is the condition that the surface be, in fact, sym­
metric across this throat. (This condition is necessary if one 
wants to join pairs of throats and thereby form "worm­
holes.") This prescription gives us a K-slice foliation of a part 
of our lattice model space-time. A computer generated pic­
ture of this foliation is given in Fig. 6. 

The lattice space-time cannot, however, be completely 
foliated by this prescription. The reason is similar to that 
given in the caption of Fig. 4: Near the "bang" K must ap­
proach + 00, and near the individual black holes' collapse it 
must approach - 00; hence, on some surface it must be 
zero. However, this K = 0 maximal surface cannot satisfy 
the cosmological boundary condition (27), as one can see 
from the behavior of the effective potential in Eq. (25). (Al­
ternately, one can use the 3-torus identification and note that 
a spacelike surface oflocal volume maximum cannot exist in 
this ever expanding universe.4

) In fact, K = 0 is approached 
only asymptotically by the surfaces constructed according to 
the prescription. The surface r = 1.5m is the limit surface of 

(a) 

FIG. 6. Foliation of a lattice universe by K-surfaces shown in Kruskal (a) 
and Penrose (b) diagrams. Since all cells are identical, only one is shown. 
The edge of the cell is a geodesic G, and it indicates how the universe as a 
whole is collapsing. Only the interior part oftheK-surfaces (shown in solid 
lines) corresponds to the lattice universe. The foliation was constructed 
according to the presciption in the text. All surfaces have K> 0, with K 
decreasing in time. The foliation needs to be supplemented by K = const < 0 
surfaces in the collapse region near the future singularity. The values of K 
and H are as follows, starting from the bottom surface: 

K= 
H= 

2795 

2.3 
-0.1 

1.3 0.90 
-0.06 0.18 

0.60 
0.40 

0.42 
0.45 
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0.24 
0.40. 

infinite expansion. To foliate the remainder of the space-time 
we can fall back on the r = const,..; 1.5m surfaces. These sur­
faces have one disconnected component of infinite volume 
for each of the model's black hole masses, and do not connect 
across the entire universe as the cosmological slices do. 

The construction of the other two types of lattice uni­
verses, with their preferred foliations, is achieved in a way 
very similar to that just described. The only changes are that, 
for the positive curvature Friedmann approximation, we use 
K-slices for which dz/ dr is positive at the boundary and re­
place Eq. (26) with the radial geodesic infall relation of a 
particle dropped from rest at some finite r = R (the maxi­
mum radius); while for the negative curvature Friedmann 
approximation we use K-slices for which the embedding is 
Minkowskian at the boundary, and replace Eq. (26) with the 
free fall relation for a particle reaching infinity with some 
nonvanishing speed. In the former case the prescription 
gives the complete foliation of the space-time,9 while in the 
latter case the constructed surfaces again have to be supple­
mented by disconnected r = const surfaces. Of course, the 
packing of the regions is somewhat different for the three 
types as well. 

VII. CONCLUSIONS 

We have shown how to construct explicitly K-surfaces 
in the Schwarzschild solution, and given some applications 
where these surfaces provide a smoothly matched slicing of 
space-times which are patched together out ofSchwarzs­
child regions. One can use these slices for numerous other 
matching problems; for example, they provide a smooth slic­
ing of collapsing spherically symmetric interior solutions. In 
particular, it is well known10 that an exterior Schwarzschild 
solution, truncated in the center at some radial geodesic, can 
be matched to a section of a dust-filled Friedmann universe 
("collapsing dust ball"). The standard description uses the 
Friedmann homogeneous time coordinate in the interior, 
and Schwarzschild time in the exterior, so that the t = const 
slices, even if continuous, are not smooth. However, the 
same interior slices will smootly fit onto K-surfaces of 
Schwarzschild-in the particular case of collapse from infin­
ity they would be the H = 0 slices we mentioned above, but 
their exterior rather than their interior parts. The slicing of 
matched interior and exterior solutions by K-surfaces for 
marginally bound collapse has been treated by Eardley and 
Smarr. 3 They discuss the details of this type of slicing, note 
some of its disadvantages, and obtain nonhomogeneous inte­
rior K-surfaces as well. 

We have shown by explicit numerical example that 
there appears to be no obstacle to foliating by K -surfaces the 
Schwarzschild space-time, and the various space-times con­
structed from it by patching or approximate patching. This 
is of some interest because the theoremsl

•
3 available today 

about existence of K-surface foliations always involve some 
avoidance assumption which is not a priori known to be sat­
isfied in specific examples. 11 

The K-surface slicing of the Lindquist-Wheeler lattice 
universe provides a very simple explicit example of the "si­
multaneity" of the cosmological bang and "crunch" in a sit-
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uation involving processes of very different proper time du­
ration-the collapse of the individual Schwarzschild 
regions, and the collapse of the universe as a whole. This 
solution also gives a simple example where one can see the 
mixmaster oscillations of Belinsky, Khalatnikov, and Lif­
shitz12 played out. Our K-slices ofa Schwarzschild region, in 
the limit K -+ 00 , show the behavior that one would expect in 
general for a "black hole" region in a cosmological solution, 
and by which one might recognize, when using such slicing, 
that one is approaching that region of the bang or crunch to 
be associated with a black hole: Rather than undergoing the 
general mixmaster oscillations, the metric on these slices 
corresponds to the "zero frequency" behavior where trans­
verse distances shrink to zero, and radial distances expand to 
infinity. No simpler illustration of this behavior can be given 
than the particular K-surfaces on which r = const: For small 
r, Eq. (19) becomes K = ~r-3/2. Hence, the metric on the 
surface, as a function of K-time, is 

de? = (2K /3)2/3dt 2 + (2K /3t4/3df} 2. 

The other regions which one would expect to appear in gen­
eral, and which would show the more general mixmaster 
oscillations corresponding to cosmological collapse, as op­
posed to black hole formation, are of course shrunk to zero 
by the matching assumptions in the special example of the 
lattice universe. 

The lattice universes which approximate "flat" and 
"open" Friedmann universes also illustrate the behavior of 
K-slices when there is local black hole collapse but infinite 
cosmological expansion. In this case, of course, the collapse 
regions cannot be viewed simultaneously as one single 
crunch, because the universe as a whole in fact does not col­
lapse. Here we found that the K-surface foliation initially 
provides connected Cauchy surfaces for the whole universe. 
These surfaces foliate the entire region outside the black 
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holes' horizons, and their volume tends to infinity as K ap­
proaches zero. However, to complete the foliation, discon­
nected surfaces are needed, with one component collapsing 
down on each black hole singularity. 
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Godels cosmological solutions have been generalized by Novello and Reboucas [Astrophys. 1. 
225,719-24 (1978)]. An attempt is made further to generalize their work. A class of solutions is 
obtained which are Godel-like in the sense of Novello and Reboucas, but which have singularities 
at both ends of time. 

1. INTRODUCTION 

Solutions of Einstein equations for the energy-momen­
tum tensor 

(1) 

wherep is pressure,p is density, VI' is velocity, andqJl. is heat 
flux, and the metric 

ds2 = dt 2 + 2A (x,t) dy dt - (m - l)A 2(x)dy2 

_H2(t)dr _F2(t)dx1, (2) 

where m is a constant and the coordinate system is co-mov­
ing, i.e., 

VI' = 0, for /140, 

= 1, for f1 = 0, 

and (3) 

(t,x,y,z) = (xO,X I ,X1,X3
), 

have been sought by Novello and Reboucas. I They have 
shown that such solutions have the interesting property that 
A (x,t) can be expressed as 

A (x,!) = eC'AAt), C a constant. (4) 

Such solutions have been called Godel-like by the above au­
thors. For the metric (2) with a co-moving frame and energy­
momentum tensor (1) the field equations without any speci­
fied equation of state reduce to 

HF= m*C, m* a constant, (5a) 

(5b) 

(m -1) [A'2 + i2 Ai FF"] 
Al F2 AF 

c 2 2i2 + (2m -1) -- - =0. (5c) 
F2 Fl 

Equations (5) have been solved by Novello and Reboucas for 
F= 1. Thisgivesm = ~,p -A = !C 2,p +A = ~C2, where 
A is the cosmological constant, and 

Ait) = eo(t) + 1, where eo is a constant. 

In the present note we shall try to generalize these solutions 
by solving (4) for an equation of state 

p-A=p+A. (6) 

2. SOLUTIONS 

I t has been shown by Novello and Reboucas I that from 

(I), (2), and (3) one gets the tetrad components as 

TIl = T/= T/. 

From (6), (7), and Einstein equation, 

R/=O. 
From (2), (3), (4), (5), and (8) 

Ai'lF = k, where k is a constant. 

(9) and (5b) then give 

m = 1/2. 

From (9), (to), and (5c) we get 

A ~ +8P lnA2 = /2. 

(7) 

(8) 

(9) 

(10) 

(II) 

Now, if k = 0, then we get the solutions by Novello and 
Reboucas, which need not be discussed here. 

If k ~O, we get from (11) 

A - (I' - u')/8k' 
2- e , 

where 

(eI'18k'/4k 2) f e-u'/sk'du=t+D, 

and from (9) and (5a) 

and 

H m*C - ul4k =--e D ' 
where D, D, and / are constants. 

(12a) 

(12b) 

(13) 

It can be easily checked that (10), (12), and (13) togeth­
er satisfy equations (5). They also satisfy (7) and (8) and 
hence the equation of state (6). Moreover in (12) we note 
that, although it has not been possible to express u and hence 
A2 explicitly in terms of t, the integral in the left-hand side of 
(12a) is the familiar distribution function of normal distribu­
tion whose tables are available. 

3. CONCLUSIONS 

From (2) we note that A z = 0 gives detg,,,. = 0 and 
hence a singularity. Therefore from (II) we see that A 2 can 
range from 0 to e" 18k', i.e., increase from 0 to e" 18k' and then 
decrease from el'lSk' to 0. From (12a) we note that atA

1 
= 0, 

u = 00, and at A2 = el'lSk', u = O. Therefore, the time taken 
in going from A2 = 0 to A2 = e"/8k' is (e"/Sk ')14k 2 

X fO' e - u'/Rk' du, which is finite for k ~O. 
Likewise the time taken in going from A z = e"/Sk' to 
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A2 = 0 is also finite, i.e., the system goes from one singularity 
to another in a finite time. 

Thus summarily the solutions of Einstein's equation 
with a metric (2), energy-momentum tensor (1), and equa­
tion of state (6) are either the solutions by Novello and Re­
boucas or are given by (10), (12), and (13). In the second case 
the system has singularities at both ends of time. 

It can also be noted that, if the equation of state is un­
specified, then another class of solutions of (5) can be easily 
obtained by taking i = 1. However, that gives the unphysi-
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cal result, namely p + p < O. 
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The expression for goo as a function of the scalar field IjI is obtained in the general scalar tensor 
theory of gravitation proposed by Nordtvedt and later discussed by Barker, assuming that there 
exists a functional relationship between them. Exact solutions for a plane symmetric static 
gravitational field are also obtained in this theory. Further the calculations are extended for the 
static electrovac with the assumption that here both goo and the scalar field 1/1 are functions of the 
electrostatic potential tP, and the results are different from those previously obtained in the 
corresponding situation of Brans-Dicke theory. 

I. INTRODUCTION 

Within the framework of the general scalar tensor the­
ory of gravitation (Nordtvedt l

) one can allow the parameter 
w to be an arbitrary function of the scalar field 1/1. Recently 
Barke~ proposed a special case of the Nordtvedt's general 
class of scalar tensor theories where the Newtonian gravita­
tional constant G does not vary with time in the homogen­
eous cosmological situation and arguments in favor of the 
this theory were put forward. 

It is worthwhile to discuss the static space-time in this 
theory and one arrives at some new results in this special case 
of general scalar tensor theory where the exact form of w as a 
function of the scalar field 1/1 is obtained from the condition 
that G = const. One can further generalize some of the re­
sults of Raychaudhuri and Bandyopadhyaya3 for a static 
electrovac in Brans-Dicke theory4 of gravitation where 
w = const. 

In Sec. II we consider a general static space-time and 
find the exact form of goo as a function of the scalar field 1/1 
assuming, however, that there exists a functional relation­
ship between them. Such a relation was previously obtained 
by BaneJjee and Bhattacharya5 in Brans-Dicke (B-D) the­
ory. Further we give here an exact plane symmetric static 
solution in Nordtvedt's general scalar tensor theory with w 
given in Barker's form: w = (4 -31/1)/(21/1-2). These solu­
tions are new and reduce to those ofTaub6 in Einstein's 
theory when the scalar field is absent. 

In Sec. III we consider a static electrovac representing 
an electrostatic field alone in the general scalar tensor theory 
of gravitation. Assuming that bothgoo and the scalar field 1/1 
are functions of the electrostatic potential tP we get two rela­
tions, one connecting goo, 1/1, and tP, and the other is a differ­
ential equation relating 1/1, w(I/I), and tP. These relations, 
however, reduce to those previously obtained in B-D theory 
for w = const. Further explicit expressions for both goo and 
1/1 are obtained as functions of the electrostatic potential tP in 

alOn leave from the Department of Physics, Jadavpur University, Calcutta 
700032, India 

Barker'S special case. We have not yet succeeded to get exact 
solutions in particular cases of this static electrovac. 

II. STATIC GRAVITATIONAL FIELD 

The field equations in the metric formulation of Nordt­
vedt can be expressed in the form 

811' w 
GIL" = - W TIL" - 1/12 (I/IIL 1/1" - ~IL" I/Ia I/I~ 

1 
- 1/1 (I/IIL;" - gIL" ° 1/1) (1) 

and 

I/Ia 1/1 a (dw) 
01/1 = - (Zw + 3) dl/l . (2) 

The line element for a static space-time can be written as 
2,/2 d" ds = g~t + gij x'dx', (3) 

with goo and gij being functions of space coordinates only, 
and i,jbeing 1,2, and 3. One of the field equations, which is 
of interest, can be written as 

I/IR °0 = - (w/I/I)I/Iol/lo - 1/1°;0 - !Ol/l. (4) 

Here any subscript J.l indicates derivative with respect to xJl. 
coordinate. Now since for a static metric (1) 

° 1 00 if 1;2 R ° = 2( _ g)I/2 (g g' ( - g) gOO.j),i (5) 

and 1/1.0 = 0, Eq. (4) leads to 

1/1 [g'jgoo( - g)1/2g00j L + [g'V - gl/l; L 
(6) 

Assuming now that a functional relationship exists between 
goo and the scalar field 1/1, and using the wave equation (2), 
one can, in tum, write Eq. (6) in the form 

Here the prime indicates differentiation with respect to the 
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scalar '/I. Now in view of the fact that w = w( '/I), Eq. (7) can 
be written in a slightly modified form, 

['/I(goo/goo)+IL '/Ii = (2m+3).i'/li 

['/I (goo/goo) + 1] 2(2m +3) 
(8) 

We write In['/I(goo/goo) + 1] = X and In(2m +3)1/2 = Y, 
and thus get from (8) the relation 

(9) 

Again since X = X('/I) and Y = Y('/I), Eq. (9) leads to 

X'=Y', 

which in tum, on integration yields 

X= Y + const. (10) 

In B-D theory w = const and consequently Y' = X' = 0 and 
we get X = const. This is the known result in B-D theory 
previously obtained by Banerjee and Bhattacharya. Equa­
tion (10) gives a relation between goo' w, and '/I in the general 
scalar tensor theory of Nordtvedt as 

['/I (goolgoo) + 1] =A (2m +3)1/2, (11) 

A being the integration constant. If w is a known function of 
'/I, goo can be expressed explicitly as a function of '/I on inte­
gration of (11). In the special case proposed by Barker, 
w = (4 -3'/1)/2('/1-1) which has a consequence that the 
Newtonian G turns out to be a constant. It is now easy to 
integrate Eq. (11) if one substitutes for w given by Barker and 
the integration yields the exact form of goo as a function of '/I, 
in the form 

goo '/I = const X e2A tan-'('I' - I)"'. (12) 

Next we proceed to give here an exact solution for a plane 
symmetric static gravitational field in Nordtvedt's general 
scalar tensor theory with w given by Barker's form. The line 
element in this case is given by 

ds2 = e2a(dt 2 _ dx2) _ e2fJ (dy2 + dr), 

where a and P are functions of the x coordinate. The field 
equations (1) and the equation (2) are now explicitly written 
for this metric as 

'/I(f3i +2aJ3I) = w'/lil2'/1- al'/ll -2/31'/11, 

'/I (a II +PII +PD= -w'/li/2'/1-PI'/II- '/III' 

'/1(2/311 + 3Pi -2aJ3I) 

= -w'/lil2'/1+al'/ll- '/111-2/31'/11' 

'/III + 2/31 '/II = - WI '/I1/(2m + 3). 

(13) 

Omitting details of the steps for integration procedure the 
solutions of the set of equations (13) can be finally written in 
the form 

e2a = k (ax + b Y< -1)/2 cos2 1n[d (ax + b )Y</2], 
(14) 

e2{J = (ax + b) cos2 1n[d (ax + b )Y</2], 

and 

'/I = sec2 1n[d (ax + b )Y</2] , 

where a, b, c, d, and k are all arbitrary constants appearing in 
the processes of integration. It can be easily verified that the 
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solution (14) obtained in the static plane symmetric case are 
consistent with the relation previously derived in (2) in a 
more general situation. When we put c = 0, '/I = const and 
the solutions (14) reduce to those given by Taub6 in general 
relativity. 

III. STATIC ELECTROVAC 

In this section we extend our discussions to the case of a 
static electrovac, where the electrostatic field existing can be 
represented by the non vanishing field tensor FOi with 

i = 1,2,3, and further FOi = tP,i> tP being the electrostatic po­
tential. Then Maxwell's equation can be easily expressed as 

(15) 

For an electromagnetic field the energy momentum tensor is 
written in the form 

41TT,.v = - F,.aFv a + ~,.vFapFafJ, (16) 

and in view of (16) one gets from the field equations (1) the 
relation 

o 00 "A. 0 0 '/IR 0 = g g"'I'itPj - (wl'/l)'/I '/10 - '/I ;0 - ~o'/l. (17) 

Since the field is static '/1.0 = 0 and Eq. (17) reduces to 
o 00 "A. 0 ) '/IR 0 = g g"'I'itPj - '/I ;0 - !O'/l, (18 

and in view of (2), (5), and (18) one can immediately write 

'/I (googij( - g)1/2g00J>.i 

= 2googij( - g)1/2tPitPj - gOOgij( - g)1/2g00J '/Ii 

- (g.ij( _g)1t2'/1).i' (19) 

Now if one assumes that both goo and '/I are functions of the 
electric potential tP, which is, however, trivial for many spe­
cial cases of symmetry, one can obtain from Eq. (19) the 
relation 

[googij( _ g)1/2g00tPj '/I L 
= 2googij( - g)1/2tPitPj - (g':;( - g)1/2~ >.i , (20) 

with prime denoting differentiation with respect to tP. Again 
sincegOQKoo = I, it is easy to show in view of Maxwell's equa­
tion (15) that 

(gij( _g)1/2'/1).i =googij( _g)1/2tP/ goo '/l'),i' (21) 

In Brans-Dicke theory 0'/1 = 0, and in consequence one 
gets the condition goo '/I' = const. In Nordtvedt's extended 
theory, however, in generalgoo'/l' is a variable. Using (21) 
and Maxwell's equation (15) in (20), one can immediately 
obtain 

(22) 

Writing now S (tP) for [(goo'/l)' - 2t/J], which is a function 
of tP, Eq. (22) can be represented in the form 

(gijtPitPj)S' = 0, 

which leads one to the conclusion that S' = 0 for a nonvan­
ishing electric field, or in other words, 

(23) 

a being the integration constant. Integrating (23) one can 
write finally the relation connecting goo, '/I, and tP in the form 
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(24) 

b being another integration constant. It may be noted that 
the relation (24) is identical with that obtained by Ray­
chaudhuri and Bandyopadhyaya in Brans-Dicke theory 
even if in our case (j) is not a constant. 

In the next step we prove that for a static electrovac in 
Nordtvedt's general scalar tensor theory 
gool/l' a: (2@ + 3>-1/2, with(j) as function of 1/1. The proof is as 
follows. 

The wave equation (2) for the scalar field can be written 
as 

( ) 1/2 
(g.ij( _g)I/21/1'~j),i = - (~:3) ij«(j)'I/I'~i~j' (25) 

Since in view of gooKOO = I and Maxwell's equations the left­
hand side of (25) can be replaced by 

[gOOij ( - g)I/2~j] goo,i 1/1' + i j
( - g)I/2~i~j 1/1", 

one can easily reduce Eq. (25) to the form 

goo + 1/1" (j)' 

goo ~ = - (2@ +3) , (26) 

which, in tum, on integration finally yields the relation 

goo 1/1' = (2@ ~ 3)1t2 ' (27) 

where C is the integration constant. 
One can now write in a straightforward way from (24) 

and (27) 

1/1' C 
--- = ------~~--------1/1 (2@ + 3)1/2(~ 2 + a~ + b) . 

(28) 

If (j) = const, the relations (27) and (28) reduce to those in 
Brans-Dicke theory. We can proceed further to find the ex­
plicit functional relationship of goo and 1/1 with the electric 
potential ~, provided we know the exact form of (j) as a func-
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tion of 1/1. For this we choose Barker's form 
(j) = (4 -31/1)/(2qt -2) mentioned previously in Sec. II. 
With this for (j) Eq. (28) can be written in a modified form 

qt' C 
qt(l/I_l)1t2 - ;2+a;+b' (29) 

It is now a differential equation relating qt with; and yields 
on integration 

(
"'" + a) - (a2 _ 4b )1/2 )C/2(Q' -4b)'" 

1/1 = sec2 InC ~ 
I (2; + a) + (a2 -4b )1/2 ' 

for a2 > 4b, 

1/1 = Sec2(C2 - C ), for a2 = 4b, (30) 
(2; +a) 

and 

1/1 = Sec2(C3 + C tan-I (2; + a) ) 
(4b - a2)1t2 (4b _ 02)1t2 ' 

foro2<4b, 

where CI, C2, and C3 are constants of integration. 
The relations (30) express qt as a function of the electric 

potential and one can now obtain a straightforward way the 
value of goo as a function of ~ by using Eq. (24). 
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Ordinary Cauchy evolution determines a solution of a partial differential equation only within the 
domain of dependence of the initial data surface. Hence, in a nonglobally hyperbolic space-time, 
one does not have fully deterministic dynamics. We show here that for the case of a Klein-Gordon 
scalar field propagating in an arbitrary static space-time, a physically sensible, fully deterministic 
dynamical evolution prescription can be given. If the cosmic censor hypothesis should be 
overthrown, a prescription of this sort could rescue deterministic physics. 

1. INTRODUCTION 

The cosmic censor hypothesis of classical general rela­
tivity states that all singularities of gravitational collapse are 
hidden within black holes; that no "naked singularities"­
visible to a distant observer-<an be produced. A stronger 
version of this hypothesis recently proposed by Penrose! as­
serts that any physically reasonable spacetime must be glo­
bally hyperbolic. The solid theoretical evidence in favor of 
even the weaker form of this conjecture is still rather meager, 
consisting mainly of the analysis of spherical collapse and 
perturbations of spherical collapse2 together with proofs of 
the impossibility of obtaining certain types of counter exam­
ples.3 Indeed, the unaesthetic aspect of adding objects other 
than black holes as possible endpoints of gravitational col­
lapse is probably more responsible than the above solid e~i­
dence for the widespread belief in the validity of the cosmIc 
censor hypothesis in its weak form. 

One of the main unaesthetic features of the lack of glo­
bal hyperbolicity is that by definition, there is no initial data 
surface whose domain of dependence is the entire space­
time. If naked singularities are formed in gravitational col­
lapse, even the distant, asymptotically flat region of the 
space-time fails to lie in the domain of dependence of an 
initial surface. Thus, in nonglobally hyperbolic space-times, 
the dynamical equations cannot predict from initial condi­
tions what happens in certain regions of the space-time. 
Physically, the reason for this is that singularities are present 
and the dynamical equations say nothing about what can (or 
cannot) come out of a singularity. Unless some additional 
type of boundary conditions can be imposed upon the singu­
larity, a complete breakdown of predictability occurs in any 
region of the space-time where the singularity can be seen. In 
specific examples, it may be possible to invent boundary con­
ditions on a singularity which yield a sensible, deterministic, 
dynamical evolution. But given the infinite variety of patho­
logies of singularities, it might well seem a hopeless task to 
invent a sensible general prescription for dynamical evolu­
tion in the presence of arbitrary singularities. 

'>Supported in part by NSF Grant PHY 78·24275 and by the Alfred P. 
Sloan Foundation. 

b'Sloan Foundation Fellow. 

The purpose of this paper is to show that this task may 
not be quite as hopeless as it may at first appear. We shall 
consider the evolution of a Klein-Gordon scalar field in an 
arbitrary static space-time (with arbitrary singUlarities con­
sistent with staticity). We will show that the problem of de­
fining the dynamics can be translated into the problem of 
finding self-adjoint extensions of the spatial part of the wave 
operator. But the problem of finding self-adjoint extensions 
(as opposed to the problem of defining boundary conditions 
on singularities) is a well studied problem and, since the op­
erator considered here is positive, it is known that positive 
self-adjoint extensions exist. Indeed, a natural choice of ex­
tension-namely, the Friedrichs extension-<an be defined. 
Thus, the problem of defining dynamics of a Klein-Gordon 
field in a nonglobally hyperbolic, static space-time can be 
solved by using the prescription defined below in Sec. 2, 
choosing the Friedrichs (or another) self-adjoint extension. 
The methods and results below are special to the K.lein­
Gordon field in static space-times. However, the results indi­
cate that if it should become necessary to abandon the cos­
mic censor hypothesis, it may well be possible to retain well 
defined, deterministic, physically sensible laws of dynamical 
evolution. 

In Sec. 2, the dynamical evolution prescription is de­
fined and shown to satisfy the following properties: (1) Solu­
tions are uniquely determined throughout the space-time by 
their initial data; (2) Where ordinary dynamical evolution is 
defined (i.e., in the usual domain of dependence of the initial 
surface) the results coincide with the evolution prescription 
given here; (3) For smooth initial data of compact support, 
the solution is smooth throughout the space-time. Thus, our 
prescription defines a physically reasonable dynamical 
evolution. 

Finally, in Sec. 3 we attempt to gain some insight into 
the meaning of the prescription in terms of "boundary condi­
tions on singularities." We show that if the singularity of the 
space-time is an artificial one, that is, for an extendible space­
time (so that a smooth boundary can be attached to the origi­
nal manifold), the prescription defined by using the Frie­
drichs extension corresponds to putting zero Dirichlet con­
ditions on the boundary. Thus, one may view the dynamical 
prescription of Sec. 2 (using the Friedrichs extension) as a 
means of generalizing the notion of Dirichlet boundary con­
ditions to arbitrary naked singularities in static space-times. 
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2. PRESCRIPTION FOR DYNAMICS 

Let (M,gl'v) be a static space-time, i.e., one that pos­
sesses a one parameter group of isometries with everywhere 
timelike orbits which are hypersurface orthogonal. We wish 
to consider the propagation of a massless Klein-Gordon sca­
lar field t/J, satisfying 

VI'VI't/J = O. (1) 

Suppose we specify initial data for t/J on a hypersurface .I 
orthogonal to the static Killing field 51'. If the space-time is 
not globally hyperbolic, .I will not be a Cauchy surface and 
data on .I will determine t/J only in the domain of dependence 
D (.I). OutsideD (.I), the partial differential Eq. (1) does not 
determine t/J. Our aim is to formulate a physically sensible 
prescription for determining t/J everywhere. 

To do so, we rewrite Eq. (1) in the form 

(2) 

where V 2 = - 5iL51" t denotes the Killing parameter, and 
Da denotes the derivative operator on the hypersurface.I. 
We may then view 

(3) 

as an operator on the Hilbert space 2 of square integrable 
functions on.I. If we choose the volume element used to 
define 2 to be V-I times the natural volume element on.I 
and if we initially define the domain of A to be C O'(.I) (i.e., 
the smooth function of compact support on.I ), then A will be 
a positive, symmetric (but not self-adjoint) operator. In this 
way, we may reformulate the problem of solving the partial 
differential Eq. (1) into the problem of finding a one-param­
eter family t/Jt of vectors in 2 satisfying 

(4) 

Our reformulation, Eq. (4), is not strictly equivalent to the 
original Eq. (1): the time derivative in Eq. (4) is a Hilbert 
space derivative rather than a partial derivative at fixed spa­
tial position and with the present definition of the domain of 
A, t/Jt must lie in CO'. These modifications do not yet improve 
our ability to solve the dynamical equation. However, we are 
now in a position to further modify Eq. (4) to yield ourdyna­
mical prescription. 

Let A E denote a positive self-adjoint extension of A. 
Because of the positivity of A, at least one such extension­
the Friedrichs extension A F-always exists.4 We replace Eq. 
(4) by 

and, in turn, replace Eq. (5) by its solution in terms of its 
initial data t/Jo and />0' 

(5) 

t/J, = cos(A !(2t )t/Jo + A E 112 sin(A !(2t )/>0' (6) 

Here the operators cosA !(2t and A E 112 sinA !(2t are defined 
using the functional calculus of self-adjoint operators.5 .6 

They are bounded operators (with IIcosA !(2t II = 1 and 
IIA E 112 sinA !(2t II = t ), and thus can be defined to act on all 
vectors t/Jo and />0 in 2. For t/Jt defined by Eq. (6), it follows 
from the type of argument used in the proof of Stone's theo-
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rem6 that fort/Jo and/>o in the domain ofAE , d 2t/Jt1dt 2 indeed 
exists (in the strong limit sense) and satisfies Eq. (5). Finally, 
it is. clear that at.t = 0, t/Jt reduces to t/Jo, while dt/J I dt reduces 
to t/Jo, so t/Jo and t/Jo are correctly identified as initial data for t/J. 

Our prescription for defining the dynamics of t/J is thus 
the following: We prescribe a positive, self-adjoint extension 
A E of A. The allowed initial data consists of all t/Jo and />0 
lying in the domain of A E • (Actually, />0 need only lie in 
domA !(2.) In particular, since domAE ::JdomA, all CO' 
specifications of t/Jo and />0 are permitted. The solution corre­
sponding to this initial data is then defined everywhere [not 
just in D(.I)] by Eq. (6). 

Having defined our prescription, we now turn to show­
ing that it is physically sensible. Specifically, we first shall 
show that our solution Eq. (6) reproduces the solution ofEq. 
(1) determined by ordinary Cauchy evolution in the region 
D (.I ) where Cauchy evolution is defined. Then we show that 
for initial data in CO' (or, more generally, for initial data in 
domA ~ for all k) our solution, Eq. (6), is smooth throughout 
the space-time. 

Let if; denote the solution obtained by ordinary Cauchy 
evolution in D (.Io) ofEq. (1) with, say, smooth data (t/Jo,/>o) in 
domAE specified on the initial surface .Io. Suppose t/Jt dif­
fered from if; in D (.Iol. Then there would be a static hypersur­
face.I l (corresponding to time t = tl) such that, viewed as 
L 2-vectorson.IlnD (.Io)' wehaveif;t, i=t/Jt,. LetSbeaCauchy 
surface for D (.Iol which coincid~s with.I I on an open region 
where if;t, i=t/Jt, (see Fig. 1). Letft, be a smooth function on S 
with compact support contained within SnIl such that 

i V-Ii., (if;t, - t/Jt,)i=O, 
snI, 

(7) 

where here and in the following the natural volume element 
is understood in all integrals and the factor of V -I is explicitly 
put in to yield the volume element used in defining 2. De­
finefthroughout D (.Io) to be the ordinary Cauchy evolution 
of the initial data (f = 0, j = i.,) on S; setf = 0 outside 
D (.Io) in the region between.Io and .II' Thenfsatisfies Eq. 
(1) throughout the region between.Io and.I I and the restric­
tionft of/to any hypersurface.It lying between.Io and.Il 
lies in CO' (.It). 

Consider, now the quantity 

c(t) = r V-1{f*( aif; _ d¢Jt)_ af* (if;-t/Jt)}. (8) 
J.s, at dt at 

A simple calculation yields 

~~ = 1, V-I{f*(~:~ - ::~t )- a;~* (if;-t/Jt)}' (9) 

But, sincefand if; are smooth solutions ofEq. (1) andfis of 
compact spatial support, a straightforward substitution of 
~. (2) to get rid of the time derivatives followed by integra­
tIOn by parts shows that the terms in if; cancel. On the other 
hand, using Eq' (5), together with the fact that 
a 2 f fat 2 = - Aft = - AE ft, the terms in t/Jt can be ex­
pressed as, 
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FIG. 1. The construction used in the proof that <P, agrees with usual Cauchy 
evolution in D (.2'(1)' 

{ V - I { _ f* d V), + a2 
f* ifJ } 

JJ;, dt 2 at 2 ' 

= (/'.AEifJ,) - (AE/"ifJ,) 
=0, 

since A E is self-adjoint. Thus, we have 

deldt = 0. 

(10) 

(11) 

However, by construction e(t \) =1= 0 and from the definition of 
e(t) together with the assumption that t/J and ifJ, have the 
same initial data on I o, we have e(to) = 0. This contradiction 
proves that t/J and ifJ, must agree in D (Io). 

Next, we show that our evolution prescription yields a 
smooth solution if the initial data is in C o (Io) or, more 
generally, if ifJo and ~o lie in domA ~ for all positive integers k 
(If ifJ and ~() are in Co (Io), they clearly lie in domA k 

e domA ~.) If ifJo and ~o are C 00 but not in domA ~ for all k, 
it is possible that our solution will still be smooth but our 
method of proof fails. 

From the definition of ifJ" Eq. (6), it follows immediate­

ly that if ifJo,~o E domA~, then ifJ,EdomA ~ and indeed, 

A ~ifJ, = cos(A 1(2t)A ~ifJo +A £112 sin(A )(2t)A ~~o. (12) 

Thus, letting X denote the vector on the right-hand side of 
Eq. (12), we see that for all gEC 0 (I,) we have, 

(ifJ,.Akg)=(x,g). (13) 

Equation (13) states that ifJ" viewed now as a distribution, is 
a weak solution of the partial differential equation. 

A kcP, = X. (14) 

But, on any open set fleI, with compact closure, A k is a 
strongly elliptic partial differential operator of order 2k. 
Furthermore, since X is in JY' it is certainly in Wo(fl), where 
W m (fl ) denotes the mth local Sobolev space4 of fl. Conse­
quently, it follows from an elliptic regularity theorem of 
Friedrichs7 that cP,EW2k (fl). But Sobolev's lemma4

.
8 then 

implies (for I three-dimensional) that cP,EC 2k - 2(fl). Since 
both k and fl are arbitrary, this implies cP,EC OO(I,). 
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Thus, we have shown that for fixed t our solution is a 
smooth function of the spatial variables. Differentiability of 
cP, with respect to t in the (strong) Hilbert space sense follows 
from the type of argument used in the proof of Stone's theo­
rem.6 Smoothness of the t-derivatives in the spatial variables 
then follows from a repetition of the above argument. How­
ever, as already noted above, the existence of the Hilbert 
space derivative with respect to t is not equivalent to the 
existence of the partial derivative with respect to t at fixed 
value of the spatial variable. Fortunately, we can prove 
space-time smoothness of our solution cP at an arbitrary point 
p as follows. Let,);, denote the static hypersurface passing 
throughp. We have already shown thatonIt , cPt anddifJ,ldt 
are smooth functions. Therefore, the ordinary solution t/J to 
the partial differential Eq. (1) with this initial data will be 
smooth throughout D(I,). But, by our previous result cP 
agrees with t/J in D(I,). Since D(I,) certainly includes p, this 
shows that cP is smooth at p in the space-time sense. 

3. THE FRIEDRICHS EXTENSION AND DIRICHLET 
BOUNDARY CONDITIONS 

In the previous section our dynamical evolution pre­
scription was defined and shown to satisfy a number of rea­
sonable conditions. However, these results do not shed light 
on the physical meaning of the prescription in terms of 
"boundary conditions on the singularity." In this section we 
shall attempt to gain insight into this issue by studying our 
prescription-using the Friedrichs extension4 AF of A-in 
the rather trivial case where the "singularities" are produced 
by "cutting out holes" from the space-time. More precisely, 
we consider the case where the given static space-time M is 
extendible to a larger static space-time M I and the boundary 
in M I of each static hypersurface I is a smooth two-dimen­
sional manifold. We shall show that our requirement that cPo 
and ~o (and thus that our solution ifJ,) lie in the domain of A F 
implies "Dirichlet boundary conditions" for cP" i.e., that cP, 
vanish on the boundary of,); in M '. In other words, our 
solution is the one that would arise physically by putting a 
grounded conductor at the boundary of I. For the case of 
true singularities (i.e., an inextendible space-time) this result, 
of course, is not applicable. However, it does indicate that we 
may think of our dynamical prescription (using the Frie­
drichs extension A F) as defining a generalized notion of Dir­
ichlet boundary conditions applicable to true singularities. 

We first demonstrate our result in the case of a two­
dimensional space-time, taking the static hypersurface I to 
be simply a finite interval (a,b ). The operator A in this case is 
simply 

A = - V (x) ~(V(x)~) , (15) 
dx dx 

w here, by the extendibility hypothesis, V approaches a finite, 
nonzero limit at the endpoints of the interval. Now, the do­
main of the Friedrichs extension, A F , of the operator A [de­
fined on the initial domain C o(I)] is contained within the 
closure of C 0 (I) under the norm 

IIfl12 = (J,f) + (f,Af). (16) 

(Indeed, the Friedrichs extension is the unique self-adjoint 
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extension of A satisfying this property.4) But, using the ex­
plicit form of A, Eq. (15), forfEC 0' we have 

(f,Af) = f V(x) I ~~ 12 dx. (17) 

Consequently, the norm defined by Eq. (16) is equivalent to 
the first Sobolev norm off Since ~ is one-dimensional, con­
vergence of a sequence of CO' functions in the first Sobolev 
norm implies uniform convergence of these functions. 8 

Hence, every function in the domain of A F is continuous 
(since it is the uniform limit of a sequence of continuous 
functions) and can be continuously extended to a function 
that vanishes at the endpoints of the interval (since every 
function in the sequence can be so extended). Hence, in the 
case where ~ is ont>dimensional, every solution rp, defined by 
our prescription satisfies Dirichlet conditions on the bound­
ary of~. 

The argument is similar for the case where ~ is three­
dimensional and has a smooth two-dimensional boundary in 
the extended space-time. Again, the domain condition, Eq. 
(16), of the Friedrichs extension implies that rp, is locally in 
the first Sobolev space. However, in three dimensions this 
does not imply that rp t is continuous so we cannot necessarily 
even speak of the numerical values of rp, as one approaches 
the boundary. However, it does imply that the restriction of 
rp, to a two-dimensional hypersurface in ~ defines a locally 
L 2-function.4 Our aim is to prove that for rp,EdomA F the 
restriction of rp, to two-dimensional surfaces varies continu­
ously and (viewed as an L 2-vector) vanishes as one goes to 
the boundary. To do so, we pick an open set on the boundary 
with compact closure and in a neighorhood of this portion of 
the boundary construct geodesic normal coordinates, thus 
obtaining a one-parameter family of two-dimensional sur­
faces Us which approach this part of the boundary as s-o. 
Fix a smooth function g with support contained within a 
compact region r where the geodesic normal construction is 
valid. (g is not required to vanish on the boundary.) Let 
fEC 0' (~ ) and define 

h (s) = L gJ, (18) 

where the natural volume element induced on Us is used in 
the integral. Then, using the Schwarz inequality, we find 

Ih (sW<C1 1/112, 
a, 

(19) 
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where C) and Cz depend on g. Hence, we have 

f dS(lh 12+ I ~~ n 
<C3 L(1/1

2

+ I is n 
<C3 L (111 2 + IDa 112) 

<C4 L(v -11/12 + VID aI12) 

<C4 L (V-11/1 2 + VIDa/IZ) 

= C4 1(J,f) + (f,Af»)· 

(20) 

(21) 

Let {In I be a sequence in C O'(~)whichapproachesrp, in the 
norm, Eq. (16). By Eq. (21) hn(s) will converge in the first 
Sobolev norm. Hence, as in the one-dimensional case, its 
limit 

(22) 

will be a continuous function which vanishes as s-O. Since g 
is an arbitrary smooth function, this yields the desired result 
that rp, (viewed as a locally L 2-function on u,) varies con­
tinuously with s and goes to zero on the boundary. Thus, in 
the three-dimensional case, our prescription also yields Dir­
ichlet boundary conditions. 
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Integ~als over antico~muting variables are use to rewrite partition functions as fermionic field 
t~eones. The method IS used to solve the two-dimensional Ising model, the planar close-packed 
dlmer problems, and the free-fermion eight vertex model. 

I. INTRODUCTION 

The interplay of field theory and statistical mechanics is 
important. Many complicated field theories have simple un­
derlying statistical mechanics analogues. 1 This supplies 
physical insight into these complicated field theoretic struc­
tures and allows the extraction of the key concepts. On the 
other hand, when a statistical mechanics model is expressed 
as a field theory, various field theory techniques can be used 
such as perturbation theory, operator methods, variational 
methods, functional methods, etc. These are powerful ave­
nues of attack, especially for extracting numbers. In short, 
~h~ statistical mechanics point of view allows one physical 
InSIght whereas the field theory point of view supplies the 
powerful mathematical tools. It is therefore important to 
establish connections between statistical mechanics and field 
theory. It is in this direction that these papers are written. 

We will write statistical mechanics systems as fermionic 
field theories. This is done to systems which a priori have no 
vestige offermionic character. What is involved is a math­
ematical rewriting of the degrees of freedom. A functional 
integral approach is used. This involves integrals over anti­
commuting variables (Grassmann integrals). It has been 
known for a long time that anticommuting variables are nec­
essary for a fermionic path integral formulation. 2 Previous­
ly, however, such integrals were used only in formal ways,3 
rarely being employed in actual calculations. In this paper 
and the following ones they will be used in a practical man­
ner to obtain numbers. They are, without a doubt, powerful 
mathematical tools. 

In short, new mathematical methods are introduced to 
attack statistical mechanics problems by expressing parti­
tion functions as fermionic field theories via Grassmann 
integrals. 

The new anticommuting variable techniques are impor­
tant for two reasons. First, models solvable by previous 
methods are more easily solved using anticommuting varia­
bles. For example, the two-dimensional Ising model is solved 
in one line [Eq. (3.3)], a page of algebra yields the partition 
function [Eq. (3.12)] [later on graphical methods are intro­
duced which solve the model by drawing one picture (see 

"'Supported by the High Energy Physics Division of the United States De­
partment of Energy. 

Sec. IV and Fig. (13)], and in a few more pages all correlation 
functions are computed (see Sec. III of paper II). This is the 
best way to solve the Ising model and compute physical 
quantities. The above statement applies to other two-dimen­
sional models (free-fermion ferroelectric vertex models, 
planar closed-packed dimer problems, etc.). The only two­
dimensional partition functions not yet computed via anti­
commuting variables are those solved by the Bethe ansatz. 

Second and most important, anticommuting variables 
are useful in treating unsolved models. Most physical sys­
tems are not exactly solvable. Therefore, methods which ex­
actly solve models but which cannot be adapted to unsolved 
models are not nearly as useful as those which can handle 
both. The anticommuting variables are in the latter class. 
Papers I and II show that they can solve the solvable models 
with ease. Paper III will show how they can generate viable 
approximation schemes. Although many models have been 
treated,4.S.6.7 the contents of paper III are restricted for rea­
sons for space to one unsolvable class of models, the dimer -
monomer mixing problems. From the anticommuting vari­
able viewpoint they are the simplest models in which to ap­
ply approximation methods. Paper III, in fact, numerically 
solves the monomer-dimer mixing models. In effect, an un­
solvable model is solved.' The point is that anticommuting 
variables yield good techniques for unsolved models. 

Our method is completely new. There are other tech­
niques with which anticommuting variables might be con­
fused. These other techniques are different. There is the op­
erator formalism8•9,10 of Lieb, Schultz, and Mattis which 
solves the Ising model. Their basic Objects are fermionic cre­
ation and destruction operators, bi , b i, which satisfy canoni­
cal commutation relations, bib J + b Jb; = ~ij' The anticom­
muting variables 1];. 1];, completely commute: 1];1]J + 1]J1]; 

= O. Unlike this paper, Ref. 8 used a transfer matrix meth-
od. The two methods are different and anticommuting varia­
bles are much more powerful. Pfaflian methods9

,11 have also 
been used to solve various two-dimensional models. When­
ever the anticommuting variable action is quadratic, it is a 
Pfaffian according to Eq. (2.7) and, in principle, can be 
solved using Pfaffian methods. In this sense and for solvable 
models Pfaffian techniques come closest to anticommuting 
variable techniques. However, these two methods are differ­
ent; many simplifications occur when using anticommuting 
variables, and, of course, Pfaffian methods cannot handle 
unsolved models. 
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What are the advantages of anticommuting variables 
over previous techniques? (A) Anticommuting variables are 
more natural. Grassmann integrals immediately present the 
problem in a powerful familiar form: as a fermionic field 
theory. Standard field theory method become applicable. (B) 
It is easy to express systems in integral form. There are brute 
force methods of doing this. Almost any lattice model with a 
graphical representation is expressible as a fermionic (albeit 
interacting) field theory. The same model often has several 
representations. This is where ingenuity is required. It is im­
portant to be efficient and elegant. Actions involving ~any 
types or large products of variables are useless. ApprOXIma­
tion schemes will yield poor results and a proliferation of 
variables makes manipUlations difficult. (C) Point (B) im­
plies a wide range of applicability. Anticommuting variables 
have been applied to a large number of problems in two, 
three, and more dimensions. Pfaffian technqiues are restrict­
ed to two dimensions. (D) Technical problems are easier to 
handle. With Pfaffian methods every site on the lattice must 
be ordered to determine the overall sign. With anticommut­
ing variables the minus sign problem can be treated locally 
(see Fig. 5 for the rules). Thus, extra minus signs are easily 
determined. Anticommuting variables are simple to manip­
ulate. Given a string of fermionic creation and destruction 
operators a proliferation of terms is generated in getting de­
struction operators to the right of creation operators. Be­
cause anticommuting variables completely anticommute 
there is only one term. Anticommuting variables are more 
like ordinary numbers. It is easier to compute partition func­
tions and correlation functions. The graphic methods of Sec. 
IV greatly simplify the task. (E) The big disadvantage of 
Pfaffian methods is their inability to handle "interacting" 
theories. Pfaffians are too ackward to treat unsolved models. 
Anticommuting variables, however, can handle such sys­
tems and do generate good approximation methods. All the 
techniques of many-body theory are available. This is by far 
their most important advantage. 

Several models have quadratic action representations. 
Among these are the two-dimensional Ising model and the 
two-dimensional close-packed planar dimer problem. They 
are free theories and are exactly solvable. In this paper, these 
two partition functions are explicitly computed (Secs. III 
and IV). This is a straightforward calculation: one trans­
forms to momentum space just as one would do with a free 
field theory. This partically diagonalizes the problem; it 
breaks up into a product of 4 X 4 determinants. Next, graphi­
cal methods are introduced to organize the algebra (Sec. IV). 
They are useful because they are systematic and pictorial. 
Section IV considers the general class of solvable 2-dimen­
sional close-packed dimer problems on various lattices. A set 
of rules is derived which quickly computes partition func­
tions. These rules are illustrated using the square lattice. 
Next, the rules are extended to general free theories. This 
means that, given any quadratic action, there is a simple and 
quick calculational procedure. 

II. INTEGRALS OVER ANTICOMMUTING VARIABLES 

This section will review 12 needed properties of integrals 
over Grassmann variables. More details may be found in 
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Ref. 12. A set of N Grassmann (or anticommuting) variables 
are objects, l1a (a = 1,2, ... ,N), satisfying 

l1a 11f3 + l1fJl1a = O. (2.1) 

In particular, 11~ = O. Taking sums and products the most 
general construct is 

1 = 0 0 + LOa l1a + L aaf311a 11f3 
a a<f3 

+ ... + a123 •.. N111112···l1N' (2.2) 

with the a's real or complex numbers. Functions of these 
variables are defined via Taylor series, which because ofEq. 
(2.1) terminate at the Nth order. Equation (2.2) is the most 
general function, an Nth order polynomial. 

The anticommuting variable integral of a function,/. of 
the form of Eq. (2.2) is defined by 

J dl1l== J dl1J d112· .. dl1NI=a 123 ... N· (2.3) 

The only term which contributes is the one where each 11 
occurs precisely once, the sign being determined by the order 
(for example, f dl1J d112112111 = -1). Often l1'S are associ­
ated in pairs (or conjugates), one of which will have a dagger 

(i.e.,l1a and 11~)' This is convenient for determining the sign 
of an integral. For these the measure is defined as 
f dl1 dl1 t=f dl1J dl1T ... dl1Nd111. 

Statistical mechanics problems will involve spins, 
atoms, bonds, etc. at sites, x, to which anticommuting varia­
bles will be assigned. The variable, x, will range over the 
region of interest; for a cubic crystal this might be a three­
dimensional lattice so that x = (a,/3,r) has integer coordi­
nates. Often several variables are needed at a site, in which 
case, an additional label, r, is required, and the l1's will ap­
pear as 11~, 11~ {r = 1,2, ... ,T 1 for Ttypes. Graphically l1x 
and 11! may be represented by an 0 and an x at x. Different 
types may be distinguished by using different colors. The 
important point to remember is that a contribution to an 
integral occurs only if each site is covered by one 0 and one x 
of each color (type). 

Key properties of these integrals which are conse­
quences of Eq. (2.3) are the following: 

1. Shift 01 variable: Given Ja which anticommute with 
themselves and with all the l1'S, 

(2.4) 

2. Change o/variables: Let r/Ja = ~fJAaf311fJ (with A in­
vertible) be linear combinations of l1'S and hence an equiv­
alent set of anticommuting variables. Then 

J dl1/(l1) = (detA) J dr/J/(A -Jr/J). (2.5) 

Contrast this with normal (i.e., Riemann) integration where 
there is a factor (detA) - J rather than (detA) in Eq. (2.5). 

3. Quadratic and quadratic-like actions: 

J dl1 dl1t exp(?; l1aAa(3111) = detA, (2.6) 

J dl1 exp( ~ ?; l1a Aa{311fJ) = PfA, (2.7) 
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f d1J d1Jt f df/! df/!t exp (~ 1Ja 1J~Aapf/!pf/!1) = pennA, 

(2.8) 

f d1J d1Jt exp (~ ~ 1Ja 1J~Aa/31J/31J1) = hfA. (2.9) 

These are respectively the determinant, Pfaffian,13 perma­
nent, and hfaffian of A. Permanents and hfaffians are deter­
minants and Pfaffians without the sign of the permutation 
factor. In Eqs. (2.7) and (2.9) A must be even-dimensional. 
In Eq. (2.7) A may be chosen to be antisymmetric. In Eq. 
(2.9) it may be chosen to be symmetric, but must have zero's 
along the diagonal. These equations are easily proved by ex­
panding the exponents: permutations of products of Aaf3 are 
obtained with the appropriate combinatorial and sign fac­
tors. Equation (2.6), however, is easier to prove by trans­
forming 1Jt~A ~ 11Jt and using Eq. (2.S). 

Anticommuting variables are powerful objects. Let us 
prove the well-known result 14 that (Pt:4 )2 = detA for an anti­
symmetric even-dimensional matrix. Usual proofs are quite 
cumbersome. Using Eq. (2.6) and rewrite 

1Ja = .Ji.(1J~) + i1J<;», 1Ja+ = .Ji.(1J~) - i1J<;», 

d1Jad1J~ = id1J~) d1J<;). Since A is antisymmetric 1JaAa/31J1 
= (1!2)1J~)Aa/31J~) + (l/2)1J<;)Aa/31J~) (the cross terms can­

cel). The exponent factors into two exponents and the inte­
gral factorizes into two integrals, each of the form of Eq. 
(2.7). 

Finally, one may take derivatives of anticommuting 
variables. For example, (d Id1J 1)1JI = 1, (d Id1JI)1J2 = O. All 
the usual rules of differentiation hold except for minus signs 
in the product rule due to anticommutation relations. Thus 

(d Id1J1)(1J21J I) = «d Id1J1)1J2)1J I -1Jid Id1J 1)1JI = -1J2' 
These derivatives act to the right. Derivatives acting to the 

<-
left are defined analogously: 1J Id I d1J I = 1. A powerful tool is 
the following: 

4. Integration by parts: Given two functions,/andg, 

f
d1J/Lg= fd1J/Lg. (2.10) 

d1J d1J 
In conclusion, anticommuting variables may be manip­

ulated, integrated, and differentiated much like ordinary 
variables except that anticomutation must be taken into 
account. 

III. THE SOLUTION OF THE TWO-DIMENSIONAL ISING 
MODEL AND THE FREE-FERMION 8-VERTEX MODEL 

The partition functions of a large number of statistical 
mechanics systems have representations in terms of anti­
commuting variable integrals. There are brute force meth­
ods of doing this. They require many types of anticommut­
ing variables and have actions containing many terms 
involving products of many variables. Space limitations pre­
vent us from illustrating these methods.4 Instead, I will focus 
on models having simple representations. This paper will 
consider (solvable) models with quadratic actions. The third 
paper will treat interacting models with quartic actions. 
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Many partition functions which have a graphic repre­
sentation are expressible as anticommuting integrals. The d­
dimensional Ising modells has such a graphical representa­
tion,9.11.14 where one sum's over closed nonoverlapping but 
(posssibly) intersecting polygonal curves; in two dimensions 
this is obtained by drawing curves separating regions of up 
spin from down spin. There is a Boltzmann factor for each 
unit of "Bloch" wall. Alternatively, one may use bond varia­
bles l6 (which works in any dimension) for which there is a 
similar representation with different Bloch wall Boltzmann 
factors. 

Let us consider d = 2. Then 

ZISing ( Jh , Jv ) = / Zclosed polygons (Zh ,zv), (3.1) 

where ZIsing (Jh , Jv ) is the Ising model partition function, 
with horizontal and vertical spin couplings Jh and J y , 

Zclosed polygons (Zh,zy) is the partition function for closed non­
overlapping polygons with Boltzmann weights, Zh and Zv for 
horizontal and vertical Bloch walls, and/is a multiplicative 
factor: 

/= exp[N(f3Jy +/3Jh )], 

Zh = exp( - 2/3Jy ), 

Zy = exp( - 2/3Jh ), 

where N is the number of sites. 

(3.2) 

The closed polygons should be considered as particle 
trajectories (vacuum bubble loops). The particles should be 
fermions so that polygons cannot overlap. 

I will use anticommuting variables to draw the poly­
gonal configurations. Two sets of variables will be used at 

each (a,/3) site: 1J~~,1J~, and 1J;:~,1J~~. The superscripts h 
and v stand for horizontal and vertical. Consider 

Zc\osed polygons (Zh,zy) = ( - 1 t f d1Jo d1Jx exp(A ), (3.3) 

where N is the number of sites and 

A = ABioch wall + Acorner + A monomer , 

" ( h
X 

h" yX y" ) ABloch wall = £.. Zh 1Ja/31Ja + 1/3 + Zy 1Ja/31Ja/3+ I , 
a/3 

Acorner = L (al1J~~1J~~ + a31J~~1J~; 
a/3 
+ a21J~~1J~~ + a41J;:~1J~;) , (3.4) 

"(b h" h
X b v" VX) A monomer = £.. h 1] a/31J a/3 + y 1J a/31J ap . 

a/3 
The Bloch wall action produces a unit of Bloch wall in either 
the horizontal or vertical direction (see Fig. 1) weighted by 

)( • 0 

{a,/3} (a+i. (3) 
(a) 

1 (a,/3+ 1 ) 

I {a, (3) 
(b) 

FIG. 1. Block wall operators: (a) is the graphical representation of 
11::'17~·+ 111 which occurs in Eq. (3.4) and produces a horizontal Block wall; 

(b) is the vertical Bloch wall operator. l1:~Tj~~ + l' 

Stuart Samuel 2808 



                                                                                                                                    

J r 
(a ,/3) (a,/3 ) (a,/3) (a./3 ) 

(a) (h) (c) (d) 

FIG. 2. The comer operators in Eq. (3.4): In all cases they occur at the (a,f3) 
site, that is comer operators only change the direction of a curve; they do 
not connect neighboring sites. Although one could use labels to distinguish 
horizontal and vertical variables, it's easier to use the following convention: 
if an 0 or an x has a horizontal line coming into or out of it, it is a horizontal 
variable; on the other hand vertical variables have vertical lines flowing into 
or out of them. For example, (a) involves a horizontal x or T/~~ and a vertical 

o or T/~. The arrow indicates the order, so that this term is T/~ 1/~~, the first 
term in Aco,.., of Eq. (3.4). (h), (c), and (d) are the other three terms. 

the appropriate Boltzmann factor. The term Acorner pro­
duces the four comers of Fig. (2) necessary to construct a 
ploygon. 

The graphical notation in Figs. 1 and 2 is as follows: If a 
horizontal line is attached to a variable it is a horizontal 
variable. Likewise a line joins vertically to a vertical variable. 
Arrows denote the order of variables. The arrow originates 
from the first anticommuting variable and terminates on the 
second one. In this way Figs. l(a) and l(b) can precisely be 
associated with the terms in AB10ch wall' Likewise for Fig. 2 
and the comer action. Expand the exponent in Eq. (3.3). By 
the "golden rule" of Grassmann integrals, each site must 
have a horizontal x and a and a vertical x and o. The x's and 
a's link up to form precisely the Ising model polygons. The 
sides of polygons cannot overlap because the square of an 
anticommuting variable is zero. Likewise, the double cor­
ners of Fig. 3 do not occur; a single comer uses up both 
horizontal and vertical variables. Each polygonal configura­
tion is included precisely once. Finally, Amonomer fills all un­
occupied h and v sites with 0 - x pairs (monomers). I have 
allowed for the most general quadratic form by weighting 
comers with ai • This more general model is known as the 
free-fermion model. The eight possible configurations which 
can occur at a site are shown in Fig. 4 with their weights. 
There is an extra ( - 1) for each site because of the ( - 1) N in 
Eq. (3.3). For the Ising model set all ai = bh = bv = - 1. 
Although the action in Eq. (3.4) produces the polygonal con­
figurations, it may not necessarily produce them with posi­
tive weight. This could be upset due to reordering of anti­
commuting variables. The Appendix deals with these kinds 
of minus signs. The result is the extra minus in Fig. 4(h). In 
general, it is quite easy to determine the overall sign using 
three rules. These are given and illustrated in Fig. 5. 

-+- -1-
(a) (b) (c) 

FIG. 3. Intersections. The double comers of Figs. (a) and (b) are not al· 
lowed by Eq. (3.3). When four lines meet at a site they must pass directly 
through as in Fig. (c). 
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(a) T.l +.+ , t + + • 

(b) 
+ t , t 
rt r+ + 

(e) 
t t t t 
(, ft 

(-) bv 

(d) +.t '" +.t 
t t + t 

(-) a, 

( e) +.+", t.. 
t t t t 

(tl + + +J • t + t t 

(g) + t t + 
f+ f+ 

( h) + (-)(-)=+ 

FIG. 4. The eight possible configurations that can occur at a site. When 
disorder variables are used [Eq. (3.2)), the first two columns represent corre· 
sponding spin configurations. In obtaining the weights of column 4 a ( - I) 
factor has been included from the ( - It ofEq. (3.3). The minus signs in (b) 
through (g) may be eliminated because i) there are always an even number of 
(b) and (c) configurations and ii) comers (d) and (t) as well as (e) and (g) occur 
in pairs. Alternatively, one could redefine the b 's and a's in Eq. (3.4) to have 
minus signs. Configuration (h) has an extra minus sign due to reordering of 
anticommuting variables as described in Appendix B. The numbers in col­
umn 4 are easily obtained: For example, the bh of (b) is obtained because a 
vertical bond enters and exits the vertical site and a horizontal monomer 
with bh must fill the empty horizontal site. 

The Ising (and free-fermion) model has been solved. Eq. 
(3.4) represents the solution. It is trivial to compute the par­
tition function (and correlation functions). Equation (3.4) is 
a translationally invariant quadratic action. One treats it as 
one does with any free field theory: go to momentum space 
via Fourier transform. This diagonalizes the problem. Going 

FIG. 5. Sign rules: The rules for evaluating the 
sign of a "dimer loop" are as follows: Pick an 
initial 0 or x (here, 0 is chosen at A) and pro­
ceed around the loop (here, counterclock­
wise). There is a) a minus sign for each x occur­
ring before an 0 (the point, B), b) a minus sign 
for each arrow in the opposite direction (the 
bond, C), and finally c) a minus sign if one 
begins with an x. In this figure the sign is 
positive. 
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to momentum space means writing 

r ~ 1 1 
lla/3 = f.t (2M + 1)1/2 (2N + ly/2 

X (21Tias 21Tif3t ) r 

exp 2M + 1 + 2N + 1 ast • 
(3.5) 

I will always choose a to range from - M to M andp to 
range from - N to N, sot that there are (2N + 1) rows and 
(2M + I) columns. In the Ising model there are 
(2N + 1)(2M + 1) sites. In Eq. (3.5) a;/ are an equivalent set 
of anticommuting variables; s ranges from - M to M and t 
ranges from - N to N. The determinant of this transforma­
tion is one. One should think in terms of the correspondence: 

(a,{3)-(x,y), (3.6) 

( 
21TS 21Tt) 

2M + 1 ' 2N + I ++(Px,Py)' 

The variables s and t are simply momentum variables. Equa­
tion (3.5) implies periodic boundary conditons. These condi­
tions will always be chosen, so that one is working on a 
torus. 17 

In momentum space the action of Eq. (3.4) becomes 

Afree fermion = L [Zh a~tXa~:' exp ( 21Tis ) 
S,I 2M + 1 

yX v"~ (21Tit) + zyastast exp 
2N+l 

(3.7) 

Only (s,t ) and ( - s, - t ) variables are coupled. The integra­
tions can explicitly be done using the definition in Section II: 

L ( 21TS , 21Tt ) 
2M+I 2N+l 

=hsh_svtv_ t -a1a 3(hsvt +h_sv_ t) 

- a2aihs v _ t + h _ s Vt) + (a la 3 + a2a4)2, (3.8) 

where 

( 
21Tis ) hs = bh - Zh exp , 

2M+I 

vt = h
y 

-Zy exp ( 21Tit ). 
2N+I 

The partition function is 

Zfree fermion = (ij L (S,t») \/2, 

which becomes in the thermodynamic limit 

(3.9) 

(3.10) 

1 I" dpx 1fT dpy 
- Phree fermion = -2 -2- -2 InL (Px ,Py), (3.11) 

-1r 1T -1r 1T 

where L is given by Eq. (3.8). The factor of 1/2 is due to 
double counting of (s,t ) and ( - s, - t), Equations (3.8) and 
(3.11) agree with the known result.9

,18 

For the Ising model set a j = by = bh = -1 to get the 
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famous Onsager result19
: 

- Pfrsing 

I J" dp J" dp = - _x_ __y In4 [coshlPJ
y 

cosh2{3Jh 
2 -" 21T - fT 21T 
+ sinh2{3Jh cospx + sinhlPJv COSPy]' (3.12) 

IV. SOLVABLE CLOSE-PACKED DIMER MODELS AND 
THE GRAPHICAL RULES 

In a dimerproblem9,lI,I4 there are a set of sites and a set 
bonds connecting certain pairs of sites. The bonds may ab­
sorb dimers. There is a Boltzmann factor, Zb' associated with 
an absorption. A site may be used only once, so that no two 
dimers may overlap or even touch. Effectively any two 
dimers are infinitely repulsive. There are two kinds of prob­
lems: the close-packed problem in which every site must be 
covered exactly once, and the usual dimer problem (or 
dimer-monomer mixing) problem where some sites may be 
left uncovered, The statistical mechanics of these systems is 
determined by their partition functions. These partition 
functions may be represented as anticommuting variable in­
tegrals. In general, the action contains both quadratic and 
quartic terms meaning that the models are unsolvable inter­
acting theories. The third paper attacks these unsolvable 
problems. This section considers solvable two-dimensional 
close-packed dimer problems. By solvable, I mean solvable 
by the usual Pfaffian methods. II The models will be translat­
ed into Grassmann integral form, from which a series of 
graphical rules will be derived. The treatment used here does 
not differ from the usual Pfaffian treatment. What is gained 
is a simple graphical approach which allows one to rapidly 
solve a dimer problem. Furthermore, the diagrammatic 
methods extend to any free-field-like theory. This section 
serves as an introduction to graphic methods. 

I refer the reader to the standard method of solution. 11 

There are two key points: 
I. Solvability Condition: A planar dimer problem is solv­

able if its bonds may be oriented so that every elementary 
polygon is clockwise odd. Planar means it may be drawn on a 
piece of paper so that bonds do not cross. The bonds are then 
given an orientation. The direction is usually denoted by an 
arrow. A polygon is clockwise odd, if when traversing clock­
wise, one encounters an odd number of bonds oriented in the 
opposite direction. An elementary polygon is a non-self-in­
tersecting polygon made up of bonds which has no bonds in 
its interior. 

II. The Method o/Solution: Fix a standard B configura­
tion which covers the lattice. Each covering (these new ones 
will be called A coverings) when combined with the B con­
figuration results in a set of closed polygons and isolated 
dimer pairs, the partition function of which has a Pfaffian 
representation. 

Condition I and Observation II make the problem solv­
able by Pfaffian methods. 

For every model satisfying I, the Method of Solution II 
can be translated into Grassmann integral form: A bond ori­
ented from point, P, to point, Q, upon which onA -dimer may 
be placed corresponds to a term 'T/p'T/Q in the action. A stan-
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dard B-bond between P and Q corresponds to a term 1]h1]~, 
A -dimer operators are ordered with the graph orientations, 
whereas B-dimer operators are ordered oppositely to the 
graph orientations. The action is schematically of the form 

Adimer = r ZA1]1] + r 1]t1]t. (4.1) 
A-dimers B-dimers 

The Boltzmann factors of A -dimers are Za' whereas B-dimers 
have unit Boltzmann factors. It is not hard to see that this 
action produces the closed polygons and isolated dimer pairs 
used in the Method of Solution II. The signs are all positive 
because of Condition I. This may be proved by employing 
Kasteleyn's theorem2o which is easily proved by induction 
on the length of a polygon and says that the above polygonal 
configurations are all clockwise odd. Associate an undag­
gered variable with an 0 and a daggered variable with an x 
and use the sign rules of Fig. 5. Let 2n be the number of edges 
(it must always be even). If B-dimers were oriented with the 
graphical orientation Kasteleyn's theorem would give a mi­
nus one for rule (b). Instead there is a ( _I)n + 1 because the 
n B-dimers are oriented oppositely. If one begins with an ini­
tial 0 then there are n - 1 x's which occur before o's. So rule 
(a) gives ( - I)n - 1. Rules (a) and (b) combine to give plus for 
the overall sign. 

Some dimer models satisfy 
Simplying Condition (C): A graph satisfies Simplifying 

Condition C if vertices can be grouped into two sets (which I 
call odd and even) such that no two odd (or even) vertices 
have a bond in common. 

When this condition is satisfied, transform 1]-1] t and 
1] t -1] at all even sites. This makes the bilinears in the action 
of the form 1]1] t, the partition function becomes a product of 
determinants rather than Pfaffians, the graphical rules sim­
plify, and calculations are easier to do. The rules will be 
illustrated using the dimer model on a square quadratic 
lattice. 

Graphical Rules When Condition C Holds: or Rules 
When Bilinears Are o/1]1]t Form: 

I. Group vertices into repeating units that fill a square 
array. Use (a,/3) to label the units and use r = 1,2,3, ... ,Tto 
label the different vertices within a unit. 

:> f 2 

o----x 
3 4 3 

(a,,B) 
>E--+-O 

2 I 2 

4 :)3 

(a) 

4 

( I 2 

4 3 
(a,,B) 
*--0 

I 2 

(b) 

4 

FIG. 6. Illustration of Rule 2: Figure (a) shows the (a,,8) unit. There are two 
B-dimers and four A -dimers entirely contained in (a,,8). There are eight A­
dimers which connect sites in Ca,,8) to sites in nearby units. They occur in 
pairs. For example, the upper right A-dimer, 1J~f31J;'~ +1 ,has a partner, the 

lower right A-dimer, 1J~f3- 1 1J~~. Rule 2 erases one bond from each pair. 
Figure (b) is an example of what results. 
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·4 0 .. )( )( ... 0 • 
3 4 4 3 4 

(a, (3) (a,[3 ) 

., x .. 0 0 .... x • 
2 , I 2 I 

(a) (b) 

FIG. 7. Rule 3 for 1J1Jt products: Figure (a) shows the two dimers of Fig. 6(b) 
which start in the (a,,8) unit at sites 2 and 3 and go to the sites I and 4 of the 
(a + 1,,8) unit. Rule 3 says to "fold" these back into the (a,,8) unit as shown 
in (b). Let 0 and x correspond to the anticommuting variables a and at. The 
the a1 a, bond weight gets multiplied by exp(ip,) whereas the a3a1 weight 

gets mUltiplied by exp ( - ip,). 

2. Consider one unit, U. There are two kinds of bonds: 
(a) those which are contained within U and (b) those which 
go from Uto some other unit. Of the latter, [(b)], for every 
bond which goes from a type r vertex in U to type q vertex in 
another unit, there is one bond which goes from a type r 
vertex in another unit to a type q vertex in U. Thus, they 
occur in pairs. Half are to be included in U and the others 
ignored and erased. Figure 6 illustrates this for the square 
lattice. 

3. Keep (a) type bonds as they are. For a (b) type bond 
which goes from an r in U to a q in another unit, "fold" it 
back into U, so that it goes from r to q within U (see Fig. 7). If 
q is an 0 located in a unit m horizontal spaces to the right and 
n spaces upward (m and n may be negative) multiply the 
bond weight by 

(4.2) 

If q is an x multiply the bond weight by the complex conju­
gate ofEq. (4.2), that is 

(4.3) 

Figure 7 illustrates this. Figure 8 shows all the weights in the 
square lattice example after Rule 3 has been carried out. 

4. Rules I through 3 result in a miniature dimer prob­
lem. Solve it by finding all coverings and their weights (see 
Fig. 9 for the square lattice). Call the sum of the diagrams 
L (Px,Py)' The free energy per site,/, is 

1 f71' dp f71' dp -fl/= - _x -y InL (Px,Py)' 
T - 71' 2rr - 71' 2rr 

(4.4) 

The factor of liT occurs because there are T sites per unit. 
Graphical Rules When Condition C Fails: or Rules 

When BilinearsAre 0/1]1/ and 1]t1]t Form: These rules will be 
exemplified by treating the square lattice dimer problem. 

". 

) 

I' 

I 
O~-"I--~)( 

h(-px) 

(a, (3) 

h ( Px) 

)(~--"f---O 

1 

-

v (- pyl 

FIG. 8. The weights for the 
square lattice: Rule 3 applied to 
Fig. 6(b) results in this figure. 
The weights ofth B-dimers re­
mains I as indicated. The A­
dimer weights have contribu­
tions from (a) type bonds as well 
as (b) types. When added they re­
sult in the factors h( Px) = Zh 

[I - expip,)], v(Py) 

= Z, [I - exp(ipy)]. etc. 
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0 .. )( 
0 .. 

1 x .. 0 

t 0 .. )( 

)( .. 0 .. 0 

(a) (b) 

FIG. 9. The two coverings of Fig. 8: The value of (a) is h(Px)h( - Px) 

= r.(2 - 2 cospx)' The value of (b) v(py)v( - Py) = ~(2 - 2 COSPy)' The 
sum of these isL (Px,Py)' When put into Eq. (4.4), the free energy per site is 
obtained. 

exp (iPx1 
4 3 4 ~ • ~ 30 ~ 0 

U - U exp(-IPx1 U2 
I exp(i Px 1 

• ~ ~ t 2 I 
exp (-ipx1 

(a) (b) 

FIG. II. The (b)-type bonds: Fig. (a) shows one r177 (b)-type bond and one 
r/ r/ (b)-type bond. If U is the (a,/3) unit then the two bonds go from the 
(a,/3) unit to the (a + 1. P) unit. Both give rise to two dimers in (b) the 
weights of which get multiplied by the indicated phase factors. 

V-t 

FIG. 13. The miniature dimer problem for the free-Fermion model: The 
upper left 0 and x are a:; , a:;; the lower left are a~;, a~,'; the upper right are 
a", ,,0", _,;thelowerrightareoh

'_, "ah', "Theweightsofbondsare 
as indicated with h, and v, given by Eq. (3.9). 
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4 3 ~ ~ 

u U 3 4 
I 2 I U2 

~ 

~ I 2 

(a) (b) 

FIG. 10. The (a)-type bonds: In Fig. (a), there is anA-dimer and a B-dimer. 
Each of these result in two dimers, one from U, to U2 and one from U2 and 
U, as (b) indicates. The orientation remains the same, so that the A -dimer in 
U which goes from 4 to 3, still goes from 4 to 3 in both cases in Fig. (b). 

(a) (b) 

FIG. 12. The resulting bond weights: Figure (a) shows the resulting A­
dimers and their bond weights. Figure (b) shows the B-dimers. Their 
weights are all unity. Here, h(px) = Zh [1- exp(ipJ) and v(p,) 
= Z, [1- exp(ipy»). When superimposed (a) and (b) give rise to a minia­

ture dimer problem. 

~ (+) r (+) ~ (+) '-- (-) 

a b c d 

f(+) J.-(+) L (+) ) (-) 

a b C d 

FIG. 14. The eight oriented corners and the minus sign factors associated 
with them. 

o 
o -
FIG. I S. The pasting construction: Polygon, P, may be obtained from two 
(possibly self-intersecting) polygons, P, and P2' by cutting open the corners 
and rejoining. There are four (two different types of pairs of corners times 
two orientations) possible pasting constructions. 
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= 

(a) (b) (c) 

FIG. 16. How the minus sign arises: This is just a "fermion" statistics effect. 
The order of operators in an intersection of P is indicated in Fig. (a) and is 
(T}~ 1J~)(17~ 17:)· When Pis decomposed into nonintersecting polygons are in 

Fig. 16. the order of the operators is that of (b) or (c). For case (b). 
("'~17~)(17;"'~) = - ("';7J~)("';1J~). that is. there is a minus sign relative to 
(a). For case (c). (1J;"';)(1]~"";) is also - (1]~1J~)("';1]~). 

Although Condition C is satisfied, the simplifying transfor­
mation will not be performed. 

1. Same as above. 
2. Same as above. 
3. Draw two copies of V. Call them V\ and U2 • For (a) 

type bonds going from r to q draw two lines: one from r in U\ 
to q in V2 and one from r in U2 to q in UI (see Fig. 10). For 1/1/ 
dimers (Le., A -dimers) of (b) type originating at an rin U and 
terminating at a q in another unit, again draw two lines. First 
draw One from r in VI to q in U2 and multiply its weight by 
exp( - impx - inpy), then draw one from r in V2 to q in VI 
and mUltiply its weight by exp(impx + inpy) (see Fig. 11). 
For 1/ t 1/ t dimers (i.e., B-dimers) do the same as for 1/1/ dimers 
but multiply weights by the complex conjugated phase fac­
tors of the 1/1/ case (see Fig. 11). In all cases, if bonds are 
oriented from r to q they remain so, regardless of whether 
they go from VI to V2 or V2 to VI' Figure 12 shows the 
resulting weights for the square lattice. 

4. Solve the miniature dimer problem and call the result 
L (Px'PY)' The free energy per unit site is 

I f" dpx f" dpy -{3f= - - -lnL{px,py}. 
2T -" 21r -" 21r 

(4.5) 

Graphical Rules For A General Quadratic Theory: In 
general, there will be 1/1/t

, 1/1/, and 1/t 1/t products. Two 
copies, VI and V2 , of V are to be drawn. Follow the second 
set of rules, 1, 2, 3, for 1/1/ and 1/ t 1/ t products. For 1/1/ t terms 
use Rule 3 of the first set for the VI copy of Vbut for V2 use 
complex conjugated phase factors. Finally, use Eq. (4.5) and 
rule 4. Figure 13 shows the miniature dimer problem for the 
free-fermion action in Eq. (3.4). The coverings are easily 
summed to give the function in Eq. (3.8). 

V. CONCLUSION 

The novel approach of this paper provides the best 
means of solving the two-dimensional Ising model, the free­
fermion eight vertex models, and the planar close-packed 
dimer problems. 

APPENDIX 

In this Appendix, I will analyze the sign problem asso­
ciated with Eqs. (3.3) and (3.4).The conclusion wi11 be that 
the sign of a configuration of polygons is equal to the number 
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of intersections which occur. This explains the extra minus 
factor in the weight of Fig.4 (h).I will proceed in steps: first 
dealing with an isolated non-self-intersecting polygon, then 
with one that self-intersects, and finally dealing with a multi­
polygonal configuration. 

Consider a closed polygon, P, which does not intersect 
itself. I will show that its sign is positive. Choose a horizontal 
bond of P and proceed to the right (and eventually around 
the polygon). Start at the x and use the rules of Fig. 5. When 
moving upward or to the right no minus signs result from 
rules (a) or (b) because arrows are in the correct direction and 
o's occur before x's. When moving downward or to the left, 
each site has a minus sign from rule (a) and a minus sign from 
rule (b). They cancel in pairs. Next consider what happens, 
when one goes around a corner. There are eight different 
types (see Fig. 14) (two orientations times the four basic cor­
ners of Fig. 2). They are oriented because we are moving 
around the polygon in a particular direction. Figure 14 sum­
marizes the results: only corners of types d and d lead to a 
minus sign. Now use the following theorem (which is easily 
proved by induction on the area of P): Let ma ,mb , etc. be the 
number of type a, type b, etc. corners occurring in an orient­
ed non-self-intersecting polygon, P. If Pis counterclockwise 
oriented then 

ma - ma = 1, 

mb-m;;=I, 

md -mJ = 1. 

(AI) 

This implies that the sign due to comers is ( _l)md( _l)m,{ 
= - 1. For clockwise oriented, P, the theorem holds with 
a~, b ....... ii, etc. Rules (a) and (b) therefore result in one 
minus sign which when combined with the minus sign of rule 
(c) gives an overall plus sign. 

Now consider an oriented self-intersecting polygon, P. 
It may be constructed from nonintersecting ones by the past­
ing construction of Fig. 15. The order of the operators in Pis 
indicated in Fig. I6(a). When they are regrouped into the 
forms occurring in the non-self-intersecting polygons [Figs. 
16(b) and 16(c)J which "compose" P, a minus sign results for 
each intersection as Fig. 16 illustrates. 

Finally, the result holds for multipolygonal configura­
tions because pairs of polygons can only intersect an even 
number of times. Summarizing, an extra minus occurs for 
each intersection [Fig. 4(h)]. 
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By using integrals over anticommuting variables all the correlation functions in the two­
dimensional Ising model and free-fermion eight vertex model are computed. The method is quite 
general and applicable to other solvable systems. 

I. INTRODUCTION 

Paper I represented several models as fermionic func­
tional integrals with quadratic actions. 1 As such they are 
exactly solvable by free-field-theory-like methods. Paper I 
computed the partition functions and established a simple 
set of computational rules. A simple extension of free field 
theory methods yields all correlation functions. The purpose 
of this paper is to do these computations. For the Ising model 
and for the free-fermion eight vertex model this is done in 
Secs. III and IV. For the latter model, this is the first time all 
correlation functions have been computed. This might seem 
quite a task since the model is quite general with six indepen­
dent parameters. The method has actually been used in even 
more complicated models2 and can be adapted to any model 
solvable via anticommuting variables. In fact, there is a sim­
ple three step procedure: First, determine anticommuting 
variable correlation functions in momentum space. This is 
done using free field theory methods. Next, determine them 
in coordinate space via Fourier transform. Finally, relate 
physical correlation functions to anticommuting variable 
ones. Steps two and three are in Sec. II. For the Ising model 
(respectively eight vertex model) step three is done in Sec. III 
(respectively Sec. IV). The result will always be a Pfaffian. If 
physical variables are related in a complicated way to anti­
commuting variables then the Pfaffian can become of cum­
bersome size. This happens with the Ising model. This is not 
the case for the eight vertex model, where, for example, all 
two point correlations are Pfaffians of 8 X 8 matrices. Only 
higher point correlations are Pfaffians oflarge order (n point 
is a 4n X 4n Pfaffian). 

II. ANTICOMMUTING VARIABLE CORRELATIONS 

This section will compute the anticommuting variable 
correlations (or "propagators") for the free fermion model 
[Eq. (1. 3.4»). The configurations and their weights were giv-

8)Work has been supported by the High Energy Division of the United 
States Department of Energy. 

en in Fig. 1. 4. In addition, there are Zh and z. Boltzmann 
factors for each unit of horizontal and vertical Bloch wall. 

The correlation functions will first be calculated in mo­
mentum space and then in coordinate space. This can be 
done using free field theory methods or it can be done graphi­
cally as was done with the partition function in Sec. IV of I. 
One obtains a miniature dimer problem with one fixed bond. 
Space limitation prevents us from describing the method.3 

The results are the following: The nonzero momentum space 
correlation functions are 

(o~;o~;) = (h -s VI v _I - 0103Vt - OZ04V _,)/D (s,t), 
(2.1) 

(0;;0;;) = (h.h _. v _ I - 0103h. - oz04h _ s)/ D (s,t ), 
(2.2) 

(o~·o;;) = 0 1 [h -s v _I - (0 103 + oz04)]ID(s,t), (2.3) 

<o;;o~') = 03 [h _. v _ I - (0 103 + oza4)]1 D (s,t ), (2.4) 

(O~;Oh~ s _ I) = 0102(VI - V _ t)/D (s,t), (2.5) 

(o;;OV~ s _ I) = oz03(h _ s - hs)/D (s,t), (2.6) 

(O;;Oh~._ t) = O2 [(° 103 + 0204) - hs v _ t ]ID (s,t), (2.7) 

(2.8) 
(O;;o·~ s- t) = 0104(h _. - h.)/D (s,t), (2.9) 

(o;;O~S_I) = 04[(0103 + 0204) - hsv _I ]ID(s,t), 
(2.10) 

where hs' v" and D(s,t)==£ (Px,Py) are given by Eqs. (I. 3.8) 
and (I. 3.9). Of course, correlations involving (s,t) and (s',t') 
variablesvanishifneither(s,t)#(s',t')nor(s,t)#( -s', - t'). 

To obtain coordinate space correlations, use Eq. (I. 3.5) 
to express 1/'S in terms of o's, and then use the results ofEqs. 
(2.1 H2.W). The thermodynamic limit can be taken and the 
correlations are 

(2.11) 

(2.12) 
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(1J~~1J~~f3') = f" dpx f" dpy exp[i(a - a')px + i({3 - {3')py ]a l [hI - Px)v( - Py) - (a la3 + a2a4)]IL (Px,Py), 
-" 217' _" 217' 

(2.13) 

(1J~~1J~:f3') = J" dpx JTr dpy exp[i(a-a')px +i({3-{3')py]a3 [h(-px)v(-py)-(a\a3+a2a4)]lL(px,py), 
-" 217' -" 217' 

(2.14) 

(1J~~1J~~f3') = f" dpx fTT dpy exp[i(a-a')px +i(p-p')py]a Ja2 [v(py)-v(-py)]lL(p",py), 
- TT 217' - 1T 217' 

(2.15) 

(1J~~1J~~f3') = J" dpx JTT dpy = exp[i(a - a')px + iIP - {3')py ]a2a3[h( - Px) - h(Px)]IL (Px'Py), 
-" 217' -" 217' 

(2.16) 

(1J~~1J~~f3') = fTr dpx fTT dpy exp[i(a - a')px + i( {3 - {3')py ]a2 [(a Ja3 + a2a4) - h(px)v( - py)]lL (Px'PY)' 
-1T 21T -1T 217' 

(2.17) 

(1J~~1J~~f3')= JTr dpx f" dpYexP[i(a'-a)Px+i(P'-P)Py]a3a4[V(py)-v(-Py)]lL(px,Py), 
- 1T 217' - Tr 217' 

(2.18) 

(1J~~1J~~f3') = f" dpx f" dpy exp[i(a' - a)px + i({3' - P)py ]a la4[h( - Px) - h(Px)]IL (Px'PY)' 
- TT 217' - Tr 217' 

(2.19) 

(1J~~1J~~f3') = JTr dpx JTT dpy exp[i(a' - a)px + i(p' -P)py ]a4[(a la3 + a2a4) - h(px)v( - py)]lL (Px,Py), 
- TT 217' - TT 217' 

(2.20) 

where 

h( Px) = bh - Zh exp(lpx)' 

v(py) = bv -Zv exp(ipy), (2.21) 

and L is given by Eq. (1.3.8). Equations (2.11 )-(2.20) are re­
spectively obtained from Eqs. (2.1 )-(2.10) by replacing h, 
and v t by the corresponding momentum valued functions of 
Eq. (2.21). The factors exp[i(a - a')px] and 
exp [i( P - {3')p ] in Eqs. (2.11 )-(2.20) are translation opera-

y • 
tors. Equations (2.18)-(2.20) have conjugated translation 
factors. 

Equations (2.11 )-(2.20) are the coordinate-space anti­
commuting variable correlation functions for the free-fer­
mion model. 

III. THE ISING MODEL CORRELATION FUNCTIONS 

This section will calculate the correlation function of 
two spin variables in the same row. It will be compared to the 
known result as a check on anticommuting variable tech­
niques. Two horizontal spins are chosen for illustrative pur­
poses only. The approach extends to an arbitrary pair; in 
fact, the vacuum expectation value of several O"'S can be com­
puted. The only drawback is the cumbersome form of the 
answer: a Pfaffian of (in general) large size. In short, every­
thing you ever wanted to know about the Ising model is 
expressible as a Pfaffian. 

We will need the free fermion anticommuting variable 
correlations [Eqs. (2.11 )-(2.20)]. Bond variables will be 
used, in which case the Ising model is related to the free­
fermion (or closed-polygon) partition function 

Zh = tanh{3Jh , Zv = tanh {3Jv , 

a) = a2 = a3 = a4 = bv = bh = -1. (3.1) 

The weights of configurations are given in Fig. 1.4. These 
values must be used (as opposed to the less restrictive condi­
tions a Ja3 = a2a4 = b ~ = b ~ = 1) because correlation func­
tions, unlike the partition function, need not have the same 
number of a I and a3 type comers, a2 and a4 type comers, etc. 
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This is obvious from Eqs. (2.11)-(2.20) where correlations 
are not simply functions of a la3, a2a4, etc. 

Spin variable correlation functions can be considered as 
partition functions on a defective lattice.4

,5 I refer the reader 
to Ref. 5, p. 248-257. This means that spin correlations are 
(up to multiplicative constants) the partition functions of 
Ising models with modified Bloch wall Boltzmann factors 
along selected paths. For example, Z!Sing (0"1,00" m + 1,0) is z;;' 
times the Ising model with the usual Zh and Zv Boltzmann 
factors for all Bloch walls except for the horizontal ones 
between (1,0) and (m + 1,0), where Zh- I is the Boltzmann 
factor. This defective lattice partition function is obtained by 
replacing 

by 

[ 

m hX h" ~ _ 1 ) h X h" ] 
exp a~IZh1Jao1Ja+IO+a":::I(Zh -zhT/a01Ja+IO 

( 

m hX hO ) 
= exp a?t Zh T/a01Ja + 10 

so that 

(O"I,OO"m+l,o) = CUt [Zh +(I-zD1J~~T/~"+IO 1). (3.2) 

Equation (3.2) typifies how spin variable correlations are 
related to anticommuting variable correlations. Equation 
(3.2) can be generalized to the case when the left-hand side is 
the vacuum expectation value of several o-'s. 

For free theories, the following formulas are useful: 

(T/IT/2'''1Jm) = PfMij (for m even), (3.3) 

where 

Mij = (T/;T/j). (3.4) 

If (T/;1J) = (T/I1J]> = 0, then 
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(17r 171171 172"'17~ 17m) = detMij, 

where 

Mij = (17!17j)' 

(3.5) 

(3.6) 

These formulas are the analogs of Wick's expansion. In Eq. 
(3.3) one sums over all pairings of 17'S, the sign of which is 
determined by how many permutations are required to get 
the 17'S in paired form. 

The vacuum expectation value of an arbitrary product 
of spins is expressible as a linear combination of anticom­
muting variable correlations. These vacuum expectation val­
ues can be computed using Eqs. (2.11 )-(2.20) and Eq. (3.3). I 
will demonstrate this for two horizontal spins. 

Equations (2.15) and (2.18) imply 

(17~ 17~'~) = (17~ 17~~) = 0 for all a and p. Apply Eq. (3.5) 

to (3.2). The Zh term of /Zh + (1 - ZD17~17~"+1 0 / in Eq. 
(3.2) multiplies the same factor as the term in the Wick ex-

pansion obtained by contracting 17~ with 17~"+1 0 • Therefore 

(al,oam +1,0 ) = detMij' 
where 

...2 ( h
X 

h" ) Mij =ZhOij +(I-Z);) 17i017j+lo 

[ 
dpx f" dpy [. (. n) = -- --exp lpx )-1/ 

- 1T 21T - 1T 21T 
X{Zh - (l-z~)exp(ipx)[h( -Px) v(py) 

XvI - Py) - v(py) - v( - py)]}IL (Px'PY)' 

(3.7) 

(3.8) 

In obtaining Eq. (3.8), Eq. (2.11) has been used. Equations 
(3.7) and (3.8) express the correlation function of two hori­
zontal spins as a Toeplitz determinant, as is usually done and 
yields the correct result.4

,5 

To calculate the vacuum expectation value of a product 
of spin variables, proceed analogously. It will be equivalent 
to an Ising model on a defective lattice. When expressed in 
terms of anticommuting variables, it will result in an expres­
sion of the form 

(nu's) = «c12 + d 1217 1 172XC34 + d34173174) 

,,(C2m_12m +d2m-12m172m-I172m»' (3.9) 

In Eq. (3.9) 17i denotes an anticommuting variable such as 
h" h X v" v' • 

17a{J' 17a{J' 17a{J' or 17a{J' The vanables CU + 1 and dii + I are 
constants determined by the defective lattice. For conve­
nience write di i + I = didi + I ; any values of di satisfying this 
will do. Wick's expansion along with Eq. (3.3) tells us that 
Eq. (3.9) is 

(nu's) = PfMij, 

where 

M .. = {didj (17i17j ) + Oi+ljCii +l , i odd 
IJ didj (17i17j) -Oi_\jCi_ li , i even 

(3.10) 

(3.11) 

The (1717) correlations are given in Eqs. (2.11 )-(2.20). 

All Ising model spin correlations may be easily calculat­
ed using the above method. The reason they result in such 
cumbersome expressions is the following: The variables 
which solve The Ising model are the 17'S. They might be 
called the mathematical variables because they represent it 
as a free field theory. Correlation functions of anticommut-
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ing variables are simple to compute. Contrast this with the 
spin variables. They are the physical variables. They are, 
however, complicated functions of the mathematical varia­
bles, the 17'S, which means that spin variable computations 
result in cumbersome expressions. In conclusion, there are 
two types of variables, spin variables which have a simple 
physical interpretation but are mathematically awkward to 
work with and 17 variables which do not have as simple a 
physical interpretation but are easy to work with 
mathematically. 

IV. THE FREE-FERMION EIGHT VERTEX MODEL 
CORRELATION FUNCTIONS 

Once a model is solved via the anticommuting variable 
method, it is straightforward to compute anticommuting 
variable correlation functions. It is then possible (in practi­
cally all cases) to compute physical correlation functions. 
This was demonstrated for the Ising model in Sec. III. 

This section calculates all the vertex correlation func­
tions for the free-fermion model described by Eq. (1.3.4) and 
Fig. 1.4 of paper I. It is just a simple extension of the methods 
used in Sec. III. The answer is expressed in terms of a Pfaf­
fian of (in general) a large matrix. A few simple examples are 
worked out [see Eqs. (4.2), (4.4), (4.14), (4.16), and (4.25)]. 
The main result is a set of computational rules. By blindly 
following them, all vertex correlation functions can be 
calculated. 

In Sec. III Ising model spin correlation functions were 
calculated. It is just as easy to calculate vertex correlation 
functions in the free-fermion model [Eq. (1.3.4) and Fig. 1.4). 
Equations (2.11 )-(2.20) are all that is needed. 

Let 

B hX h" a + (I/2JP = Zh 17a{J17a + I{J' 

B v'" VO 

ap + 1/2 = Zy 17ap17ap + I . (4.1) 

Ba + (1/2JP represents the operator which produces a unit of 
horizontal wall between (a,/3) and (a + 1,/3). Likewise 
Bap + (1/2) produces a unit of vertical wall between (a,/3) and 
(a,/3 + 1). IfB 's are inserted in the integral ofEq. (1.3.3) then 
walls must occur where B 's operate. A closed polygon parti­
tion function with contraints that walls be in certain places is 
obtained. Hence 

(Ba + (1/2JP) = the probability that a wall occurs at 

(a + !,/3) 

( hX h" ) 
= Zh 17ap17a + IP , 

(Bap + 1/2) = the probability that a wall occurs at (a,/3 + !) 
= Zy (17~~17~~ + I ). (4.2) 

Because Eqs. (2.11) and (2.12) have computed these anticom­
muting variable correlations, these probabilities are explicit­
ly known. In general 

(B P B I> • .. B 1» a. I a2JJl, a"""m 

= the probability that walls simultaneously occur 

at (al,Pd, (a2,P2k·, (am, Pm)· (4.3) 

In Eq. (4.3) one of the indices a i or Pi is half integer. To 
calculate (4.3) insert the definitions in Eq. (4.1), factor out the 
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Zh'S and zv's to obtain the expectation value of a product of 
2m 7J's. Use Eq. (3.3) to express this as a Pfaffian of a matrix 
M. The elements of Mare the anticommuting variable corre­
lations given in Eqs. (2.11 H2.20). The answer is just a 
2m X2m dimensional Pfaffian (or an 2m X2m determinant 
since (PfM)2 = detM). For example, the probability that 
horizontal walls simultaneously occur at (a + !.p ) and 
(a' + !.P ') is 
(Ba + (1/2)fJBa' + (I/2)fJ,) = ~ [(7J:;'7J~O+ 1.8 > (7J:~p' 7J~~ -\- IP' > 

( h' hO ) (hO h') + 7Jap7Ja' + IP' 7Ja + Ip7Ja'p' 
( h' h' ) (hO bO > ] - 7Jap7Ja'p' 7Ja+ IP7Ja' + IP' . 

(4.4) 

The quantities on the right-hand side ofEq. (4.4) are given in 
Eqs. (2.11), (2.15), and (2.1S). 

A different set of questions can be asked, such as what is 
the probability that one of the configurations in Fig. 1.4 oc­
curs at (a.p). Define 

O (a) (b b ) b" h
X 

v" V
X 

ap = h v - a1a3 - a2a4 7Jap7Jap7JaP7Jap' 

O (h)-b bO hX(1 b VO VX) 
aP - b 7JaP7JaP - v 7JaP7JaP ' 

O (e) b VO VX(1 b b" hX) ap = v 7JaP7JaP - b 7Jap7Jap , 
(d) b X 

VO ( v' b") o ap = al7Jap7JaP 1 - a37Jap7JaP ' 
(e) V

X bX 
( v" h") o ap = a27Jap7JaP 1 - a47Jap7Jap • 

ro ~ ~ ~ ~) o ap = a37Jap7Jap(1 - al7Jap7JaP , 

O (s) VO h" (1 v' hX) ap = a47JaP7JaP - a27Jap7JaP , 

O~ = 1- f O<,iJ 
(j) = (a) 

b h" h' b VO v' = (1 - h 7Jap7Jap)(1 - v 7Jap7Jap) 

X(1 - al7J:~7J~~)(1- a27J~~7J~~) 

(4.5) 

(4.6) 

(4.7) 

(4.S) 

(4.9) 

(4.10) 

(4.11) 

X (1 - a37J~~7J~~ )(1 - a47J~~7J~~). (4.12) 

In Eq. (4.12) the sum letsjbe a through g. The superscripts 
(a), (b), ... ,(h) refer to the configurations in Fig. 1.4, i.e. 0 ~J 
should be associated with Fig. I.4a. The probability that con­
figuration (a) occurs at (a,/3) is 

(O~J> = Prob. that conf. (a) occurs at (a,/3). 
(4.13) 

The reason for this is simple: when 0 ~1 operates all the 
anticommuting variables are used up; no walls can enter the 
(a,/3) site so that nothing can happen (which is exactly what is 
depicted in Fig. I.4a)The factor of (bh bv - ala3 - a2a4 ) as­
sures that this site has the appropriate weight of configura­
tion (a). A similar conclusion is reached for the other 0aP's. 
The probability in Eq. (4.13) is easily calculated 

In general 

(o(e.) o(e,) ··.O(e,,,) > = the probability that sites a,p, aJJ~ a,,/3,,, , 

(4.15) 

(a 1,/31) through (am ,/3m) have configurations (c l ) through 
(cm ). 
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Equation (4.15) is calculated using Eqs. (4.5)-(4.12), Eq. 
(3.3), and Eqs. (2.11 )-(2.20). The result would be a sum of 
Pfaffians. A similar sum was encountered in Sec. III in com­
puting Ising model spin correlations [see Eqs. (3.9)-(3.11»). 
There, it was possible to rewrite this sum as a single Pfaffian. 
The same trick works here. For example, 

(O (b» - (b h" h' ( b VO VX 
afJ - h 7Jap7JafJ 1 - v 7JaP7Jap» 

= (- bhb,)(PfM), (4.16) 

where 

M34 = - M43 = (7J37J4) -lIbv ' 

all other Mij = (7Ji7Jj), 

and the abbreviations 
(4.17) 

~ ~ ~ ~ 
7J1 = 7JafJ 7J2 = 7JafJ 7J3 = 7JaP 7J4 = 7JaP' (4. IS) 

have been used. In other words the contraction between 
7J ~~ 7J ~~ in calculating Pf M (via Wicks theorem or Gaussian 
integration) gets an extra contribution of -lib,. A system­
atic set of rules can be developed to calculate Eq. (4.15) as a 
4m X 4m Pfaffian. 

Ruleslor Calculating Equation (4.15) the Vertex 
Correlations: 

1. Using the following abbreviations for anticommuting 
variables 

h" 
7J41- 3 = 7Ja/3" 

hO 
7J41- 2 = 7Ja/3,' 

v" 
"'41- I = 7Ja/3,' 

7J41 = 7J~PI' 
for 1= 1,2, ... ,m. (4.19) 

2. Equation (4.15) is 

( O(c.) ••• O(c",) ) = (lIm tC'»Pf M
i

, (4.20) a.fJ. a"jJ", ~ 
;=1 

where 

Mij = (7Ji7Jj) +A ij . (4.21) 

It remains to define thef's and A/s: 
3. Thef's are 

I(a) = Ph) = (bb bv - a la3 - a2a4) f, 

Pb) =/(c) = - bhbv , 

I(d) =/(f) = + a\a3, 

I(e) = ps) = + a2a4 • 

(4.22) 

4. The A ij 's are somewhat more awkward to define. A ij 
is antisymmetric in i andj, that is Aij = - Aj ;, so that M in 
Eq. (4.21) is an antisymmetric matrix. Each ofthe m opera­

tors, 0 ~~i' involve the four anticommuting variables at 
(aj3;). It is useful to group these into "clusters". The cluster 

. ed . hOle,) . d 'th 0 (e,) 't' assoc1at W1t a.l3, 1S 7J1' 7J2' 7J3, an 7J4' W1 atfJ, 1 1S 7Js, 
7J6, 7J7' 7Js, etc. If 7Ji and 7Jj are from different clusters then 
Aij = 0 (in fact most Aij are zero). It is thus sufficient to 
define Aij for i andj within the I th cluster. This depends on 
(c[), the configuration associated with the I th cluster. The 
results are tabulated as follows: 
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Configuration 
(a) 

NonzeroAij 
allAij=O 
Aij = -1/bv 

Aij = -1/bb 

Aij = 1/a3 

Aij = 1/a4 

Aij = -1/a l 

Aij = 1/a2 

ijValues 

(b) 
(c) 
(d) 
(e) 
(fj 
(g) 

(h) 

Aij = -bbl/ 
Aij = -bJ/ 
Aij = -all/ 
.Jij = -a21/ 
Aij =a// 
A;) = -a41/ 

for i = 4/ - l,j = 41 
for i = 4/ - 3,j = 4/- 2, 
for i = 4/ - 3,j = 4/, 
fori=4/- 3,j= 4/- 1, 
for i = 4/- 2,j = 4/- 1, 
for i = 4/ - 2,j = 4/, 
for i = 4/- l,j = 4/, 
for i = 41 - 3,j = 41 - 2, 
for i = 4/- 3,j = 4/, 
for i= 4/ - 3,j= 4/- I, 
for i = 41 - 2, j = 41 - I, 
for i = 41 - 2, j = 4/, 

(4.23) 

where/in defined in Eq. (4.22). Equation (4.23) defines.Jij 
for i <j. For i>j, Aij = - A j ;. All other Aij are zero. 

Equations (4. 16H4. 18) form a simple example ofthese 
rules. As a more complicated example let us calculate the 
probability, P ~~p, ~~, ~13' of having simultaneously configu­
rations (a), (c), and (h) at sites (a l,,8I)' (a2,,82)' and (aJ/3)' Set 

M S•6 = (1'/51'/6) - 1/bh , 

M9•10 = (1'/91'/10) - bJf, 

M9.11 = (1'/91'/11) - a2//, 

M 9•12 = (1'/91'/12) - all/, 

M IO•11 = (1'/101/11) + a//, 

M IO•12 = (1'/\01'/12) - a~/, 

M lI •12 = (1'/111/12) - bh//, 

all other 

Mij = (1'/;1'/), (i,j = 1 to 12). 

(4.24) 

The 1'/;'s are defined via Eq. (4.19) for / = 1,2, and 3. The 
answer is 

pIa) (e) (h) = (_ b b )(/)2pfM .. 
a,p, a,/J, a,p. h v lJ ' (4.25) 

where/is given in Eq. (4.22). It is easy to calculate free­
fermion vertex correlations using the above rules. If m con­
figurations are specified the answer is a Pfaffian of a 
4m X 4m matrix. 

I conclude this section with a few remarks: 
Remark (a): It is trivial to adapt the formalism to han­

dle walls and vertex configurations simultaneously. Every­
thing is calculable in terms of a Pfaffian. The probability of 
having a wall as (a,,8) and a (b) vertex configuration at (a' ,,8') 
is easily calculated and would be a Pfaffian of a 6 X 6 matrix. 

Remark (b): When vacuum expectation values are tak­
en, other operators work equally well. For example 

( b h' h" v" V') «) ) 
Zh v 1/a -IP 'TJap'TJap'TJaP = 0 ~ . (4.26) 

The reason for this is simple. Ba -(I/lltJ which iszh 'TJ:'-IP'TJ:~ 
produces a unit of wall which enters the (a,,8) site from the 

left. Because 1/";p'TJ~ uses up the vertical variables at (a,,8) 
this wall must continue straight through thus yielding con­
figuration Ic); it is impossible to use any of the corners at 
(a,,8). 
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In a sense the 0 aP's are not unique; many operators will 
work. Those defined in Eqs. (4.5}-(4.12), however, have the 
advantage of using only those anticommuting variables at 
one site. 

Remark (c): The matrix elements of Min Eq. (4.21) 
involve the anticommuting variable correlations. These, in 
tum, are given in integral form in Eqs. (2. 11}-(2.20). In prin­
ciple, the integrals in Eqs. (2.11 }-(2.20) can be done in terms 
of elliptic functions. 

V.SUMMARY 

Here is a summary of these first two papers. The focus 
of attention was solvable two-dimensional statistical me­
chanics models, in particular, the Ising model, the free-fer­
mion model, and the close-packed dimer problems. The par­
tition functions were expressed as integrals over 
anticommuting variables. In this form they resembled fer­
mionic field theories. The solvable models had quadratic ac­
tions, which were computed by using free field theory 
techniques. 

What else has been accomplished? 
(a) The methods of derivation were new. This was the 

first time Grassmann integrals have been used to obtain 
physical concrete results. These are powerful new 
techniques. 

(b) In a novel and concise manner the Ising model parti­
tion function was computed. Using the formulas in Secs. II 
and III, any spin correlation function can be computed in a 
page of algebra. This includes the vacuum expectation value 
on any arbitrary product of spin variables. This work pre­
sented the simplest and shortest derivation of these results. 

(c) For the first time all correlation functions were com­
puted in the free-fermion eight vertex model. 

(d) New graphical methods were developed which al­
lowed one to compute partition functions and anticommut­
ing variable correlation functions by solving miniature 
dimer problems. This provided a quick and simple graphical 
calculational approach. Many models can be solved by 
draWIng a few diagrams. 

These two papers show that the best approach to solv­
ing these two-dimensional models is through anticommut­
ing variables and functional integrals. 

IS. Samuel, J. Math. Phys. 21,280611980). References to equations and fig­
ures in this paper will be prefixed by a I, e.g. Eq. (1.1.1) and Fig. 1.1 refer to 
Eq. (1.1) and Figs. 1 of Ref. 1. 

2S. Samuel, "The Correlation Functions in the 32 Vertex Model," lAS pre­
print (March. 1980). 

3S. Samuel, "The Use of Anticommuting Integrals in Statistical Mechanics 
II." LBL preprint 8300 (Oct. 1978). which can be found in S. Samuel. 
Ph.D. thesis, Berkeley (1979). 

4E. W. Montroll, R. B. Potts, and J. C. Ward. J. Math. Phys. 4, 308 (1963); 
B. M. McCoy and C. A. Tracy; Phys. Rev. Lett. 38. 793 (1977). 

5See, for example. E. W. Montroll, Brandeis University Summer Institute in 
Theoretical Physics. 19M, edited by M. Chretien, E. P. Gross, and S. Deser 
(Gordon and Breach, New York, 1968). 
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Th: Ising model in t~ree dime~sions is fe~ionized by using integrals over anticommuting 
vanables. Th~ res~lt IS generahzed to the Ismg model in arbitrary dimensions and in a magnetic 
field. App.roxlmatlOn methods are developed to attack unsolved statistical mechanics models. 
PerturbatIon theory and the Hartree approximation are applied to the unsolved monomer-dimer 
problems. The result is a numerical solution to this unsolved class of problems. Anticommuting 
variables appear to be a powerful approach to unsolved problems. 

I. INTRODUCTION 

Two previous papers l
-

3 have applied anticommuting 
variable integrals to statistical mechanics problems. They 
provided a direct and simple way of writing statistical sys­
tems as fermionic field theories. They considered two-di­
mensional solvable models: the Ising model, the free-fer­
mion ferroelectric eight vertex models, and the planar close­
packed dimer models. Anticommuting variables are the best 
way of completely solving these models. All quantities were 
trivially calculable including partition and correlation func­
tions. These models had quadratic actions and were like free 
field theories. 

This paper continues to represent via Grassmann inte­
grals partition functions as fermionic field theories. Now, 
however, only models resulting in interacting theories are 
considered. These models are not exactly solvable, although 
they are amenable to approximation schemes. Because they 
are in field theory form all the techniques of many body 
theory are applicable. This is one big advantage of anticom­
muting variables. There are several (Pfaffian and fermionic 
operator) methods which exactly solve certain models in two 
dimensions. Most physical systems, though, are "interact­
ing" models. These other methods neither go beyond two 
dimensions nor are able to treat unsolvable systems. They 
have limited applicability. Anticommuting variables can 
handle both solvable and unsolvable problems. In the former 
case they efficiently solved the model and in the latter case 
they generate viable approximation schemes. They can per­
turb about a solvable model to obtain results for an unsolva­
ble system. This paper will show how this is done. 

This is just the beginning. This paper uses only two of 
the many possible approximation techniques available. This 
will certainly be an active area offuture research: to establish 
new techniques as well as adapting many-body theory tech­
niques. The number of models to which anticommuting var­
iables can be applied seems limitless. This paper considers 
dimer and Ising models in two, three, and more dimensions. 

"'This work was supported by the High Energy Physics Division of the U. S. 
Department of Energy under contract No. W-7405-ENG-48. 

b)Present address: Institute for Advanced Study, Princeton, New Jersey 
08540. 

Nontrivial models can be represented in fermionic 
functional integral form. To demonstrate this the Ising mod­
el in three dimensions is considered. A four fermion field 
theory is obtained. Next the two-dimensional Ising model in 
magnetic field is treated, and, it, too, is a four fermion field 
theory. In addition, it is represented as a Z2 gauge theory 
coupled to a fermion. Although, these anticommuting vari­
able representations are somewhat complicated they demon­
strate that non-trivial models can be handled. The approxi­
mation methods developed in this and future papers4 can be 
applied to these models, however to illustrate the methods 
the dimer-monomer mixing problem is considered. It is the 
simplest nontrivial model representable in Grassmann inte­
gral form. As such it is quite amenable to approximation 
schemes. It is also of particular interest: many problems can 
be mapped into a dimer-monomer mixing model. 

This paper contains several new results. The following 
list of results, which might be part of the conclusion, serves 
to indicate the contents of this paper. 

In Sec. II the three-dimensional Ising model is ex­
pressed as an integral over anticommuting variables.5 In this 
form it is equivalent to an interacting "fermionic" field the­
ory. This is an important result because this paper's approxi­
mation schemes become applicable to the Ising model. This 
section will form the foundation of future work. The higher 
dimensional Ising models are also written as anticommuting 
variable integrals. This is the first fermionic representation 
of the three-dimensional Ising model. 

In Sec. III the integral representation in Sec. II is adapt­
ed to the two-dimensional Ising model in magnetic field. 
This is also an interacting "fermionic" field theory. Present­
ed next is a representation as a Z2 lattice gauge theory coup­
led to a "fermion". The representations are again extendable 
to high dimensions. Again, this is the first time Ising models 
in magnetic field have been fermionized. 

Section IV deals with dimer models in the abstract, that 
is, the most general dimer model is considered. They are 
expressed in anticommuting variable form and many-body 
field theory methods are applied. Feynman graph rules are 
presented. Perturbation theory turns out to be equivalent to 
the low temperature expansion. The self-consistent Hartree 
approximation is calculated. The Feynman rules are adapt­
ed so that corrections to the Hartree approximation can be 
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calculated. These are computed to sixth order. No specific 
model is considered. The results of Sec. IV are valid for the 
most general dimer model. This is a new expansion. 

In Sec. V the methods of Sec. IV are applied to specific 
dimer models. The lattices include the d-dimensional hyper­
cubic lattices (such as the simple quadratic and simple cubic 
lattices), the planar triangular, the tetrahedral, the bcc and 
the fcc lattices. A special set ofFeynman rules are derived for 
translationally invariant lattices. Embedding graphs (and 
their weights) were found to 5th order for close-packed lat­
tices and to 6th order for loose-packed lattices. This allowed 
a rapid computation of the Hartree-improved expansion to 5 
or 6 orders. The method is carried out to sixth order first for 
the two-dimensional dimer problem and then for the d-di­
mensional hypercubic lattices. This is for the nonisotropic 
case in which Boltzmann factors in different directions need 
not be equal. In the isotropic case, it is found that the d­
dimensional hypercubic dimer problem is exactly solvable as 
d becomes large as long as the temperature is high enough. A 
1/d expansion is presented. A similar analysis is applied to 
lattices with large coordination number, q. All dimer models 
become exactly solvable as q-OCi and a 1/q expansion is 
presented. For lattices with q varying from 4-12, molecular 
freedoms are computed in the pure dimer limit. Even at such 
small q values results are good to several per cent. For the 
isotropic case, previously established low temperature ex­
pansions are combined with Hartree methods to obtain the 
Hartree expansion from 8-16 orders on six lattices. These 
new series expansions accurately represent the six models in 
the entire physical region. In the region where the approxi­
mation method is expected to be the worst, that is, at close­
packing, molecular freedoms are computed to an accuracy 
of a fraction of a percent. Next the density and entropy are 
calculated. At a density of about 90% maximum density the 
density and entropy are calculated to an accuracy of from 
four to seven decimal places. At 50% density the accuracy is 
from six to nine decimal places and at 10% density the accu­
racy ranges from 11 to 19 decimal places. These new series 
expansions are as good as any in the literature. 

The Hartree series represents a numerical solution to an 
interesting class of unsolvable models. The extreme accura­
cy achieved is beyond the requirements of physical or theo­
retical demands. In effect an unsolvable model has been 
solved. 

Anticommtuing variables have been used to obtain 
many, many new results. Space restrictions prevent us from 
presenting all of them but here is a list of what else has been 
accomplished.6 These results will be published elsewhere.4 

1. Other complicated free-fermion vertex models have 
been solved.7 

2. Correlation functions have been computed in the 
free-fermion 32 vertex model. 8 

3. The 1/ N expansion and random phase approxima­
tion have been applied to dimer models. A dimer model with 
a local U(N) symmetry has been solved in a 1/Nlimit. 

4. Partition and correlat.ion functions have been com­
puted for the general one-dimensional polymer system. 
These results have been used to compute transfer matrix ele­
ments for two-dimensional dimer and polymer systems. The 
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two-dimensional extremely anisotropic dimer and polymer 
models have been "perturbatively solved" using these 
results. 

5. Bosonization offermionic systems has been 
discussed. 

6. The free-fermion model has been used to obtain re­
sults for the general unsolved eight vertex model via pertur­
bation theory. Feynman rules have been presented and calu­
clations to second order have been done. 

7. Hartree-Fock equations for the unsolved eight vertex 
model have been derived. 

8. Integral transformations on various models have 
been performed. These include partial integration, real space 
renormalization, rescaling and canonical transformations. 
The Schwinger-Dyson equations have been used to establish 
relations among correlation functions. 

9. Rigorous upper bounds on the free energies have 
been obtained for several systems. 

The anticommuting variable methods developed in 
these three papers are the foundation for all these new re­
sults. They will also be the foundation for future work. 

II. THE THREE-DIMENSIONAL ISING MODEL AS AN 
INTERACTING FERMioNIC FIELD THEORY 

This section expresses the partition function for the d­
dimensional Ising model as an anticommuting variable inte­
gral over an action, that is, a lattice fermionic field theory. 
Unlike the two-dimensional Ising model where the action 
was quadratic,1 the action of the three-dimensional model 
involves quartic as well as bilinear terms. For the d-dimen­
sional model there is a product of2(d -1) anticommuting 
variables. Therefore the d-dimensional model is not of the 
solvable free-fermion form but represents an interacting 
field theory. The construction for the three-dimensional case 
will be explained but the formula will be written for the d­
dimensional case. 

The partition function has a well-known geometrical 
low temperature expansion similar to the two-dimensional 
model except that one must sum over closed polyhedrons 
instead of closed polygons. What kinds of configurations are 
allowed? First, any number of nonoverlapping polyhedrons 
can occur. They may intersect in the manner of Fig. Ia but 
they may not overlap as in Fig. lb. The configuration of Fig. 
1 b would be drawn as in Fig. 1 c. The fact that overlap is not 
permitted makes the use of anticommuting variables ideal. 
Polyhedrons, constructed out of anticommuting variables, 
cannot overlap because the square of a variable is zero. 

(a) (bi (c) 

FIG. I. (a) Intersecting polyhedrons: Such intersections are allowed. (b) 
Overlapping Polyhedrons. Such overlaps are forbidden. This configuration 
would be drawn as in (e). 
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FIG. 2A'ae,' 

Z3_d Ising (JI, J2, J3) a: ZclOsed polyhedrons (ZI' Z2' Z3)' (2.1) 

where ZclOSed polyhedrons (Z I' Z2' Z3) is the partition function for 
nonoverlapping but possibly intersecting polyhedrons in 
which the three types off aces are weighted by ZI' Z2' and Z3 

and 

(2.2) 

In the two-dimensional model, the anticommuting 
variable action that generated Zclosed polygons consisted of 
three pieces: A wall , A corner , and A monomer . A wall drew the sides 
of polygons, Acorner formed comers, and A monomer filled un­
filled sites. Similarly, in three dimensions the action consists 
of three pieces, A face , A corner , and Amonomer . Aface draws the 
faces of the polyhedrons and A corner joins the faces together. 

The expression for ZclOSed polyhedron in terms of anticom­
muting variables is first presented and subsequently 
explained. 

ZclOSed polyhedrons (Z I' Z2' Z3) = f d77 d77 t expA, (2.3) 

where 

A = Aface + Acorner + A monomer . (2.4) 

Only two out of the three types of anticommuting varia­
bles occur at a particular edge midpoint.lf it is an x edge, 
they are the other two types, namely, 772, 772t, 773, 773t . Like­
wise for y and Z edges. 

Aface has three terms. Each draws one of the faces of Fig. 
2. Aface involves a product off our anticommuting variables. 
Together they span a square unit of surface area as Fig. 2 
illustrates. 

These quartic terms have two arrows. These arrows de­
termine the ordering of each of the two bilinears making up 
the quartic. There is never any confusion determining the 
ordering of anticommuting variables from figures such as 
Fig. 2 because bilinears commute. 

The faces in the x direction (for example) can link to 
form larger x directed surface areas (Fig. 3a) but faces in two 
different directions cannot (Fig. 3b). Acorner makes this possi­
ble by using bilinear "hooks". What is needed to link the two 
faces in Fig. 3b is the object in Fig. 3c.1t is of the form, 77 1773

, 

and acts like a hinge. Such objects are needed at the mid­
points of each of the three types edges. Thus, A corner has three 
terms. Figure 4a shows an x edge, the possible anticommut­
ing variables which could enter it, and the comers. The cor­
ners are exactly the same as for the two-dimensional Ising 
model. I Figures 4b and 4c show· the analogous objects for y 
and Z edges. Perhaps a better name for A corner would be A hinge 
because of the manner in which the edges are joined. 
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~ , , 
•• • •• 1 

tl-,o need J but 

UnlInked 

(0 ) (b) (c) 

FIG. 3. Linking: (a) The faces of Fig. (a) can form larger area elements. Here 
five faces link. (b) But a face in the x direction is unable to link with a face in 
the z direction. The object in Fig. (c) is needed. 

Finally, monomers are needed to fill empty sites. These 
monomers are similar to the two-dimensional case. 

In short, the comer and face actions correspond to the 
simple pictures in Fig. 2 and 4. One should always think in 
terms of these pictures. 

A moment's thought reveals that the action [Eq. (2.4)] 
generates closed polygons ofthe type needed in Eq. (2.1). If 
faces are weighted by the appropriate Boltzmann factors 
[Eq. (2.2)], then, up to a minus sign, the correct weights are 
obtained. A minus sign might be generated because of anti­
commuting variable reordering. The anticommuting varia­
bles must be put in 7777 t form. This involves anticommuting 
operations, each of which yields a minus factor. Fortunately, 
all terms are indeed positive: the quartic terms can be broken 
up into the product of the two bilinears. The bilinears are 
only able to combine with comers in a two-dimensional 
plane. They generate planar closed polygons like the ones in 
the two-dimensional Ising model.) By choosing the same bi-

(a, fJ+ 1/2, Y + 112/ 

(a + 112, fJ, y + 112) 

(0) 

(b) 

c/ 
--0 If--+-

/ 
( c) 

JL 
ir 

FIG. 4. Aeomc<' To the left is the edge and its coordinates. In the middle are 
the possible anticommuting variables which could enter. These variables 
come from A 'ace • To the right are the four types of comers needed to link 
faces. 
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(a) (b) (c) 

FIG. 5. The Minus Sign Problem: (a) A cube of polyhedron. (b) The anti­
commuting variables used to construct the cube trace out this object. (c) By 
breaking quartics into products ofbilinears, the object factorizes into a 
product of three planar polygons. Reordering minus factors reduce to the 
planar case. 

linear ordering as in a two-dimensional model, all terms are 
guaranteed to be positive. Effectively, the minus sign prob­
lem reduces to the two-dimensional case. Figure 5 illustrates 
this. 

For the d-dimensional Ising model, use objects of di­
mension d - 1 (the low temperature expansion). The action 
consists of bilinear terms plus interacting 2(d - 1) products 
of anticommuting variables: 

Apolycomplex = A(d-l)face + Acorner + Amonome .. (2.5) 

cyclically 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

The ej are unit vectors in the ith direction. 
The notation needs explaining. Begin with the spatial 

labels. When spins have integer cartesian coordinates, the 
polyhedrons, being drawn on the dual lattice, involve half­
integer coordinates. 

The anticommuting variables sit at edge midpoints. 
There are d types: 'fl, i = l...d (along with their dag,gered 
partners), which refer to anticommuting variables associated 
with ith directions. Conventions used here are: 0 and x indi­
cate undaggered and daggered variables; a line in the ,oth di­
rection attached to an anticommuting variable indicates that 
it is of the loth type; the subscripts indicate an anticommuting 
variable's cartesian coordinates; and arrows denote the or­
dering of bilinears. 

III. THE TWO-DIMENSIONAL ISING MODEL IN A 
MAGNETIC FIELD 

This section expresses the partition function for the 
two-dimensional Ising model in background magnetic field 
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in two ways. The first way uses anticommuting variables 
only. It has quartic terms in the action and hence is an inter­
acting fermionic field theory. The second representation is of 
"mixed" form: using both anticommuting variables and bo­
sonic variables. It is, in particle physics language, a Z2lattice 
gauge theory9.10 coupled to a fermion. From a particle physi­
cist's point of view this is an interesting representation: the 
four-dimensional counterpart is a model for quark 
confinement. 

Let H be the magnetic field. In what follows it is neces­
sary for H to be positive (or zero). 

The two-dimensional Ising model in magnetic field is 
again equivalent to a closed polygon partition function. In 
addition to polygonal sides being weighted areas must also 
be weighted. There is a factor of 

ZA = exp( -2{3 H) (3.1) 

for each square unit of polygonal area. Treat the two-dimen­
sional system as a three-dimensional system which is one 
unit thick in the Z direction. Draw polyhedrons around re­
gions of down spin in lieu of polygons. This transforms the 
problem into the Zclooed polyhedron type of Sec. II. Take the 
action in Eq. (2.5) for d = 3 but restri,ct positioIl sums to be in 
the Z = 0 to Z = I layer. Use ZI and Z2 of Eq. (2.2) to weight 
faces in the x and y direction but use z~/2 for Z3 (the square 
root of ZA appears because Z3 enters twice once in the Z = I 
plane and once in the Z = 0 plane, for each square unit of 
polygonal area). Thus the two-dimensional Ising model in 
magnetic field has been represented as a four-fermion inter­
acting field theory. Of course, the construction works in d­
dimensions by using Eq. (2.5) for the (d + I)-dimensional 
Ising model and restricting the (d + I )th direction to be one 
unit thick. The action involves bilinears and products of 2d 
anticommuting variables. 

The task of weighting areas can also be done using a 
gauge field. Pretend, for the moment, that the polygons (or 
more precisely, the polygonal curves) are oriented. Think of 
such curves as charged particle trajectories, the orientation 
being associated with the direction of flow of charge. Cou­
pling them to an Abelian gauge theory (as in quantum elec­
trodynamics) would weight the polygon's area because 
(I + I)-dimensional QED has a linear potential. Unfortu­
nately, the curves in Zclooed polYBon [Eq. (13.1)] are not oriented 
and this trick fails. Fortunately, the difficulty can be over­
come by using a Z2 gauge field instead of a U( 1) one. Being 
blind to the difference between positive and negative 
charges, a Z2 gauge field works. The result is 

ZIsing (Jh,Jv' H) = f' L f dll dll t expA, (3.2) 
uo + 1/2tJ= ± 1 

Ua/l+ 1/2 = ± I 

where the action, A is 

A = AWalJ + Acorner + Amonomer + Az., (3.3) 

A,,?rner, and Amonomer are the same actions as in I Eq. (1.3.4) 
(wlth a l = a2 = 0 3 = 04 = bv = bh = - I). AWalJ is modi-
fied to ht h 

AWalJ = ~ (lla/Jlla + IpZh Ua + J/2fJt 

(3.4) 
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and 

AZa =K~(Ua+I/2,8 

X Ua+ IP+ 1/2 Ua+ 1/2,8+ I UaP + 1/2)' (3.5) 
In these formulas 

Zh = exp( - 2f3Jv I, 
Zv = exp( - 2f3Jh), 

tanh K = exp( - 2{3H I, 

f' = exp(NpH) exp PN(J + J I 
(4 cosh K)N v h' 

= (8 sinh ~ )N /2 exp PN (Jv + Jh)' 

(3.6) 

Again, the method generalizes to higher dimensions. 

IV. COORDINATE SPACE PERTURBATION THEORY 
FOR THE GENERAL DIMER PROBLEM 

This section and the following section will deal with the 
dimer problem. This constitutes a whole class of problems 
since there are many lattices at one's disposal. The dimer 
problem is not only important because of its direct applica­
tion to physical systems, II but also because of the large num­
ber of problems which can be mapped into dimer form. This 
enhances their importance. The only models which have 
been solved are the one-dimensional dimer model and two­
dimensional close-packed models. Approximation methods 
are therefore of interest. My purpose will be twofold: First, 
the anticommuting variable technique will be used to obtain 
new dimer series expansions. These represent new ap­
proaches to the dimer system. Secondly, in the process of 
obtaining the expansions, various anticommuting variable 
approximation techniques will be illustrated. Dimer models 
are a good laboratory for testing these because of their sim­
plicity and because of other existing approximation schemes 
to which they can be compared. The importance of these 
sections is that the approximation techniques are applicable 
to any model representable in fermionic-like field theory 
form (such as the models discussed in Sees. II and III). One 
merely mimics the methods illustrated here. 

An extensive set of dimer references can be found in 
Ref. 12, to which the reader is referred. I would like, howev­
er, to mention the following: Previous approximation 
schemes fall into the following catagories: First, there are 
thosel3 which solve exactly small finite lattices and then ex­
trapolate to large lattices. This technique is known as the 
exact finite method: A close cousin is Monte Carlo. 14 There 
are also transfer matrix methods. IS These give excellent nu­
merical results. Next is the Bethe approximation. 16 It is of 
interest because of its simplicity both mathematically and 
physically and because of its accuracy which is reasonable. 
There are ways of calculating corrections to the Bethe ap­
proximation. 17.18 Rigorous mathematical dimer results also 
exist. 12.19 The importance of Ref. 12 should not be neglected. 
With reasonable assumptions Heilmann and Lieb have 
shown that no phase transition can occur as long as mon­
omer Boltzmann factors are nonzero. The result is general. 
It is applicable to almost all dimer models. Phase transitions 
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can only occur for pure dimer systems. Finally, there are the 
series expansions. The simplest is the low temperature ex­
pansion in powers of the dimer Boltzmann factor. This can 
be organized into a Mayer type expansion.20.21.22 A great 
improvement is Nagle's series. 18 It starts with the Bethe ap­
proximation and generates a series using graphical methods. 
It systematically calculates corrections to the Bethe approxi­
mation, which, because it is a good starting point guarantees 
an excellent series. Nagle's series is presently the best in the 
literature. The Hartree series developed in this section 
equals Nagle's in accuracy. It is a new expansion. The field 
theoretic Hartree method is used after expressing the dimer 
problem as a fermionic field theory. Since dimers cannot 
overlap, fermions are natural variables: roughly speaking, 
dimers constructed out of fermions are unable to overlap 
because of the Pauli principle. The perturbative techniques 
developed here are easily extended to other systems such as 
trimers or more complicated polymers. Nagle's method has 
also been extended to trimers23 although more complicated 
polymeric systems have not been treated. A final note: Ref. 
12 has an important implication for this paper's Hartree se­
ries (and also Nagle's series). It guarantees convergence in 
the entire physical region. 

This section will treat the dimer problem from a general 
point of view: A specific example will be considered in the 
next section. Key results are the Hartree approximation [Eq. 
(4.8)] and the Hartree-improved Feynman rules which gen­
erate the series in Eq. (4.12) and Fig. 10. 

The general dimer model is an interacting fermionic 
field theory with a quartic interaction term, 

I 
V = 2' ~ZaP71a 71~ 71p711· (4.1) 

One sums over all sites a and all sites P allowing zaP to be 
zero if no bond exists between a and p. The factor of 1/2 
compensates for the double counting in Eq. (4.1) (zaP==ZfJa). 

The interaction, V, is pictorially depicted in Fig. 6 and is 
ofthe same form as a two-body potential in a quantized 
many body theory.24 This correspondence proves useful. 
The bare propagator, G~, is determined by the quadratic 
piece, that is, l:a 71a 71~' It is 

G~==(71a 711)0 = 8aP · (4.2) 

Perturbation theory is an expansion in powers of V (or 
zaP). Since zaP = exp( - PEaP ), this is the standard low tem­
perature expansion: 

Perturbation Theory = Low Temperature Expansion. (4.3) 

Feynman rules are similar to the usual many body theory 
ones.24 One draws all graphs using the interaction of Fig. 6. 
Because ofthe nature of the bare propagator in Eq. (4.2), 
fermion loops occur at a particular site. It is convenient to 

FIG. 6. The dimer potential. 
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contract all fermion loops to a point. Figure 7 shows all the 
connected vacuum bubbles to third order, first in the usual 
way and then in the contracted form. The Feynman rules for 
contracted graphs are: 

(a) Draw all topologically distinct graphs, consisting of 
any number of vertices. The vertices can have one or more 
lines attached to them. The vertices are assigned a site index, 
a. The empty graph is to be included and contributes one. 

(b) For each edge associate a factor, zaP' 

(c) For each vertex at a with lIines emanating from it (a 
vertex of degree I) put in a factor of ( - I HI - I)!. 

(d) The graph may be topologically invariant under per­
mutation of some of its vertices. Such permutations generate 
a symmetry group of the graph which is called the point 
symmetry group of the graph. Put in a factor of [order of the 
point symmetry group of the graph]-l. The order of a group, 
G, is the number of elements in G. 

(e) For each pair of vertices connected by I lines (Fig. 8) 
put in a factor of 1/ l!. 

I 

2 
• • • • 

FIG. 8. Two vertices with llines between them. 
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Weight of graph 
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The ( -1) in rule (c) arises because the vertex was ori­
ginally a fermion loop for which Feynman rules assign a 
minus factor. The (I -I)! is due to the fact that I lines enter­
ing a loop can be ordered in (I-I)! ways. 

If interchange of lines is considered a symmetry of a 
graph then rules (d) and (e) combine into one: 

(de) Put in a factor of (the order of the total symmetry 
group of the graph]-l. 

Figure 7 shows the connected graphs through third or­
der in zaP' along with the factors from rules (b), (c), (d), and 
(e). This illustrates how the Feynman rules work. 

In rule (a) all topologically distinct graphs are to be 
considered including disconnected ones. It is well known in 
field theory that 

z= I =exp I , (4.4) 
all graphs connected 

connected or graphs 
disconnected 

that is, the connected graphs exponentiate. Therefore only 
connected graphs need be considered. Figure 7 thus gives 

(4.5) 

Equation (4.5) is generic in character: it is the low tempera­
ture dimer expansion to third order for any dimer problem. 
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Now that the dimer statistical system has been ex­
pressed in field theory language, standard field theory calcu­
lational methods are applicable. What has just been illustrat­
ed is simple coordinate space perturbation theory. 
Significant improvements can be made; for example, the self­
consistent Hartree approximation. 

It can be obtained by the replacement 

1~ t t 1~ [ t( t) '2 £,]aPlla lIa lIpllp .... -2 £,,}aP lIa lIa lIplIp H 
ap ap 

(4.6) 

where (111' 11 ~ ) H' the Hartree propagator, is determined self­
consistently; 

(4.7) 

Equation (4.7) was obtained by calculating the propagator 
(111' 1I~) with the quartic term in Eq. (4.1) replaced by Eq. 
(4.6). For a translationally invariant lattice Eq. (4.7) is sim­
ple to solve (this will be exemplified shortly). 

The self-consistent Hartree approximation for Z is 

InZH = ~ln( 1 + -t,zaf3 (lIp1l1)H ) 

- 21 L Zaf3 (lIa 1I~ )H (lIpll1) H' (4.8) 
ap 

Equation (4.8), the Hartree approximation to the partition 
function, is one of the results of this section. 

For the 1 - d dimer model, a numerical comparison of 
the Hartree approximation, r H ofEq. (4.8), has been made 
to the exact result, r. Here, r = (l/N)lnZ, is the grand po­
tential per unit site. The Hartree approximation is, at most, 
otJ'by 8.28% for the entire range of z. The Z which yields the 
maximum error occurs near Z = 2.31. It is particularly good 
for small z and large z. It is encouraging that such a simple 
technique yields a reasonably accurate approximation for all 
z. 

For the d-dimensional dimer problem on a square lat­
tice with weights, Zl' Z2' ... , Zd' in the first, second, ... , d th 
directions, the Hartree approximation is 

o o I 
"" 1 0--0 

I 
I 

{) 
/ \ 

O--y b--O 
I 

6 

FIG. 9. A typical bubble tree graph included in the Hartree approximation. 
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FIG. 10. The Hartree-improved perturbation theory graphs and their sta­
tistical weights to sixth order. 

r :f.dimensional dimer 

[ 
1 1 ( d )1/2] =In -+- 1 +8 LZj 
2 2 1= 1 

1 [ ( d )112]2 
- d -1 + 1 +8 LZj . 

16.I j =lzj j=1 

(4.9) 

Unfortunately, the d-dimensional dimer problem is un­
solved for d> 1, so that comparison with the exact result is 
impossible. 

It is common knowledge that the Hartree approxima­
tion sums up the "tadpole" vacuum bubbles. A sample tad­
pole graph is shown in Fig. 9. In terms of contracted graphs 
(that is, with fermion loops contracted to points) the tadpole 
graphs are the tree graphs. Knowing this allows one to com­
pute systematically the corrections to the Hartree approxi­
mation. Let 

g1' = (lI1'lInH' (4.10) 

be the solutions to Eqs. (4.7). Then 

InZ = InZH + LGH' (4.11) 

withZ
H 

giveninEq. (4.8), and .IGH is the sum over connect­
ed Feynman graphs with rule (c) modified to 

(c') Allow only graphs with vertex degree >2, i.e., 
graphs with one line coming into a vertex are to be excluded. 

Stuart Samuel 2826 



                                                                                                                                    

For each vertex a and llines enamating from it put in a factor 
of l:a ( - l)ia(l- 1)1. 

Feynman graph rules (a), (b), (d), and (e) remain 
unchanged. 

Eliminating graphs of order one reduces the number of 
graphs to be considered. Not only is the Hartree expansion 
better than simple perturbation theory over an extended re­
gion of Z but it is easier to calculate. Figure 10 displays the 
statistical factors due to rules (c'), (d), and (e) for the graphs 
in GH to sixth order in edge weight. The graphs still need to 
be multiplied by the ga and zaP factors of rules (b) and (c'). 
The terms in Fig. 10 generate a result guaranteed to be cor­
rect to order z~p when expanded in powers of zaP' Thus an 
answer correct to Z6 for the general dimer problem has been 
obtained. In addition, the effects of higher order (inz) graphs 
have been included in the Hartree-improved expansion, so 
that the result can be expected to have a wider range of valid­
ity than a simple low temperature expansion. The terms in 
Fig. 10 to fourth order are 

1 1 
InZ = InZH + - L z!p87.rl - -6 LZapzPrzra87.rl~ 

4 ap aPr 

3",444 + - £]apgagp + .... 
4 ap 

(4.12) 

The terms of fifth and sixth order can easily be written down 
but for reasons of space are omitted. Equation (4.12) and 
Fig. 10 constitute an important result in this section. 

It is clear that the ga factors can be absorbed into the 
zaP factors: Equivalent to rules (b) and (c') are rules (c) and (b') 
with 

(b') for each edge (Fig. 6) associate a factor of gazafjgp. 
The Hartree improved expansion is in powers of (JJap 

gazapgp in contrast tozafj for simple perturbation theory. 
In general the factor gazapgp will be smaller than zaP and for 
zaP large it should be considerably smaller. The Hartree per­
turbation series represents a marked improvement over the 
simple low temperature one. To illustrate this consider the 
one-dimensional dimer problem again. For large Z the Har­
tree expansion is considerably better than the low tempera­
ture expansion and for low temperatures the Hartree expan­
sion is just as good. Furthermore, the Hartree expansion 
parameter is always less than Z and never bigger than !. 
Therefore, (JJ is less than the simple perturbation theory ex­
pansion parameter. It is always bounded being guaranteed to 
be at most ofintermediate strength. In contrastz can become 
arbitrarily large. For the d-dimensional hypercubic dimer 
problem the Hartree expansion parameters are 

(JJ. =z.(- 1 + (1 + 8l:1= I Zi)1/2)2, 
I I 4l:1=I Z i 

(4.13) 

and are small or at most of intermediate magnitude. In fact, 
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the (JJi cannot be greater than! and in the isotropic case 
z, = Z2 = ... = Zd' (JJI = (JJ2 = ... = (JJd=(JJ<; I/U. It appears 
as if the expansion parameter, (JJ, becomes smaller as the 
dimension is increased, a point that will be discussed later. 

One may also treat the combined monomer-dimer sys­
tem. The action is given by 

A dimer-monomer = '" Z -n -n t 
(Za.Za.8) £... a·, a ./ a 

a 

1 + -2 L Zap:17a 17l17p171: (4.14) 
ap 

which differs from A dimer in that Za' the Boltzmann factors 
for monomers, are not unity. By rescaling 17a-(1!za )17a (or 
by using simple physical reasoning) A dimer-monomer can be re­
lated to A dimer so that A dimer-monomer is not any more general 

thanA dimer. However, this is not quite true. In Eq. (4.14) 
some of the Za may be set equal to zero (in which case corre­
sponding sites must be occupied by a dimer). The rescaling 
transformation fails. Simple perturbation theory is impossi­
ble since certain propagators blow up. Nevertheless the Har­
tree expansion exists because a finite Hartree propagator is 
generated. Thus even pure dimer systems may be treated. 
Equations are easily modified to account for Eq. (4.14). For 
example, the l'sinEqs. (4.7) and (4.8)becomezr andza . The 
point is that the Hartree expansion can handle the situation 
of having some (or all) monomer Boltzmann factors zero, 
whereas the usual low temperature expansion cannot. 

V. DIMER MODELS (SPECIFIC LATTICES) 

This section tackles the dimer problems on various lat­
tices via the methods of the last section. These models are 
unsolved (except in the pure dimer limit for two-dimensional 
planar lattices25). Unlike the generic expansion [Eq. (4.5)], a 
specific dimer problem has lattice embedding factors for 
which it is useful to derive rules. Each term in Eq. (4.5) will 
generate several terms as the indices a, p, r, etc. range over 
sites. It is useful to group these terms into a new set of dia­
grams and define new rules. This is similar to the usual graph 
and embedding theory.26 

This section obtains new series expansions and accu­
rately calculates physical quantities such as molecular free­
doms, densities, and entropies. Models in two, three, and 
higher dimensions are considered. These computations test 
the accuracy of the Hartree expansion. It is found that it 
works amazingly well. 

Rules for a Dimer Problem on a Transiationally Invar­
iant Lattice: Rules (a) and (d) of Sec. IV get modified to 

(a) Draw all diagrams on the lattice with different 
shapes. Two graphs which are translates of each other but 
have the same shape are considered equivalent. 

(d) Treat vertices with different locations as being dis­
tinct; then there is a factor of [order of the point symmetry 
group ofthe diagram]-'. 

(f) r = (1!N)lnZ = l:connecteddiagrams (weight of 
diagram). 

Consider now the Hartree-improved expansion. The 
diagrammatic rules are the same as in "Rules for a Dimer 
Problem on a Translationally Invariant Lattice" with the 
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above substitutions (Zh -alh and Zv -alv ) in rule (b) the dia­
grams with vertices of degree one are ignored. There is also a 
zeroth order contribution given in Eq. (4.8). 

As an example, here is the Hartree expansion to sixth 
order for the two-dimensional lattice: 

r Z_d dimer = In(! + !(l + 8(Zh + zuW/2) + r(o( (Oh) 
+ r(1)( (Ou) + r(2)( (Oh, (Ou) + ... , (5.1) 

where, for later convenience, terms of one-dimensional char­
acter are grouped into r(1) and terms of two-dimensional 
character are grouped into r(2): 

r(l)({Oh) = -{Oh +~{O~ +¥a~ -i<uh 

- ~~ + io>~ + ... , (5.2) 

r (2)( (O h , (Ou) = - 3{O~ {O~ + 4({O h {O~ + (Oh (Ou) 

+ 4({O~{O~ + (O~{O~) 
+ 15({O~{O~ + (O:{O~) + .... (5.3) 

A piece, - (Oh' from the Hartree approximation has been 
regrouped into r(1)( (Oh)' 

When expanded in powers of Zh and zu' the low tem­
perature expansion is recovered. Equation (5.1) will repro­
duce correctly terms to sixth order inz's. Equation (5.1) will 
be very accurate at low temperatures. Since the Hartree ex­
pansion includes the effects of some higher order graphs, Eq. 
(5.1) is also expected to be good over a domain larger than the 
low temperature one. In fact, even though it is a modified 
low temperature low density expansion, the infinite tem­
perature limit can be taken. This is because as Zh ~ ao and Zu 

~ ao , {O hand {Ou approach constants. At infinite temperature 
the problem becomes the close-packed dimer model which 
has been solved.25 In the isotropic case (when Zh = Zu = z) 
the answer is 

r close-packed = !lnz + G / n 
:::::~lnz + .2916 (5.4) 

with G, Catalan's constant- The Hartree expansion in Eq. 
(5.1) gives 

r ~ ~lnz + .2803. (5.5) 
z~oo 

It is reassuring that the Hartree improved expansion is accu­
rate in a region so far from its range of validity (low tempera­
tures). This indicates that Eq. (5.1) is probably reasonably 
good over the entire range of Zh and Zu' 

The Hartree expansion to sixth order has also been ob­
tained for the d-dimensional hypercubic lattice. Define 

F'0)(!{Oj}) = In[! +!( 1 +8 itl{Oiy12], 

F'3)({OI' (O2' (O3)= 8({OI{O~{O~ + {Oi{Ozill~ + (Oi{O~(03) 
+ 8 {Oi {O~ {OJ - 16({O I {O~ {O~ + {O I{O~ {O~ 

+ {Oi {O2{O~ + {O~ {02(tJ~ + {Oi {O~ {O3 

+ {O; (O~{O3) - 16({OI{02{Oj + {OI{Oi{03 

+ {O~ (O2{O3)' (5.6) 

r (4)({OI' {O2' (O3' (O4)= -32({OI{02 {O~{O~ + {OI{O~{03{Oi 
+ {OI{O~ {O~ {O4 + {Oi {O2{O3{O~ 

+ {Oi{02{O~{04 + (Oi{O~{03(04)' 
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where r (0) is the first piece of the Hartree approximation [Eq. 
(4.9)] and the (Oi are defined in Eq. (4.13). Then the Hartree 
expansion in d-dimensions is 

d d 
r({{OjJ) =ro({{OjJ)+ Ir(1)({Oi) + Ir(2)({Oi,'{Oi,) 

i= 1 i1 <i2 

d 

+ I r (3)( {Oi, ' (Oi" (Oi,) 

d 

+ I r(4)({Oi,'{Oi,'{Oi,'{Oi.)+"·' (5.7) 
;) <;2<;)<;4 

where r(1) and r(2) are given in Eqs. (5.2) and (5.3) and the 
other r's are given in Eq. (5.6). The superscript on the r's 
refers to the dimension of the subspace of the imbedded dia­
gram. Thus r(n) refers to those diagrams which are imbed­
ded in an n dimensional subspace of d-dimensional space. 

In Sec. IV it was pointed out that, in the isotropic case, 
the expansion parameter, {O, gets smaller as the dimension of 
the lattice gets bigger. For the hypercubic lattice, 
(O = 1I2d + o (lid 3/

2
). This indicates that as dincreases, the 

Hartree expansion works better and Eq. (5.7) will be an ex­
cellent approximation. The situation, however, is not so 
clear because the number of graphical embeddings increases 
with d. Let d (G) be the dimension of the maximum space in 
which a graph can be embedded. A rough estimate of the 
number of embeddings ofG is (2d )d(G) + O((2d )dIG) - I) for d 
large. The weight of G goes like (1I2d )b where b is the num­
ber of bonds, so that the total effect of G behaves like 

1 
(5.8) (2d )(b - dIG)) 

By inspection, it is found that b - d (G I:> 1 for all graphs so 
that the effect of a graph is damped by a power of d. Graph 1 
of Fig. 10 has the leading behavior, decreasing like lid. 
There are many (an infinite number of) next-to-Ieading order 
graphs (i.e. graphs 3, 5, 6, 14,24, etc. of Fig. 10) which behave 
as lid 2. Thus as d~ ao the contribution of any given graph 
gets smaller. The Hartree expansion is better when d is big­
ger. Explicit examination of several series also seems to ver­
ify this. It appears that results in higher dimensions become 
more accurate. 

Because of this, the hypercubic dimer model is exactly 
solvable in the d~ ao limit. Trivial algebra yields 

r d-dim(z)dimer ~ !lnd + !ln2z _ ! + 2 
d~oo (8zd )112 

+ (1 - lIz)_I_ + (1I12z - 1)/((8zd )1/22d) 
8d 

(5.9) 

Equation (5.9) was obtained by blindly expanding the Har­
tree improved series in powers of lid. It is clear from Eq. 
(5.9) than not only must d> 1 but also dz> 1 so that z cannot 
be too small. Equation (5.9) is one of the interesting results in 
this section. 

Since the Hartree approximation and graph 1 of Fig. 10 
were the only inputs in Eq. (5.9), Eq. (5.9) will hold for any 
uniform loose-packed lattice for which the vertex degree (co­
ordination number), q, is large. For hypercubic lattices 
q = 2d. In fact the result holds for lattices not containing a 
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triangle so that triangle graphs (graph 2 of Fig. 10) are ab­
sent. This triangle graph can potentially be of order (1/ q). 
Because OJ - 1/ q these dimer models are exactly solvable in 
the q-. 00 limit: 

r dimer -. ~ In.1. + ~(2z) _ ~ + _2_ 
Iz) q-oo 2 2 2 2 (4zq) 1/2 

+ (1 _ ~)~ + 1 (_1 _ 1) 
z 4q (4zq)I/2q 12z 

+OC;} (5.10) 

For lattices with triangles Eq. (5.10) is valid to order (1/qI/2): 

r dimer, lattice with triangles -. ~ln.1. 
Iz) q-oo z 2 

I 1 2 (1) +-In(2z)- -+-- +0 -. 
2 2 (4zq)1/2 q 

(5.11) 

Both Eqs. (5: 10) and (5.11 I are only valid if zq> 1 as well as 
q> 1. It is interesting that dimer models are exactly solvable 
in this limit. In the pure dimer limit, Eqs. (5.10) and (5.11) 
give rough approximations for the molecular freedom. A 
comparison with exact and estimated freedoms is presented 
in Table I for several models. The lattices are the one-dimen­
sional (l-d ), simple quadratic (sq), tetratrahedral (t), simple 
cubic (scI, body-centered cubic (bcc), planar triangular (pt), 
and face-centered cubic (fcc) lattices. The latter two contain 
triangles and the results are not expected to be as good as 
lattices without triangles. The results are accurate to several 
per cent, even though the q value is not that large. 

Gaunt21 has calculated low temperature expansions for 
several dimer models. These incblded both two- and three­
dimensional systems. The expansions were for the isotropic 
case in which all Zi'S are equal. The low temperature expan­
sions were computed for various lattices to these orders: the 
simple quadratic lattice to 15 orders, the planar triangle lat­
tice to 10 orders, the tetrahedral lattice to 16 orders, the 
simple cubic lattice to 12 orders, the body-centered cubic 
lattice to 12 orders, and the face-centered cubic lattice to 8 
orders. When expanded in powers of z the Hartree expansion 
to order n is guaranteed to reproduce the low temperature 
expansion to order n. Hence n orders oflow temperature 
expansion uniquely determine n orders ofHartree expansion 
and Gaunt's series can be used to obtain the Hartree series to 
many orders. The Hartree series in the isotropic case has 
been calculated this way for the above-mentioned lattices. 
The results are 

rsq(OJ) 

= In(-I-) -2w + OJ2 +1!w3 _4!OJ4 +13 ¥US 
I -4OJ 

+33 j<u6 -106 ¥o7 +273 aw8 +1432 ~9 -2816 ~IO 

+6197 n<u ll +63602OJ 12 -93974t¥J13 -446~14 

+2667238 Mw IS + "', (5.12) 

rpt(OJ) = In(_I_) -3OJ +1!OJ2 -23!OJ4 +92 ~5 
1-6w 

-8OJ6 -1743;m7 +8202 ~8 -1478OJ9 

-196618 ¥o1O + ''', (5.13) 
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r'(OJ) = In(_I_) -2ttJ + OJ2 +I!OJ3 _5!OJ4 +5~s 
1 -4OJ 

+21 !OJ6 -66 ~7 +186!OJ8 +472~9 -2744 ~IO 

+4493 ftwll +19074 iwl2 

-91614 t¥J13 +192537 ¥U 14 

+952636 nw l5 -3910844 ¥U 16 + ... , (5.14) 

rSC(OJ) 

= In(_I_) -3OJ +1!OJ2 +2w3 _11!OJ4 +68 ¥US 
1-6w 

-41OJ6 -279¥J7 +5688 ~8 -12695 j<u9 

+10999 ~10 +543356 -&u 11 -2067458!OJI2 + "', (5.15) 

rbcC(OJ) 

= In(_I_) -4OJ +2w2 +2 iw3 -15OJ4 +235 ¥OS 
1 -8OJ 

-645 jal6 +1979 ¥J7 +30390!aJ8 -189343~9 

+1370054 ¥U IO +1393387 -?rmll 

-35573416w12 + "', (5.16) 

r (CC(OJ) = In( 1 ) -6w +3OJ2 _4OJ3 -79!OJ4 

1-12w 
+1192 ~s -10232w6 +48353~7 

+166814!OJ8 + "', (5.17) 

where OJ is defined in terms of z and the coordination num­
ber, q, by 

OJ = z( -I + ~;4qZ)1/2 r (5.18) 

or 

(5.19) 

The coordination numbers of the various lattices can be 
found in Table I. 

By taking z-.oo and using the truncated series in Eqs. 
(5.12)-(5.17) the molecular freedoms at close packing can be 
calculated. These along with a comparison to other methods 
are shown in Table II. Rough error estimates are also includ­
ed. As expected, more accuracy is obtained for models with 
larger q's. As an indication of what is obtainable "by hand" 
(that is, without the use of computers) sixth order computa­
tions are also shown. Even at this order molecular freedoms 
are correct to I % or 2% for lattices with small q and to less 

TABLE I. Molecular freedoms at close-packIng as computed in the 1/ q 
expansion for various lattices. 

Exact 
or 

Model q 
1 . 

-estimate best estimate % error 
q 

1-d 2 .94 1 6% 
sq 4 1.67 1.79 6.5% 
t 4 1.67 1.70 2% 
sc 6 2.40 2.45 2% 
bec 8 3.13 3.19 2% 
pt 6 2.21 2.36 6.5% 
fcc 12 4.41 4.57 3.5% 
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TABLE II. Molecular freedoms at close-packing as computed by the Hartree series with a comparison to other methods. 

sq pt 

Exact 1.7916 2.3565 
Bethe approxima-
tion 1.69 2.41 1.69 
Nagle's series 
truncated 1.769 2.352 1.701 
Nagle's series 
extended by 
Gaunt, 
truncated 1.773 2.360 1.701 
Gaunt's Pade im-
proved 1.78 - 1.80 2.356 1.702 
Hartree approxi-
mation 1.47 2.21 1.47 
Hartree series at 
sixth order 1.75 ± 0.03 2.37 ± 0.06 1.70 ± 0.02 
Hartree series, 
truncated 1.776 ± 0.009 2.347 ± 0.Ql5 I. 700 ± 0.003 

than 1 % for lattices with larger q. At maximum order results 
are correct to within 0.1 % for large q lattices and within! % 
for the low q lattices with the exception of the simple qua­
dratic lattice where the error persists at 1 %. 

The dimer density,p, normalized so that at close-pack­
ingp = l/q, is 

2 dr 
p=-z-. (5.20) 

q dz 

The quantity !qp is the number of dimers per site, whereas p 
is the number of dimers per bond. The entropy, S, and mo­
lecular freedom, t/J, are 

S = - plnz + (2/q)r, 

t/J = exp(qS). (5.21) 

Tables III, IV, and V show the numerical values ofp and S as 
a function of (tJ/(tJmax [(tJ is the Hartree expansion parameter 
[Eq. (5.18)] and 

(5.22) 

is the maximum physical value of (tJ]. These numerical values 
were computed from the truncated series in Eqs. (5.12)-­
(5.17). The SUbscripts on p and S in Tables III, IV, and V 
indicate the orders at which the series were truncated. 

sc bee fcc 

2.41 3.14 4.61 

2.442 4.564 

2.451 3.189 4.565 

2.449 3.198 4.570 

2.21 2.94 4.41 

2.44 ± 0.01 3.17 ± 0.01 4.56 ± 0.03 

2.449 ± 0.005 3.187 ± 0.003 4.574 ± 0.004 

Notice that lattices with the same coordination number 
(Table III and Table IV) have almost identical entropies and 
almost identical densities. Only at extremely high tempera­
tures do they begin to deviate for different models. Math­
ematically the reason for this is simple: Models have a uni­
versal (as far as q is concerned) Hartree expansion to order 
(tJ2: 

r(w) = In(_l_) - !q(tJ + !q(tJ2 + (nonuniversal). 
1 - q(tJ (5.23) 

Because the Hartree series at second order is already a good 
approximation models with the same q have almost identical 
properties. Furthermore in higher orders, they will have 
many identical Feynman graphs. In fact for lattices without 
triangles subgraphs, Eq. (5.23) is universal to third order 

r (w) = In( __ I_) - !q(tJ + !q(tJ2 
1 - q(tJ 

+ W(tJ3 + (nonuniversal). (5.24) 

Next, notice that (tJ is a good approximation to the den­
sity, p. For the simple quadratic and tetrahedral lattices, for 
the planar triangular, simple cubic, and body-centered cubic 
lattices and for the face-centered cubic lattice, p and (tJ never 

TABLE III. The density,p, and the entropy, S, of the simple quadratic and tetrahedral dimer lattice models. 

Simple Quadratic Lattice 

w 
w PIS 

Wmax 

0.1 0.025 0.025534345332921949 ± (15) 
0.2 0.050 0.05180380074377 ± (41) 
0.3 0.075 0.07838101424 ± (14) 
0.4 0.100 0.1049369153 ± (85) 
0.5 0.125 0.13122827 ± (19) 
0.6 0.150 0.1570755 ± (22) 
0.7 0.175 0.182330±(16) 
0.8 0.200 0.206800 ± (73) 
0.9 0.225 0.22998 ± (20) 

0.116814864054067036 ± (37) 
0.1949643466614 ± (12) 
0.25349328917 ± (39) 
0.295353081 ± (12) 
0.32135808 ± (17) 
0.33132011 ± (73) 
0.3240767 ± (45) 
0.296955 ± (74) 
0.24426 ± (38) 
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Tetrahedral Lattice 

PI6 

0.02553353977813695063 ± (60) 0.1168118264806264350 ± (21) 
0.051790983870680 ± (32) 0.194927214968692 ± (84) 
0.078318571157 ± (17) 0.253349894577 ± (34) 
0.1047525671 ± (13) 0.2950219984 ± (19) 
0.130819262 ± (37) 0.320810503 ± (33) 
0.15632504 ± (52) 0.33064735 ± (16) 
0.1811370 ± (42) 0.3235364 ± (13) 
0.205148 ± (23) 0.296918 ± (23) 
0.228209 ± (71) 0.24440 ± (14) 
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TABLE IV. The density and entropy for the dimer models on the triangular and simple cubic lattices. 

Planar triangular lattice 

w 
SIO -- W PIO 

Wmax 

0.1 -L 0.01689214299601 ± (89) 0.0841945595015 ± (36) 
60 

0.2 ~ 0.03405266733 ± (74) 0.1422176561 ± (23) 
60 

0.3 .L 0.051266315 ± (34) 0.187111775 ± (85) 60 

0.4 ~ 0.06838822 ± (49) 0.22104537 ± (94) 60 

0.5 i 0.0853296 ± (35) 0.2446703 ± (49) 
60 

0.6 .2- 0.102041 ± (16) 0.257883 ± (14) 60 

0.7 .L 0.118500 ± (54) 0.259825 ± (17) 60 

0.8 Jl 0.13470 ± (13) 0.248409 ± (39) 60 

0.9 ~ 0.15069 ± (20) 0.21841 ± (16) 60 

differ by more than about 5%, 3%, and 1 %. The reason for 
this is simple. Equation (5.20) implies that 

p = (Z1/" 1/! 1/", 1/!, ), (5.25) 

where x and x' are nearest neighbors. In the Hartree 
approximation 

p:::::z(1/,,1/!)Hf==w. (5.26) 

In other words, w is the Hartree approximation to the densi­
ty. From this point of view the Hartree series has a more 
physical flavor: it is an expansion in a parameter which is 
approximately the density. 

Tables II, III, IV, and V have error estimates. The un­
certainty is in the last two figures, so that, for example, the sq 
lattice at (J) = 0.225 has P 15 =0.22998 ± 0.00020. These er­
rors are set to the contribution of the last order. Doing this 
work only when the numerical coefficient of the maximum 
power of w is not unnaturally small. This turns our to be the 
case for all the models considered. Since the Hartree series 
seem to converge, this is a rough but reasonable measure of 
the error. As a check, the exactly solvable one-dimensional 
dimer model can be used. Its Hartree expansion to 16th or­
der is 

rlOJjd = In(U(1 - 2m)) - (J) + !w2 + jlv3 - ~W4 - l!a'5 

+ Ijlv6 + 2~7 - 4im8 
- 77pJ9 + 12¥U1o + 22-ww 11 

Simple cubic lattice 

P'2 S'2 

0.0169006865736503 ± (31) 0.084231124247639 ± (12) 

0.034114158049 ± (10) 0.142428661957 ± (32) 

0.0514487921 ± (10) 0.1876342661 ± (27) 

0.068760241 ± (27) 0.221940351 ± (51) 

0.08594040 ± (31) 0.24589635 ± (42) 

0.1029054 ± (21) 0.25930907 ± (66) 

0.1195810 ± (93) 0.2612807 ± (20) 

0.135880 ± (29) 0.249809 ± (13) 

0.151661 ± (57) 0.220254 ± (63) 

- 38!W12 
- 71-&013 + 122tul4 + 228~15 

- 402f6w16 + .... 
Table VI displays the approximatedpl6' the exactp, the ap­
proximated S16' and the exact S. The same error estimate 
method was used. As can be seen, the exact results always 
fall within the "error bar" region. In fact, estimated errors 
are roughly five times actual errors. For the one-dimensional 
model this is a conservative method of estimating errors. 

Tables III, IV, and V show excellent accuracy. In 90% 
of the physical region (as measured by (J) the density and 
entropy are at least computed to 0.1 % for all models. For the 
bec and fcc lattices the minimal accuracy is about five deci­
mal places. It is only for dense systems (i.e. 90% maximal 
dimer density) that errors are even of the above stated size. 
For example, at 10% maximal dimer density, results for the 
six models are accurate to an estimated 17, 18, 11, 14, 14, and 
11 decimal places. As expected at low dimer densities best 
accuracy is achieved for those models for which the series 
has been computed to the most orders whereas at high densi­
ties best accuracy occurs for models with the highest q. 

The general dimer model is an unsolvable model; it is an 
interacting fermionic field theory. No analytic or exact 
mathematical expressions exist for the free energy, density, 
entropy, etc. In this section a "physicist's solution" has been 

TABLE V. The density and entropy for the dimer models on the bee and fcc lattices. 

Body-centered cubic lattice Face-centered cubic lattice 
w 

S12 S8 -- P'2 P8 
Wmax 

0.1 0.0126308078545463 ± (13) 0.0666064413803685 ± (54) 0.0083890254360 ± (42) 0.047655678485 ± (20) 
0.2 0.0254353696746 ± (42) 0.113584413678 ± (14) 0.01684367298 ± (88) 0.0821056143 ± (34) 
0.3 0.03830861920 ± (44) 0;1508592102 ± (12) 0.025312649 ± (18) 0.110062846 ± (59) 
0.4 0.051173247 ± (11) 0.180052915 ± (24) 0.03376250 ± (14) 0.13266446 ± (39) 
0.5 0.06397071 ± (13) 0.20157738 ± (21) 0.04217243 ± (67) 0.1502187 ± (15) 
0.6 0.07665304 ± (75) 0.21524997 ± (92) 0.0505306 ± (22) 0.1626165 ± (36) 
0.7 0.0891737 ± (38) 0.2203287 ± (19) 0.0588309 ± (53) 0.1693450 ± (60) 
0.8 0.101475 ± (12) 0.2152042 ± (20) 0.067070 ± (10) 0.1692448 ± (59) 
0.9 0.113467 ± (23) 0.196182 ± (19) 0.075243 ± (12) 0.1595724 ± (42) 
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TABLE VI. A comparison of the exact density and entropy to the Hartree estimated density and entropy for the one-dimensional dimer model. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 

P'6 PexaCI 

0.0522332644055048897 ± (81) 0.0522332644055048890 
0.10776772972370 ± (43) 0.10776772972363 
0.16476080022 ± (23) 0.16476080017 
0.221456997 ± (18) 0.221456993 
0.27639331 ± (50) 0.27639320 
0.3285028 ± (70) 0.3285014 
0.377125 ± (58) 0.377115 
0.42195 ± (31) 0.42191 
0.46291 ± (97) 0.46284 

obtained, that is, expressions accurate to four or five decimal 
places in the entire physical region. This is a significant 
achievement. In effect, the Hartree series has "solved" an 
important class of unsolvable models. 

VI. CONCLUSION 

For the dimer model the Hartree approximation has the 
following physical interpretation. Consider a particular 
dimer configuration. Erase the bonds. What remains is a 
collection of monomers. It is reasonable that a dimer system 
can be approximated by a monomer one. As seen from Eq. 
(4.6) the Hartree approximation is an attempt to find a good 
monomer approximation. This, in fact, is the basis for many 
approximation schemes: to find a quadratic action (or a solv­
able system) which approximates an unsolvable model. In 
general, it requires ingenuity to find the right perturbing 
model. The relevant degrees of freedom must be extracted. 
But once found, a few correction orders yields the physics of 
an unsolved model. This is what has been done with the 
dimer model. 

These papers have demonstrated the power of anticom­
muting variables. Models, which are solvable, are trivially 
solved. For models which are unsolvable there are powerful 
approximation methods. I have chosen simple but interest­
ing models to exemplify the techniques. However, the anti­
commuting variable method is applicable to a wide range of 
systems. Whenever there is a constraint that objects cannot 
overlap (be it polygons, polymers, or surfaces) the anticom­
muting variables will be useful. 

Although new results have been obtained, much more 
can be done: the Ising model in three dimensions has been 
expressed in anticommuting variable form and is thus ame­
nable to new approximation schemes. Results for general 
ferroelectric vertex models and Ising type models will be 
forthcoming.4 .6 .7 .8 Additional results for dimer and polymer 
systems will also be published.4

•
6 This new research area is 

still in its incipience. Many more models can be treated. 
Many more techniques can be developed. The most impor­
tant progress can be made in the area of critical phenom­
enon. What is needed is an adaptation of renormalization 
group methods. In short, this body of work is a small piece of 
what can be done with anticommuting variables. 
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A classical geometrical interpretation of the ghosts fields is presented. BRS rules follow from the 
Cartan-Maurer fibration theorem. The statistics of ghosts are explained and the effective 
quantum Lagrangian is derived without factorizing the volume of the gauge group. Topologically 
nontrivial ghost configurations are defined. 

1. INTRODUCTION 
Because of gauge invariance, the classical Yang-Mills 

Lagrangian does not define a propagator for the gauge field. 1 

Using the path integral formulation of quantum field theory, 
Faddeev and Popov2 attributed this effect to the overcount­
ing of gauge equivalent configurations. By fixing the gauge, 
Feynman diagrams are generated but unitarity is lose unless 
additional quantum fields are introduced: the ghost parti­
cles. However, the effective Lagrangian still supports a glo­
bal invariance of a new kind, the nilpotent BRS transforma­
tion,4 which by itself implies the renormalizability ofthe 
theory.5,6 The geometrical meaning of this symmetry has 
already been partly explained7

,8 but the picture is here 
completed. 

Yang-Mills gauge theories are naturally described as 
geometrical theories over a principal bundle Y. Now, in Sec. 
3, it is shown that the independent mathematical field of the 
theory, the connection 1 form IV, actually describes at the 
same time both the Yang-Mills gauge particle and the Fad­
deev-Popov ghost particle. With respect to a section, i.e., a 
gauge being chosen, the connection actually splits into the 
sum of two components: the gauge field qJ which is horizon­
tal and the ghost field X which is normal to the section. By 
assumption, the ghost does not contribute to the description 
of motions tangent to the section. The exterior differential 
over Y of a function also splits, and its component normal to 
the section is recognized as the BRS operator. Further, the 
Cartan-Maurer structural theorem, which states the com­
patibility of the connection with the fibration, implies the 
BRS transformation rules of the gauge and ghost fields. 
Moreover, the ghost does not contribute to the curvature 2 
form (field strength) and may be thus eliminated from the 
description of the classical theory. 

Section 4 is devoted to the study of gauge transforma­
tions. The identification of the infinitesimal active gauge 
transformations, generated by moving the section, with the 
passive gauge transformations, generated by relabeling the 
coordinates in the fiber, is shown possible only if the matter 
fields satisfy their own BRS transformation law as a con­
straint. Under those ordinary transformations the ghost is 
invariant. Another kind of gauge transformation may how­
ever be defined such that the ghost field becomes no longer 
trivial. By relaxing slightly the axiom of local triviality, 
modifications of the topology of the fiber bundle are then 

allowed in a way that seems adapted to the construction of 
the quantum theory and the study of soliton configurations. 

In Sec. 5, the construction of the effective Lagrangian 
by using the generating functional is revisited. No infinite 
constant has to be extracted, as the differential of the volume 
element of the group is actually lifted into the effective La­
grangian in the form of the ghost. The nongeometric trans­
formation of the antighost, a Lagrange mUltiplier, is not re­
covered. However, the proof of renormalizability is not 
altered by the noninvariance of the effective Lagrangian, as 
one usually cancels the antighost variation via its equation of 
motion. On the contrary, the renormalized BRS operator is 
shown, as geometry suggests, not to act on the antighost. 

Despite its formal character, this study may have var­
ious applications. At the local level, the statistics of the ghost 
are simply those of a classical I form; and the relation of the 
BRS operator with gauge transformations is made explicit. 
At the classical global level, nontrivial topologies of the fiber 
bundle may be studied by including nontrivial configura­
tions of the ghost field, or by working directly with the gauge 

w 4>+X 
Oy .J 4> = 0 

ox.Jx=O 

FIG, I, The ghoo' and the gauge field: The single lines represent a local 
coordinate system of a principal fiber bundle of base space-time, The double 
lines are I forms. The connection of the principal bundle w is assumed to be 
vertical. Its contravariant components cp and X are recognized. respectively. 
as the Yang-Mills gauge field and the Faddeev-Popov ghost form. 
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independent globally defined connection m whose interpre­
tation as the sum of the ghost and gauge field is provided 
here, thus overcoming the obstruction to the use of a global 
section. Finally, the formulation of Yang-Mills theory over 
the fiber bundle itself and the precise understanding of the 
geometrical role of the ghost field provides a link towards the 
new promising approach to gravity: the soft group 
manifold.9 

2. THE PRINCIPAL FIBER BUNDLE 

A principal fiber bundle (Y, fJJ, n, Y, .)10.11 is the true 
arena of a pure Yang-Mills theory. 12 The fiber bundle Y 
and base space fJJ are C(f 00 manifolds. The projection n is a 
C(f 00 mapping of Y onto fJJ. The point. denotes the action of 
the (graded) Lie group Y in Y. The motions are assumed to 
preserve the fiber: 

n:Y-+fJJ, 

':YXY-+Y, 

't/UEY, 't/aEY, n(u.a) = n(u). 

The motions represent the group: 

't/UEY, 't/a,bEY, (u·a).b = u.(ab). 

The last multiplication is the group operation. Further, the 
space is locally trivial, i.e., any point x of the base space 
(space-time) possesses a neighborhood V", such that an iso­
morphism t exists between n-I(Vx ) and the direct product 
VxxY: 

t: n-I(Vx )-+Vx X [Ij, 

u-+(n (u),r(u», 

r(u·a) = r(u)a. 

The relevance of this axiom in physics will be further 
analyzed in Sec. 4. The point operation induces a map -
from the generators, Y of the gauge group into Killing vector 
fields y which span the space tangent to the fibers. The point 
being a representation of Y, - is an isomorphism of Lie 
algebras, from the gauge algebra ~ onto the Killing algebra 
structured by the Poisson bracket: 

-: ~-+Y* 

Y-+Y 

[Y,Y'] LB = [Y,Y']PB' 

These Killing vector fields are called vertical. However, 
no horizontal vectors are yet specified. Rather than to give a 
metric on Y (Kaluza-Klein theory), it is weaker to define an 
~-valued vertical 1 form m: the connection (Yang-Mills 
theory). m maps vectors of Y * on~: 

m:Y*-+~, 

v-+vJm = m(v) = mi(v)Y;. 

The symbol J denotes the contraction of vectors with 
forms. The components mi are just ordinary 1 forms and are 
defined with respect to a basisYi of ~. The kernel of m then 
defines a subspace H of Y * called horizontal: 

hEReY * ¢:XU(h) = O. 

The 2 form of curvature is defined as 
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f1 = dm + Hm,m]. 

To be meaningful, this structure must be compatible with the 
vertical motions, and it is assumed that the restriction of the 
connection to the fiber is the pull back of the left invariant 1 
forms of the gauge group: 

't/YE~, YJm = Y. 

Moreover, the Lie derivative of the connection with re­
spect to vertical vector fields is constrained by the equivar­
iance condition 

1 ym = - [Y,m] = + [m,Y]. 

We use the sign convention that, when contracting ap 
form with vectors, one must contract from the inside to get a 
plus sign (a convention adapted to supergroups): 

v' JvJm!\ m' = m(v)m'(v') - m(v')m'(v), 

!YJ[m,m] = [Y,m], 

[m,m] = [miYi,allj] = - aI !\mnYk' 

The Lie derivative is a natural extension of the ordinary 
derivation; identical to the former when acting on functions, 
it is defined as the Poisson bracket when acting on vector 
fields: 

't/V,V'EY *' 1 uV' = [V,V')PB' 

For Killing vector fields we get 

1 x Y= [X;Y]pB = [X,Y]. 

The Lie derivative obeys the Liebnitz rule 

't/PEY* 1 u(v' Jp) = (1 uv')Jp + v' J 1 up. 

For Killing vector fields we get 

1x(YJm) = [X,Y]Jm+ YJ1xm 

= [X,Y] + [y,x] =0. 

The left hand side of this equation, being the derivative 
of a constant, vanishes and the two axioms are indeed com­
patible. Further, Lie derivation, exterior differentiation, and 
contraction are related: 

d(vJp) = 1up - vJ dp, 

yielding 

d (YJm) = 1 ym - YJ dm. 

The left hand side again vanished; thus, 

YJ dm = - [Y,m] = - !YJ[m,m]. 

Accordingly, the 2 form of curvature f1 is purely 
horizontal: 

YJf1=O. 
This very important theorem is known as the Cartan­

Maurer structural condition. Over a Lie group, the curva­
ture constructed out of the left invariant 1 forms identically 
vanishes, but over a fiber bundle, f1 is horizontal because the 
connection is only subject to the equivariance condition 
along each fiber, the fibers over different points being 
independent. 

Because I forms anticommute, the connection fulfils 
the Jacobi identity in the form 

[m,[m,m]] = o. 
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The Bianchi identity follows: 

Dn = dn + [w,n] = o. 
The efficiency of the notations of exterior calculus is 

apparent in the simple aspect of these two identities. 

3. PHYSICAL INTERPRETATION 

In Yang-Mills theory, the base space &] is identified 
with space time.and ~ is of course the gauge group. A gauge 
choice is a one to one map~, called a section, of &] into Y: 

~&]-Y, 

'fixe&] n (~(x» = x. 

No global section exists if the topology of Y is nontri­
vial (monopoles). However, local triviality ensures the exis­
tence of a local section~, and it is possible to choose a local 
coordinate system in Y adapted to the section as follows: 
Let / be coordinates in the fiber and x'" be the lift in ~ of the 
coordinates of the base space. Thus, the vector ayi is tangent 
to the fiber and vertical, whereas the vector ax" is tangent to 
the section but neither vertical nor horizontal. The 1 forms 
d/, dx'" span y* and one may decompose the connection 1 
form on this cobasis: 

w = Xi d/ + qJ,., dx"'. 

The vertical connection form w splits into two compo­
nents that will be later identified as the gauge and the ghost 
field of the quantum field theory. The gauge field 

qJ = qJ,., dx'" 
=::;,ay ' JqJ = 0 

may be called horizontal, because all the vertical Killing vec­
tors belong to its kernel. The ghost field 

x=xidi 

=::;,ax" J X = 0 

may be called normal to ~ as the vectors tangent to ~ belong 
to its kernel. It is recalled that w was assumed to be vertical, 
defining the horizonal vectors as those belonging to its ker­
nel. The decomposition of w is presented in the picture. In 
the same manner, the exterior differential df of a 0 formf 
may be written as 

df=s/+ bJ, 

where sand b are defined as 
sf = ay./ d/, bf = ax'./ dx"'. 

The fundamental rule of cohomology then implies 

b 2 = sb + bs = S2 = O. 

s, here defined as the exterior differential normal to the 
section, is nilpotent and will be identified with the BRS oper­
ator and the letter s stands for the name ofStora, whereas b is 
a horizontal operator and the letter b stands for base space or 
for the name of Becchi. (The author is sorry for A. Rouet.) b 
can also be viewed as the pullback of d onto the base space by 
the section~: 

2836 

~ *(df) = ~ *(bf), 

~ *(sf) = O. 
On the other hand, choosing the local trivialization T 
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which maps the section ~ onto the identity of the group 

'fIx~, T(x) = I G , 

The ghost form X appears as the pull back onto y* of the 
Cartan left invariant form of the Lie group. 

With respect to the section ~, the 2 form of curvature 
breaks into three pieces: 

n = Pii dyi" dyj + '/Ii,.,d/" dx'" + !t/>,.,v dx,"" dxv• 

E is evaluated by expanding n in terms of its compo­
nents and picking the terms with two dy: 

E= sx + Hx,x]. 

'/I and t/> are the terms in dy" dx and dx" dx in the 
same expansion: 

'/I = SqJ + bX + !([X,qJ] + [qJ,xD 
= SqJ + bX + [qJ,X] = SqJ + BX, 

t/> = bqJ + HqJ,qJ ]. 

The evaluation of '/I uses the fact that a skew Lie bracket 
acting on anticommuting 1 forms defines a symmetric oper­
ation. By the Cartan-Maurer structural theorem, which fol­
lows from the equivariance condition, curvature is purely 
horizontal. Thus, 

E= '/1= O. 

The curvature is completely specified once qJ and bqJ are 
known over a section~. X is an auxiliary field which satisfies 
the constraints 

E = Sx + Ut,X] = 0, 

'/I = SqJ + BX = O. 

The equations may be recognized as the Becchi-Rouet­
Stora transformations of the quantum field theory, justifying 
the identification of X as the Faddeev-Popov ghost field. 
Accordingly, the ghost field has a classical meaning but may 
be excluded from local problems. It must not be considered 
as a genuine quantum entity. Its so-called wrong statistics 
are now explained. Customarily, one works with the compo­
nents qJ,., of qJ but does not decompose the 1 form X which 
therefore anticommutes with itself and with the exterior dif­
ferentials band s. The ghost is not a Fermion; it is a Bose 1 
form and commutes with any Fermi function. By example, 
in quantum supergravity, the ghost for the local translations 
commutes with the spin 3/2 gauge field of supersymmetry. 
The fields of this model are thus doubly graded 13 by ghost 
and Fermi number. The associated 'I} X Z2 sign rules for 
closed loops are necessary for proving unitarity. 

4. GAUGE TRANSFORMATIONS 

According to our definitions, an infinitesimal gauge 
transformation of parameter A. i(X"') is induced by moving 
from one section ~ to a neighboring section ~ '. In the coordi­
nates adapted to ~, the equations of ~ and ~ / are 

~:/=O, 

~ / : / = - A. i(X"'). 

The x'" coordinates, lifted from the base, are used both 
in ~ and ~ /, and the / may be chosen such that over ~, their 
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tangent vectors a/ are the Killing vectors Yi' The parameters 
A i are defined only over the section I but we may extend 
them in an arbitrary way as fields over the whole of Y: 

A 'i = A 'i(X!L,y'), 

A 'i(xIl,O) = A i(X!L). 

Using the linear map - from the Lie algebra ~ onto 
the Killing vector fields 

-: Yi-Y';(xIl ,yi), 

we may use A ' to define a vertical vector field X as 

A = A 'i(xIl ,yi) Y;(x!L,yi). 

The connection over I ' is deduced from its value over I 
by adding the Lie derivative: 

..t'" XW = AJ dw + d (AJw) 

= - [AJw,w] +dA 

= dA + [w,A ] = DA. 

The component in dx(dy) of this equation is the gauge 
transformation law of the gauge (ghost) field 

OACP = BA = bA + [cp,A ], 

oAX=SA =sA + [X,A]. 

Moving the section I, an active transformation, is in­
deed identical to relabeling the coordinates / in the fiber, a 
passive transformation. When the condition SA = 0 is met, 
the ghost which is the pullback of the left invariant Cartan 
form over the group is indeed invariant, and the gauge trans­
formation parametrized by A corresponds to a passive left 
translation in the group. More generally, if a matter field 
belonging to any representation with matrices r/Bofthe 
gauge group is defined by a setl A of real valued functions 
over the principal bundle itself, the active and passive gauge 
transformations will coincide only if these functions satisfy 
the BRS constraint 

SI A = 0, 

¢=(sl A = - Xiri A BIB. 

This usual concept of a gauge transformation may be 
generalized. The gauge parameter A itself does not necessar­
ily fulfill the above condition. When SA does not vanish, we 
shall speak of a ghost transformation. X remains a pure 
gauge field and the Cartan-Maurer-Becchi-Rouet-Stora 
conditions are not affected; however, the ghost is no longer 
invariant. Restricting our attention to a single fiber, we see 
that this active transformation can be compensated for by a 
general transformation of the group coordinates yi. The 
ghost plays along the fiber the role of the vielbein of general 
relativity. 

The restriction of a ghost transformation to a single 
fiber is a map from the gauge group onto itself. If this map is 
not diffeomorphic to the identity, the ghost acquires a topo­
logical charge and is no longer the global pullback of the 
group left invariant forms, but a trivialization isomorphism 
still holds locally from a neighborhood of any point in Y to 
the product of a neighborhood in f!lj of the projection of that 
point by a neighborhood of the identity in Y 

'rJUEY, 3t, V;: -V{f(U) X V;. 
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This local version of the trivialization axiom seems, on 
the other hand, very well adapted to the construction of a 
quantum theory in which the local Maurer-Cartan BRS 
constraint is easily imposed, whereas it is very difficult to 
include the global topological condition on the ghost re­
quired by the usual axiom. (The same difficulty is met in Ref. 
9 in which the dynamics impose spontaneous fibration of the 
group manifold, but only locally.) As a result, even if a global 
section I exists, the fiber bundle endowed with this restrict­
ed structure does not necessarily have the topology of the 
direct product I X f1 and the quantum theory may inclUde 
in a natural way a number of soliton configurations. 14 

In the framework of conventional fiber bundles, the 
Gribov-Singer problem may also be overcome by working 
directly with the connection w, the sum of the ghost and 
gauge field, which is gauge independent and globally defined 
overY. 

5. THE FADDEEV-POPOV EFFECTIVE LAGRANGIAN 

It remains to be shown that our definition of the ghost 
field coincides with the usual one.2 The Lagrangian in Yang­
Mills theory is defined in terms of the curvature 2 form as 

..t'" =nil\*n j • 

The trace is with respect to the Killing metric of the 
gauge group and the asterisk denotes the Hodge adjoint of 
the 2 form of curvature with respect to a given metric in the 
Base space: 

n j = in i dx!Ll\dxV 

:2 J-lV , 

* n i = In i e'v dxp 1\ dx" 
4 !LV P" • 

Whenever the BRS conditions are satisfied, the Lagran­
gian is horizontal, does not depend on the ghost field, and is 
gauge invariant. By patching local sections it is thus possible 
to integrate !f over the base space f!lj. The quantum theory 
is then constructed by summing over all configurations of 
the connection satisfying the BRS constraint and the gener­
ating functional of the Green's functions is defined as 

W = J !J fi}w(x,y)8(BRS)e - {.y. 

However, as noted by Faddeev and Popov, gauge equiv­
alent configurations must not be overcounted. Thus, it is 
supposed that, at least locally, a set of constraints I i(cp) 
exists which is satisfied only once in every gauge equivalence 
class (ghost transformations are not involved here since I i 

does not depend on X ): 

Ii(cp) = O. 

As one integrates over all possible w, one also integrates 
along the gauge classes. This is equivalent, however, to inte­
grating over a moving section with fixed wand this addition­
al contribution is canceled by using the Dirac measure asso­
ciated with the constraints: 

f If o(I')l\dIi = 1. 

The determinant ofthe constraints is hidden in the exte­
rior product. I i = 0 defines a section I in Y. dI i is normal 
to this section and may be expressed in the adapted coordi-
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nates as s~ i: 

d~ilI =s~iII' 

At this stage, our analysis will differ from the original 
work ofFaddeev and Popov. The volume of the fiber will not 
be factorized out of the functional integral but the Dirac 
function and 1 form ~ i will be lifted into the Lagrangian by 
use of two Lagrange multipliers: a Bose field ai and a Grass­
man multiplier T/i anticommuting with s: 

nt5(~~= In daie-iU,I
i

, 

, , 

h~i . B _i1/,sI'! A Id- -i1/,sI' 
~ = l--e = T/i e . 

BT/i 1/=0 
This last expression is well defined despite the noninte­

grated differential form appearing in the exponent as it may 
always be linearized by performing the Berezin integration 
over T/i''Y'fi behaves as a vertical vector but is not a vector 
because T/iS~ i must not be considered as a scalar. According 
to Bemshtein and Leites,15 it is an integral form. The effec­
tive functional integral may now be written as 

W = I IT ~ (f{' il" ,Xi,d, T/~(si + ! [x ,X] i) 
xEI 

- i J Y' +u,I' + 1/,sI' 
xt5(Sf{' ~ - BI"X')e . 

The last term in the Lagrangian may be transformed 
using the BRS structural condition 

. O~i. O~i. 
s~ I = --.sf{" = - --. BX" 

Of{" Of{" 

The Faddeev-Popov effective Lagrangian has thus 
been exactly recovered. Because T/ and X anticommute, a 
minus sign must, in the perturbation expansion, be associat­
ed to each closed ghost antighost loop. In the usual ap­
proach2

, an additional integration over the ghost variables 
together with an integration over the volume of the group are 
generated. However, these 2 corrections cancel one another 
because the volume element of the fiber is simply the exterior 
products of the ghost forms, 

I l} [dy]dci 
= I l} cidci = 1. 

The exterior differential of the Lagrange multipliers 
naturally vanishes; thus, 

sx = - !1X,x], Sf{' = - BX, 

sai = ST/ i = 0, sit' eff = ais~ i. 

In this approach the effective Lagrangian is not BRS 
invariant because we have not recovered the nongeometric 
variation of the antighost. The study of the renormalizability 
of the theory is however not affected. Indeed the BRS-Ward 
identity must usually be completed by the equation of mo-
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tion of the antighost precisely in order to compensate for its 
nongeometrical contribution to the former. 

Moreover, a detailed analysis l6 shows that the renor­
malized BRS operator follows the above prescriptions and 
does not transform the antighost. 

6. CONCLUSION 

Differential geometry has provided us with a better un­
derstanding of the nature of the quantum gauge theories. In 
Sec. 3, the Faddeev-Popov ghost has been reinterpreted as 
the component of the connection 1 form normal to the sec­
tion in the principal fiber bundle, and the BRS operator as 
the corresponding part of the exterior differential. The BRS 
transformation rules of the ghost and gauge field then follow 
from the Cartan-Maurer structural theorem which states 
the existence of a fibration. Under ordinary gauge transfor­
mations, the ghost is shown in Sec. 4 to be invariant, but a 
more general type of transformation is defined which is re­
lated to solitons. In Sec. 5, the effective Lagrangian with 
ghosts and gauge fixing term is obtained without factorizing 
an infinite constant out of the generating functional. In this 
picture of the Lagrangian is not BRS invariant, but this does 
not spoil the discussion of renormalizability in which one 
usually uses the equation of motion of the antighost to cancel 
its nongeometric variation. This presentation should find ap­
plications in the study of solitons and the group manifold 
approach to quantum gravity. 
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The mathematical structure of an infinitely extended BCS super-conductor is re-examined in the 
light of the theory of bundle representations. The role of the homotopy group in the BCS model is 
clarified. The precise characterization of the constant gauge transformation in terms of a principal 
fiber bundle (with discrete fiber and group) is pointed out. 

In the limit of infinite volume, the BCS theory of super­
conductivityl provides an exactly soluble2 model wherein 
the phenomenon of spontaneous symmetry breakdown oc­
curs explicitly; the symmetry that gets broken being the 
gauge invariance. 3 The concomitant degeneracy of the 
ground state is such that it can be labeled either (1) by a 
continuous parameter a, 0 < a < 21T or (2) by a d~screte inte­
ger-valued parameter n, n = 0, ± 1, ± 2···. The particle 
number (physically, the number of Cooper pairs) is unsharp 
in states corresponding to the first way of labeling the 
ground state and is sharp in states that correspond to the 
second way. The representation of the algebra generated by 
the (smeared) fields is irreducible in the unsharp states and is 
reducible in the sharp states. These facts were established in 
a classic analysis of the BCS model performed by Haag4 in 
1962. 

Recent developmentsS
-

7 in the theory of bundle repre­
sentations have provided us with an elegant technique 
through which to describe the phenomenon of spontaneous 
breakdown of a continuous symmetry. It is well known that 
when spontaneous breakdown occurs, the symmetry oper­
ation cannot be implemented via (continuous) unitary opera­
tors in a Hilbert space. 8 In the Araki-Haag framework it 
means that the symmetry is locally, but not globally, unitari­
ly implementable. The method of bundle representations 
goes a step further and gives us a precise prescription for 
globally implementing the broken symmetry operations9

: 

the latter are implemented as bundle maps on a suitably con­
structed Hilbert bundle (a fiber bundle whose fiber is a Hil­
bert space) based on an appropriately chosen homogeneous 
space. This method was developed by Borchers and Sens and 
by Sen6 originally for the purpose of describing relativity 
groups in an infinite medium, where the boost operations 
"get broken". Later the method was applied to the breaking 
of internal symmetries.7 In view of the foregoing develop­
ments it seems worthwhile to re-examine the BCS model in 
the framework of bundle representations. In the process, ad­
ditional insight is gained on known results whose intuitive 
content becomes easily visualizable, and the general features 
of gauge symmetry breaking begin to emerge. Specifically, 
we prove the following results: 

(1) The space of the states of unsharp particle number is 
a Hilbert bundle based on the circle S I. Gauge transforma­
tions are implemented on the bundle space via bundle maps. 

(2) The Hilbert space of states with sharp particle num-

ber (which may also be viewed as Hilbert bundle based on 
the discrete space of integers) provides a unitary representa­
tion of the homotopy group 1TI (S I}-the fundamental group 
of the circle. The "topological quantum number" associated 
with 1TI (S I) provides a superselection rule, whose existence 
accounts for the reducibility of the representation of the al­
gebra generated by the smeared fields. 

(3) The Hilbert space of states with sharp particle num­
ber is related to the bundle space of states with unsharp num­
ber via the standard mathematical procedure of forming di­
rect integrals, in the sense of von Neumann. 10 

(4) The origin of the homotopy group is traced to the 
mathematical structure of (constant) gauge transforma­
tions. Precisely, this structure is that of a principal fiber bun­
dle based on the circleS I and with a structure group 1TI (S I). 

At the risk of repetition, we wish to recall some basic 
notations. The field rpr(x)(tM'(x» destroys (creates) an elec­
tron of spin r(r = 1,2) at the spatial pointx. The anticommu­
tation relations 

r rpr(x),rps(x') I = 0, 

r rpr(x),t/i:(x') I = brsb(x - x'), 

together with the form 

H;(V) = ~ f rpf(x)rp1(x + Z)rp2(X' + z') 

X rpl(X')V(z,z') dx dx' dz dz' 

(1) 

(la) 

(2) 

for the interaction Hamiltonian defines the model. The func­
tion v(z,z') characterizes the interaction. All quantities are 
defined at one instant of time, taken as t = O. The limit 
V_co of infinite volume is taken at the very beginning. Let 
rf(f), rp.(f) denote the weighted average ofrp(x), rp·(x) with 
respect to square integrable functions[(x) of position. LetS 
denote the algebra generated by rp([), rp*(f) [for all such 
[(x)] andletR be the Von Neumannalgberagenerated by S. 
So much for notation. 

The presence of a superconducting phase is heralded by 
the two-point correlation function 

tPa(z) = (a/rp2(x)rpl(0)/a) 

= exp[ia]tPo(z), (3) 

where tPo(z) is a real function not identically zero, and /a) the 
ground state. The structure of the corresponding state space, 
according to Haag,4 is this: for each value of a, there is a 
separable Hilbert space H a ; all H a's are exact copies of each 
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other and thus of some H; linear combinations and inner 
products are not defined between states that sit over distinct 
values of a. It is evident that these properties define a Hilbert 
bundle based on the circle (O";a < 217") and with fiber H (Ha 
is the fiber over a). In fact, it is a product bundle (equivalent, 
in the group of the bundle, to a product bundle). LetB denote 
the bundle space. An element beD can be written as 
b = (a,¢), where ¢Ell. Under a gauge transformation, the 
field behave as 

¢~¢ exp[ip]; ¢*~t/I* exp[ - ip] (4) 

and Eq. (1) is unchanged. Thus (4) is an automorphism of 
algebra R. The pair (f3,a), aER, is an example of the general 
object (G,A )-A is some algebra and G a group of automor­
phism of A-whose bundle representations have been con­
structed elsewhere, " using a cocycle technique. For the pre­
sent case, the general bundle representation formula of Ref. 
11 reads 

(p,a)(a,¢) = (a + 2/3, [Dr _p(a)]¢), (5) 

where l' p(a) is the gauge transform of a and D is a symmetric 
representation of R (the concrete c*-algebra). Equation (5) 
shows that gauge transformation is implemented on B as a 
bundle map. The bundle map acts as a left translation on the 
base space and acts on the fiber through the cocycle. It now 
follows rapidly that the (above) bundle maps falls into ho­
motopy classes; the associated group being the fundamental 
group 1T, (S ') of the circle. '2 The significance of the homo­
topy group becomes more transparent on the states of sharp 
particle number. 

The states of sharp particle number are those for which 
the expectation value of every gauge-variant quantity van­
ishes and the transformations (4) reduces to the identity map 
(on every physical observable). Thus the gauge transforma­
tion (4) is implemented unitarily (although trivially!) on 
these states. Let K denote the space of these states. We thus 
expect the passage from the bundle space B to the space K to 
mimic the standard procedure of forming direct integrals, 
which is used in the theory of induced representations13 of 
locally compact groups since the inducing construction does 
just that i.e., provides a means of constructing unitary repre­
sentations from bundle representations. Of course, here we 
are not representing a group but a more general object (G,A ), 
but that does not matter. Let beD, b = (a,¢ ) as before. Then 
(a,¢ )~a defines a cross-section of the Hilbert bundle. Let 
(¢a' ¢a) = (¢,¢ )a denote the norm inHa . Define now a new 
norm [ ] by the rule 

(1T da 
[¢,¢] = Jo (¢,¢ L 2;' (6) 

where da/21T is the Haar measure on the circle. It is now a 
well-known fact 12 that with respect to the above [ ], the ¢ 's 
constitute a linear space equipped with the polarization iden­
tity, and hence with an inner produc!!, and is complete in the 
norm' thus it is a Hilbert space. Let K denote this space. Let 
In) be a cyclic state (ground state) of K. From (6) we 
compute 

i
21T da 

(n In) = (ala) - = 1. 
o 21T 

(7) 
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Thus In ) is a normalized state. An inner product of two 
vectors in K is related to that in H a again by an integral of the 
form (6). This implies that 

(21T da 
(n I ¢2(Z)t/I,(0) In ) = Jo (al¢z{z)¢,(O)la) 21T 

(21T 
= ¢o(z) Jo exp[ia] = O. 

Note that Eq. (3) has been used at the second step of the 
above derivation. It is now a simple matter to prove that 

(8) 

(n 1¢*(x,) ... t/I*(xn)¢(Y.)"·¢(Ym)ln) = 0, (9) 

whenever m i= n, since any such expectation value as aoove 
can be decomposed4 into sums of products of the basic two 
point functions and (n I ¢2(Z)t/I.(0) In ) will appear as a factor 
in every term in the summation. As for quantities for which 
m = n, Eq. (6) gives 

(n 1¢*(x')"'t/I*(xn)¢(Y')"'¢(Yn)ln) 

= (alt/l*(x,) ... ¢*(xn)¢(Y.)"·¢(Yn)la) (10) 

since the quantity is independent of a (gauge invariant). 
Equations (9) and (10) are the defining relations4 for the space 
K. Thus we have proved that K = K and hence K is obtained 
from B via the direct integral (6). 

The homotopy group appears in a different avatar in the 
spaceK. Let Ube the generatorof1T,(S I). Then the following 
statements are entirely obvious: I) U commutes with Sand 
thus with every element of R, II) U does not annihilate In ), 
III) the group 1T, (S ') is unitarily implemented on K. We thus 
have the string of ground states 

In2n ) = Unln), n = 0, ± 1, ± 2 .... (11) 

obtained by applying the elements of the homotopy group to 
In ). All these are degenerate since U commutes with the 
Hamiltonian (2). Moreover, In1n ) must be orthogonal to 
In2m ) if m i=n, since this is the statement ofthe superselec­
tion rule associated with the conservation of the "topological 
quantum number" arising from the homotopy group. The 
space K contains the string of Hilbert spaces H 2n , with H 2n 

arising from In2n ). Thus K consists of the collection of all 
coherent sectors associated with our superselection rule. In 
other words, the representation of the algebra R on K must 
be reducible. To conclude the task of showing the connection 
with Haag's treatment, we finally write down the explicit 
form of U, which is 

U = ¢ 0- lIz) lim J.. f ¢T(x)¢!(x + z) dx. (12) 
v~oo V 

The physical meaning of U and thus of the topological quan­
tum number n is now quite clear. One remark: we are free to 
look upon the Hilbert space K as a Hilbert bundle based on 
the discrete space Z of integers (Z is equipped with the dis­
crete topology). We note, in the passing, that the degeneracy 
structure of the ground states in K is very similar to that of 
the vacua in Yang-Mills theories. '4 In fact, they are math­
ematically identical [the groups 1T,(S ') and 1T3(S 3) are iso­
morphic]. This fact seems to have gone unappreciated in the 
literature. '4 

We ask: what general features of gauge transformation 
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emerge from the foregoing analysis of the BeS model? The 
answer is contained in the following two remarks. 

A) Gauge transformation is a very special kind of a 
"symmetry", in that, it is a nontrivial automorphism only of 
the algebra of field operators [e.g., of Eq. (I)] but not of the 
algebra of observables (identity map for the latter). This 
means that we have at our disposal two distinct but equiv­
alent ways of describing the situation. If our states are con­
structed via the expectation values of physical observables, 
then the symmetry is there but is trivial. We can begin to talk 
about the symmetry nontrivially, only when our states are so 
constructed that they correspond to non vanishing expecta­
tion values of not only physical observables but also of un­
physical, gauge-variant quantities. In the latter event, gauge 
symmetry, of necessity, is broken. Thus the breakdown of 
gauge symmetry is a concept which is dependent on the 
choice of language. However, all is not lost, since the mem­
ory of symmetry breakdown persists in the form of the ho­
motopy group. This should be a general feature of all theor­
ies, including nonabelian (constant) gauge theories. 

B) The gauge transformation (4) is a covering map p: 
E l-S I from therealline(E 1) to the circle, given explicitly as 

C = exp[iaJ, (13) 

where a ranges over the reals and C is on the unit circle. Now 
it is a standard mathematical result that a covering map ad­
mits a bundle structure with a discrete fiber. 15 In fact, the 
bundle structure corresponding to (13) is a principal fiber 
bundle whose base space is S I and with fiber and the group 
1T'1(S I); E I is the bundle space. Thus the bundle is [E I,p, S I, 
1T'1(S I), 1T'1(S I)]. Ifwe forget about the bundle structure and 
look only at the base space [as a U(l)group), we are bound to 
lose information. In problems where the homotopy group 
plays a role, this loss of information is not desirable. 

After explaining the principal fiber bundle character­
ization of gauge transformations of the second kind. W u and 
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Yangl6 remarked, "all gauge fields are thus based on geome­
try". Our analysis shows that the same is true for a gauge 
transformation of the first kind. 
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The result that a pseudovector can be associated with a real third order skew-symmetric matrix 
has been used for establishing some properties of the proper vectors of real third order matriceS. It 
turns out that the pseudovector associated with the skew-symmetric part of such matrices 
characterizes some interesting properties of proper vectors, such as the question of their 
orthogonality. 

INTRODUCTION 

The purpose of this paper is to establish some properties 
of proper vectors of real square matrices of order three, for 
the case when all the three proper values are real. This work 
is motivated by the problem of the analysis of stress, wherein 
the real proper values and proper vectors of the transpose of 
the stress matrix are, respectively, the principal stresses and 
the principal directions of stress. 1 In the general polar case in 
which one or more of internal spin, couple stresses or body 
moments exist, the stress matrix is not symmetric. 

It is well known that all the proper values of a real sym­
metric matrix are real and that there exists at least one set of 
mutually orthogonal proper vectors. When the proper val­
ues are distinct, the corresponding proper vectors are mutu­
ally orthogonal. However, in general, the proper values and 
proper vectors of a real matrix are complex. In this paper 
only real proper values and real proper vectors are 
considered. 

Let M be a real square matrix of order three. The sym­
metric part M s, the skew-symmetric part M A, and the de­
viatoric part D ofM, are then defined by M S = !(M + M T

), 

MA = !(M - MT) and D = M - !(trM)I. The pseudo vec­
tor, rnA' associated with the skew-symmetric matrix, MA, is 
defined by 

and, for all vectors, n has the property that 

MAn = nXmA , (1) 

where n X mA is the vector product of nand mA • It is this 
result, which only holds for real third order matrices, that 
makes it possible to establish the properties of proper vectors 
discussed in this paper. 

M and D have the same proper vectors. If A and v are, 
respectively, the proper values ofM and D, corresponding to 
the same proper vector, then A = v + 1 trM. Thus A is real if 
and only if v is real. The condition that D have three real 
proper values is that all the three roots of the characteristic 
equation det(D - vI) = 0 be real. The conditions for the 
proper values to be real are then characterized by the follow­
ing well-known result. 

Proposition 1: For a real third order square matrix, M, 
only one proper value is real when t/J = trD2 -54 defD 
< O. When t/J > 0, all the three proper values are real and 
distinct. When t/J = 0, all the proper values are real and are 
given by 2v, - v, - v, where v = (! detD)I/3. 

BASIC RESULTS 

It is assumed that all the three proper numbers ofM are 
real and that mA 1=0. Let n l and n2 be two distinct proper 
vectors corresponding, respectively, to the proper numbers 
AI and ..1.2, so that Mnl = Alnl and Mn2 = A2n2• It then fol­
lows from these two equations and Eq. (1) that 

Now the scalar triple product [nl,n2,mA 1 vanishes if and only 
ifni' n2, and mA are coplanar. Hence, 

Proposition 2: ifni and n2 are two distinct proper vec­
tors ofM corresponding, respectively, to the proper values 
AI and ..1.2, then (..1.2 - Al)nin2 = o if and only ifmA is a linear 
combination of n l and n2. 

Also, if AI = ..1.2 = ..1.0 and n l and n2 are two different 
proper vectors corresponding to the repeated proper value 
..1.0' then it follows that [n1,n2,mA ] = O. Hence, 

Proposition 3: IfM has two distinct proper vectors cor­
responding to the same (repeated) proper value, so that every 
vector in their plane is a proper vector, then mA is also a 
proper vector and lies in this plane. 

DISTINCT PROPER VALUES 

When t/J > 0, the three proper values of M are real and 
distinct. 

Corollary 4: Two proper vectors ofM corresponding to 
distinct proper values are orthogonal if and only if the pseu­
dovector, rnA' lies in the plane of the proper vectors. 

Corollary 5: If all the three proper values are distinct 
then, at most, one of the proper vectors is orthogonal to the 
other two. A proper vector n l is orthogonal to the other two 
proper vectors, n2 and n3, if and only if n 1 is parallel to mA , 
that is, if and only if mA is that proper vector. 
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Remarks: Iffollows that ifall the proper values are dis­
tinct, then the three proper vectors are mutually orthogonal 
if and only if mA = 0, that is, when M is symmetric. 

The results of this section are illustrated by the matrix 

(2) 

which has the three distinct proper values, AI' A2, and A3, 
The corresponding proper vectors are, respectively. 

and 

None of these proper vectors are orthogonal when a l' a2 

and a3 are nonzero, and mA does not lie in anyone of the 
planes determined by (D1,n2), (OZ,03) and (D3,D). If a3 = 0, 
then D) is orthogonal to O2 but neither of them is orthogonal 
to 0 3, In this case, mA lies in the plane of D) and O2 but is not 
along either one of them. Finally, if a2 = 0 and a3 = 0, then 
° 1 is orthogonal to both O2 and D3, but O2 is not orthogonal to 
03' and mA is along 0). 

TWO PROPER VALUES EQUAL 

When t/J = 0 but detD # 0, two of the proper values are 
equal and different from the third one. Let A) #Az = A3 
= AD. Then there are two possibilities: (i) either there is only 

one proper vector,llu. corresponding to the repeated proper 
value AD, or (ii) all the proper vectors in a plane are proper 
vectors corresponding to AD. It then follows from Proposi­
tions 2 and 3 that the following results hold. 

Corollary 6: If corresponding to a repeated root 
AD = A2 = A3 #A1 there exists only one proper vector, Do of 
M, then M has only two proper vectors, Do and D l' where D) is 
the proper vector associated with the proper value A). Fur­
ther, Do and D \ are orthogonal if and only if m A lies in their 
plane. 

Corollary 7: IfM has two distinct proper vectors, D2 and 
03' which correspond to the same repeated proper values, 
AD = A2 = A) #A\, so that every vector in their plane is also a 
proper vector corresponding to AD, then mA is also a proper 
vector which lies in this plane. Further, mA is orthogonal to 
° I> the proper vector associated with AI' 

Remarks: As an example, consider the matrix in Eq. (2) 
with A2 = A3 = Ao#A.). Then, as long as a) #0, it only has 
the two proper vectors DI = (1 0 0) and D2 = ( - a)A) - AD 
0) which correspond, respectively, to the proper values Al 
and AD. These two vectors are orthogonal only when a3 = 0, 
in which case, mA lies in the plane of D) and D2• However, 
when a) = 0, DI = (1 0 0) is the proper vector correspond­
ing to AI and every vector which is orthogonal to 
D = (A) - AD a3 a2) is a proper vector corresponding to the 
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repeated proper value AD. Furthermore, mA is orthogonal to 
D). 

ALL THREE PROPER VALUES EQUAL 

When t/J = 0 and detD = 0, all the three proper values 
are equal, and the only possibilities are then given in Corol­
lary 8. 

Corollary 8: If all the three proper values ofM are equal, 
then either (0 there is only one proper vector, or (ii) all the 
vectors in a plane are proper vectors and m A is also a proper 
vector which lies in this plane. 

This result is illustrated by the matrix in Eq. (2) with 
A) = A2 = A3 = AD. If a \ # 0 and a3 # 0 then the only proper 
vector corresponding to the repeated proper value AD is n\ 
(1 0 0). However, if a I = 0, then all the vectors in the plane 
normal to D = (0 a3 a2) are proper vectors, and mA also lies 
in this plane. 

CONCLUDING REMARKS 

When the three proper values are real and distinct, M 
has only three proper vectors which, in general, are not or­
thogonal. Two of the proper vectors are orthogonal when 
mA lies in their plane. IfmA is itself a proper vector, then it is 
orthogonal to the other two proper vectors, which are not 
orthogonal. 

When two of the proper values are equal and different 
from the third proper value, then there are two cases. (i) If 
there is only one proper vector associated with the repeated 
proper value, then M has only two proper vectors, the sec­
ond one corresponding to the distinct proper value. These 
two proper vectors are orthogonal only when mA lies in their 
plane. (ii) If M has more than one proper vector associated 
with the repeated proper value, then all the vectors in a plane 
are proper vectors and this plane also contains the vector 
mA • In addition to the proper vectors in this plane, there is an 
additional proper vector, corresponding to the distinct prop­
er value, which does not lie in this plane and which is orthog­
onal to mAO 

Finally, when all the three proper values are equal, then 
there are two cases: (i) either M has only one proper vector or 
(ii) all the vectors in a plane are proper vectors and mA also 
lies in this plane. 

Given a real third order matrix M, only one real proper 
vector exists when only one of the proper values is real, the 
other two proper vectors being complex. However, only one 
proper vector can exist even when all the proper values are 
real and equal. M can have just two proper vectors only 
when two of its proper values are equal and different from 
the third one. It has only three proper vectors when the three 
proper values are distinct. All the proper vectors may com­
prise the vectors in a plane, this being possible only when all 
the proper values of M are equal. In the last possibility, all 
the vectors in a plane are proper vectors and a vector, not in 
this plane, is also a proper vector. This is possible only when 
two proper values are equal and different from the third. 

'v. K. Stokes, "On the Analysis of Asymmetric Stress," J. Appl. Mech. 39, 
1133-6 (1972). 
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Bloch electrons in a magnetic field-reduction to one dimension a) 
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A reduction to one dimension of the above problem, found by Schellnhuber and Obermair for a 
special model lattice, is shown to be valid for all lattices without restriction. As was the case in 
their problem, the field must be rational. If the rational number is the reciprocal of an integer a 
single equation results. This condition is well adapted to the study of fields of practically 
attainable magnitude. If the rational number is of the form q/p a system of q coupled equations is 
obtained. 

1. INTRODUCTION 

Schellnhuber,l and Schellnhuber and Obermair2 have 
recently adapted to low fields the method introduced by 
Rauh, Wannie~and Obermair (RWO)3 to solve the quantum 
problem of a crystalline electron in a magnetic field. They 
did this for a set of particular cases where the periodic poten­
tial has the simplest possible nontrivial form and the rational 
number attached to the field is the reciprocal of an integer p. 
The essentially new step was the reduction to a Schrodinger­
like equation in one variable only. It is the purpose of this 
paper to show that the restriction to a simple potential is not 
necessary: all periodic potentials down to triclinic symmetry 
allow this type of reduction for all rational fields. The reduc­
tion arises fairly directly from the structure of the Landau 
functions in Cartesian coordinates. 

2. SPECIAL CASE: THE RECIPROCAL OF THE 
RATIONAL NUMBER IS AN INTEGER 

It was shown earlier3 that rationality requires the mag­
netic field to be parallel to a lattice vector c which we take 
along the z direction of a Cartesian system of axes. We are 
then compelled to lay thex axis parallel to one of the recipro­
cal lattice vectors a* which are perpendicular to c; this is 
needed to get a minimal representation of the magnetic 
translation group.3 We therefore write the three basis vec­
tors of the crystal lattice in the form 

a = iax + jay + kaz, 

b = jby + khz, 

(la) 

(lb) 

c = kc. (lc) 

Equation (1) imposes no restriction on the symmetry or 
lack of symmetry of the crystal. ax' by, and c must be differ­
ent from zero; their product is the volume of the unit cell. 
The only bounding parallelogram of the cell traversed by 
magnetic flux is the one generated by a and b. The reciprocal 
vectors of ( 1) are 

* . 1 a = 1-, (2a) 
ax 

(2b) 

"'This work was supported by the National Science Foundation. 
hlPermanent address: Physics Department, University of Oregon, Eugene, 
OR 97403. 

. aybz - azby • bz 1 
c* = 1 - J - + k - . 

axbyc byc C 

The potential is triply periodic 

V(x + ax'y + ay,z + az) = V(x,y,z), 

V(x, y + by,z + bz) = V(x,y,z), 

V(x, y, z + c) = V (x,y,z). 

It has a Fourier expansion involving the vectors (2): 

V(x,y,z) = L vl,n,m exp[21Ti{(Ii. 
{,n,m ax 

+ (n i. - m ~) y + m i.z}] . 
by byc C 

(2c) 

(3a) 

(3b) 

(3c) 

(4) 

It will come out as usual that the potential has just a band 
splitting function along the z direction where the large ener­
gy term /j2k ;/2m is controlling. We need, therefore, the po­
tential (4) only for m = 0 and write it in the form 

~ 
[V(x,y,z)]m=O = 2m V(x,y), (5a) 

V(x,y) = L wn(x) 
n 

xexp [211"i( - n ~x + n i.y )] , (5b) 
ax by by 

wn(x) = ~ + v{,n.O exp[ 211"il a~ x] , (5c) 

wn(x + aJ = wn(x). (5d) 

For the reason given above, we write the Schr6dinger 
equation immediately without its z-dependence. It then 
reads in the Landau gauge 

~t/J = J21/J/Jx2 + J21/J/Jy2 - 2iaxJI/J/Jy 

- a2x21/J - V (x,y)l/J. 

Here V(x,y) is defined in (5b) and a is equal to 

a = eH /Iic. 

Without the potential term a solution would be 

I/J = h (x - xo) eiax
"", 

(6) 

(7) 

(8) 
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where h is a Hermite function and Xo an arbitrary displace­
ment. The introduction of the periodic potential will force us 
to discard the Hermite functions, and to pay attention to 
rationality. On the other hand, the coupling of the y expo­
nential and the x displacement can be retained. It is the 
structurally decisive element for the contemplated 
simplification. 

To bring in the integer p we introduce the flux <p 
through a unit cell, expressed in units of the flux quantum 

<p = (e/hc)Haxby = lip. 

This yields with (7) 

a = 21Tlpaxby. 

We take ¢ as a Fourier series iny, as follows: 

+'" 
¢= L fm(x-ptu+m)ax) 

m= - 00 

(9) 

(10) 

xexp[ 21Ti{vm - paytu + m? + tu + m) L}]. (11) 
2by by 

The exact form written down here needs, strictly speaking, 
no justification; it will justify itself during the derivation. 
The rationale for all these terms may be found in my paper 
on quantum numbers.4 Two quantum numbers, Il and v, 
appear in (11); they are fractions. The quadratic exponential 
takes care of nonrectangular lattices. The displacement in 
the argument offm respects (8). It will be one of the results of 
the derivation that there should be no index m onf No 
attention has been paid to the normalization of ¢ as we do 
not intend to take matrix elements. 

Substitution of (11) and (10) into (6) yields 

ff¢ = Y exp[ 21Ti{ vm 
m = - ao 

[
d 2 ~ 

X -d 2fm (X - P(1l + m)ax) - 2 2b 2 
x pax y 

xIx - p( f.1- + m)ax)2fm(x - P(1l + m)ax) 

- V (x,y)fm(x - P(1l + m)axl]. (12) 

Special attention must be paid to the term containing the 
potential. From (5b) and (12) 

potential term = - ~ exp [ 21Ti{ vm 

To restore to this expression the character of a Fourier series 
in y we substitute 
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(Il + m)2-+(1l + mf - 2n(1l + m) + n2
, 

which yields 

potential term = - L exp[ 21Ti{vm 
m 

XIx - p(p + m)axl _ pay n2}] 
2by 

xwn(x)fm _nix - p(p + m - n)axl· 

Writing (12) as an equation 

(ff-E)¢=O, (13) 

and returning to it the potential term in the fo: m just ob­
tained we get 

L exp[21Ti{vm - pa
y

(f.1- + m)2 + (f.1- + mIL}] 
m ~ ~ 

[
d 2 4~ 

X d2fm(x-p(f.1-+m)ox)- 2 2b 2 
x pax y 

xix - p(p + m)ax):t'm(x - p(f.1- + m)ax) 

- L exp [ - 21Ti{vn + n~ 
n Ox by 

XIx - P(1l + m)oxl + pay n2}] 
2by 

xwn(x)fm_n(x -p(f.1- + m - nlax ) 

- Elm (X - p(p + m)ax )] = O. 

(14) 

Equation (14) is a Fourier series iny which vanishes. It can 
only do so if every Fourier coefficient vanishes. If we consid­
er the mth Fourier coefficient we see that, except for w n (x), x 
always occurs in the combination x - p( Il + m) ax. So if we 
set 

x - P(1l + m)ox-+x 

we get the simpler form 

d 21m (X) _ ~X2/, (X) 
dx2 p2a2 b 2 m 

x y 

- L W,,(X +Pf.1-ax)fm_n(x +pnax ) 
n 

(15) 

Here (5b) has produced the final simplification: the disap­
pearance of m from the equation. 

The equations are now all alike except for the appear­
ance of m in the index off This would still permit an expo­
nential dependence offm on mj however we have anticipated 
this in (11) by introducing the exponential exp[21Tivm). fm 
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does, therefore, not depend on its index and we end up with 

d 2f(x) 4r 2 
-d 2 -~b xf(x)- IWn(x+ppax)f(x+pnax) 

x pax y n 

xexp[ - 21ri{vn + n~x + pay n2}] = Ef(x), (16) 
axby 2by 

which is the desired equation. It becomes Schellnhuber's \ 
working equation (BS8) if we set a = 0 a = band y 'x Y' 

wo(x) = 2Vo cos21rxlax , 

w\(x) = w_\(x) = Vo, 

with all other w's equal to zero. His variable x equals 
(V21r)/(Vp) a times the variable x used here. 

Schellnhuber, \ and Schellnhuber and Obermair2 have 
shown that the Ritz method is the proper way to solve (16). 
To reach practical situations, p must be made very large, 
between 100 and 1000. In connection with such a situation 
one wishes to ask what boundary conditions are to be associ~ 
ated with Eq. (16). This question has no answer in principle 
becausef(x) is not a wave function, but an auxiliary function 
permitting us to construct the wave function, using (11). Pro­
fessor Obermair pointed out to me, however, that it is very 
likely that the solution of (16) converges like a Gaussian. The 
reason is that the two first terms will dominate in the equa­
tion for large x. This leads to the alternative of a square 
exponential increase or decrease. Since an increase is out of 
the question only the possibility of a decrease remains. 

3. EXTENSION TO ALL RATIONAL FIELDS 

The extension of the preceding derivation to a general 
rational field departs from the preceding text at Eq. (9) which 
is to be replaced by 

¢J=qlp; q, p integers prime to each other. (17) 

Thereuponp is to be replaced by pi q in all subsequent formu­
las up to Eq. (15). In Eq. (15), the argument ofwn reads now 

x+(plq)(lt+m)ax' (18) 

When q = 1, Eq. (Sb) applies and m can be dropped. With 
q# 1, this reasoning does not work: m remains in the equa­
tion and the text subsequent to (15) is not correct. However, 
it is not totally invalid: the equation m + 1 is different from 
the equation m, but the equation m + q is not. The Ploquet 
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argument used thus remains valid for an advance by q steps. 
In Eq. (16)fm(x) has to retain its index, but only modulo q. 
The single Eq. (16) becomes therefore a system of q coupled 
equations. They look essentially like (15), with the argument 
of Wn modified as discussed above and the index offm taken 
moduloq. 

We have thus shown that for all rational fields the 
Schrodinger equation is reducible to a one-dimensional 
problem. The problem is a single difference-differential 
equation if the fiux ¢J is the reciprocal of an integer. For 
¢J = qlp it is a system of a q coupled equations. 

The work ofSchellnhuber and Obermairl,2 deals entire­
ly with the single equation arising for q = 1. There are sever­
al reasons why this should remain so for some time. First of 
all, ¢J is very small for practically attainable fields and there­
fore the choice ¢J = 1/ p leaves us plenty of options. Secondly, 
the complications of the energy spectrum occurring between 
¢J = 1/ p and ¢J = 1/( p + 1) were carefully analyzed by Hof­
stadter.6

,7 He called such an interval a cell and the contents 
of such a cell are covered by the nesting theorem he suggest­
ed. Thirdly, even Eq. (16) is fairly hard to solve. The method 
available is the Ritz method; with this method progress is 
made by gradually guessing at structural features of the 
wave function; this is a cumbersome process. Extension of 
the Ritz method to equation systems is probably possible, 
but the guessing would become painfully slow. 
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The quality factor [Q] for the E-plane strip source antenna is minimized with respect to a class of 
aperture functions for which the [Q] converges. A complete basis for the above class off unctions is 
constructed for the first time and this basis is used to minimize the above mentioned [Q]. The 
functions which minimize the above [Q] turn out to be doubly orthogonal and are used to 
implement a constrained aperture synthesis procedure. New results concerning the maximum 
bandwidth (or minimum [Q]) of the E-plane strip source antenna are given. 

I. INTRODUCTION 

Many investigationsl
-

7 have dealt with the problem of 
defining a suitable quality factor Q for antennas. Later, 
many of these quality factors have been used as a constraint 
parameter in an antenna source synthesis procedure.4

•8 Col­
lin and Rothschild4 and also Rhodes8 have defined the Q of 
an antenna system operated at resonance as the ratio 
2cu We,m / P, where We,m is the greater of the electric and mag­
netic energy in the reactive field of the antenna and P is the 
radiated power of the system. The Q is an important param­
eter because it is a measure of the energy stored in the near 
field of the antenna and because it is inversely proportional 
to the bandwidth of the system. 

In the definition of the Q a great difficulty which arises 
is due to the fact that the wavenumber integrands which 
describe the electric and magnetic energy densities in the 
evanescent or invisible radiation regions turn out to exhibit a 
strong singularity at the wavenumbers where 
k = (k" 2 + ky 2)1/2 = {J)IC = ko. (This circle in the k" ,ky 
wavenumber plane defines the boundary between the visible 
and invisible radiation ranges.) The strong singularity in 
turn causes the integrals describing the electric and magnetic 
energies We,m to diverge to infinity. 

Rhodes has attempted to resolve this difficulty8 by re­
moving the singular portions of the divergent integrals and 
defining a new set of what he terms observable electric and 
magnetic energies< We > and < W m > based on the conver­
gent terms of the original energy integrals. Rhodes provided 
a physical basis for this redefinition by noting that: (1) the 
removal of the singular terms in the above energy integrals 
would not cause a corresponding change in the bandwidth of 
the system (BWa l/Q ), and that (2) the electric and magnetic 
field components which made up the singular terms did not 
contribute to the complex Poynting power at the aperture 
and for this reason the singular terms were not physically 
meaningful. A synthesis procedure for the E-plane strip 
source antenna was based on these observable stored ener­
gies. These observable stored energies however have been 
criticized in Refs. 5 and 6 as not being unique and therefore 
not related to the bandwidth of the system. 

Collin and Rothschild4 have further observed that the 
energy integrals are, however. not divergent for all aperture 

distributions. They have shown that for those aperture dis­
tributions whose pattern space factor F(k) (or Fourier trans­
form of the aperture distribution) vanishes at the point 
k = ko, not only is the Q convergent but it is also proportion­
al to the bandwidth of the antenna system when the Q is 
large. However, due to the fact that We,m does diverge for 
those aperture functions for which F (ko) =1= 0, Collin,6 has dis­
counted the above Q as being physically unmeaningfuI. 

This investigation will be directed at the second prob­
lem mentioned at the beginning ofthe Introduction, namely 
the development of a Q constrained synthesis procedure. At 
the present time no Q constrained synthesis procedure has 
been developed for the above mentioned Q = 2cuWe,mIP,4,S 
due mainly to the divergence of this Q for certain aperture 
distributions. A synthesis procedure based on this Q may, 
however, be constructed if the class of allowable aperture 
distributions for the synthesis procedure is restricted to that 
classforwhichF(ko) = 0. Ifasynthesis procedure is based on 
this restricted class of functions then the Q will be conver­
gent and also inversely proportional to the physically mea­
surable parameter, namely the bandwidth. In this case it will 
not be necessary to discount the Q as physically unmeaning­
ful as did Collin6 since the Q converges, nor will be necessary 
to redefine the Q by removing certain terms as did Rhodes. 8 

This investigation will construct synthesis procedure 
for the one-dimensional E-plane strip source antenna using 
the above mentioned Q [see Eq. (1) of this paper]. Previously 
Rhodes has presented a synthesis procedure8 for this anten­
na with the (u2 - I) - 3/2 term removed. 

The investigation will be divided into three parts. The 
first part will construct a complete set of aperture functions 
which will: (1) satisfy the proper physical boundary condi­
tions in the aperture, and will (2) span the space of all aper­
turefunctions whose pattern space factor F (k ) vanishes at the 
point k = ko. The second part will be concerned with mini­
mizing the quality factor ofEq. (1) with respect to the above 
mentioned functions. The purpose of this will be to construct 
a set of doubly orthogonal functions as in Ref. 9, which may 
be used to implement an antenna source synthesis proce­
dure, which is the third part. Also the minimum value of the 
above quality factor will be given which will give for the first 
time the true maximum bandwidth of the E-plane strip 
source antenna. 
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TABLE I. Minimum quality factor for the E-plane strip source antenna. 

>z: Qo Q. Q2 Q3 

0.1 !. 0.211710 + 04 0.212460 + 07 
31T 

0.419030-02 0.162736 + 00 0.351848 + 01 - 0.708036 + 02 
2 

3.01:!! 
0.417781-02 0.162279 + 01 0.350823 + 01 0.705678 + 02 

2 
6.0 0.363281-03 0.167662-01 0.371560 + 00 0.606426 + 01 
5n 
~ 0.105174-04 0.630705-03 0.173314-01 0.296167 + 00 

2 
371' 0.509426-06 0.369508-04 0.123749-02 0.250867-01 
63:rr 0.392025-15 0.157452-12 

II. ANALYSIS 

The E-plane strip source antenna consists of an infinite 
strip of width a embedded in a conducting screen with the 
electric field polarized in the direction normal to the aper­
ture edge. Since the electric energy for this antenna is always 
greater than the magnetic, the Quality factor for this antenna 
is given by: 

(Q 1 = 2ulWe 

p 
f lul > I [(u 2 

- 1) - 1/2 + !(u 2 - 1) - 312] IF(uW du 
= ~~----------~~------------~---

fl_ 1 (1 - U2) - 1/2IF(uW du 

(1) 

(2) 

In this expression F(u) represents the far field pattern space 
factor.!(t ) is a function which is proportional to the electric 
field in the aperture, t = 2X 1 a is a normalized aperture vari­
able, u = k,Jko is a normalized wavenumber, and 
c = 1T'al A = koa/2 electrical length of the aperture. We and 
P in this expression may be found in Ref. 8, Eqs. (3.37b) and 
(3.5) respectively after setting ky = 0, Fy = 0, and aftermak­
ing a change ofvarlables. The region lui> 1 represents the 
reactive field or invisible region and I u I .;;; 1 the visible radi­
ation region. Rhodes' observable electric energy is obtained 
if the term proportional to (u2 

- 1) - 3/2 is omitted in Eq. (1). 
The first part of this paper will deal with the minimiza­

tion of Eq. (1) with respect to the restricted class of aperture 
functions in L 2 [ - 1,1] that (i) satisfies the correct physical 
boundary conditions in the aperture (Ref. 8, pp. 34-50) 
namely that 

1(/)lt= ±I =0, (3) 

and (ii) satisfies the condition that F(u) is zero at u = 1 and 
u = - 1, namely that 

F(±l)=O= I~/(t)e±jctdt. (4) 

The second condition ensures the convergence of Eq. (1) and 
is equivalent to the statement that every I(t ) that meets (i) 
and (ii) is orthogonal to coset and sinet. It may be shown that 
the class of functions which satisfy (i) and (ii) in L 2[ - 1.1] 
forms a complete (in the sense of Cauchy) and therefore 
closed vector subspace which we shall call V. 
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To carry out the aforementioned minimization we must 
first find a set of functions which form a total basis for the 
vector subspace V. To this end we first note that a complete 
(in the sense of a total basis) set of functions which satisfy the 
boundary conditions (i) are given by the functions 

{ 
cos!t. k = 0.2,4 .... 

¢k = . , 
sm!t, k = 1,3,5,··· 

(5) 

where! = (k + 1)1T/2). We also note that the Fourier trans­
form of the above functions which will be useful later is given 
by 

tPdu) = II tPk ejcut dt 
-I 

{ 

- 2kcoseu 
'k (eu)2 _.&.2 ' 

=J 
- 2ksin.eu • 
(CU)2 _!2 

k=0.2,4 .. ··· 

(6) 
k = 1.3,5,····. 

The second step in creating a total basis for V is to con­
struct a set of functions {h k J 00 k = ° from appropriate linear 
combinations of the functions tPk in Eq. (5). These linear 
combinations will be chosen in such a way that each hk will 
satisfy condition (ii), each hk will be orthogonal to 
hk ~ I ,hk ~ 2,.··ho, and each hk will be normalized to unity. 
The functions hk for which k = 0,2,4,. .. will be even func­
tions constructed from the even tPk functions and the func­
tions hk for which k = 1,3.5 .... will be odd functions con­
structed from the odd tP k functions. In this construction two 
different cases occur, namely the case when e=/(k + 1)1r/2, 
k = 0,1,2 .. ·· and the case when e = (k + 1 )11:./2 for some par­
ticular integer ko' 

In the first case when e=l(k + 1)11:./2, k = 0,1,2,.·· the 
series that results for each hk is given by 

k+2 

hdt) = L f ai.k¢i(t) (7) 
i=O,1 

and the series for its associated Fourier transform, call it H k , 

is given by 

, . , , , , , , 
, , 
, 
, I 

I I 
, I 

I 

I , 
1 __ _ 

FIG. 1. Radiation approximation of an ideal cosecant radiation pattern 
with Q = 10 and a = 2.S..l. for the E-plane strip source antenna. 
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k+2, 
Hk(U) = L a;,k<P;(U), (8) 

;=0,1 

The primed summation in (7) and (8) means summation over 
the even or odd values of i according to whether k is even or 
odd, The coefficients ai,k which ensure that hk satisfies con­
ditions (i) and (ii) are derived in Appendix A. 

In the second case if c = (ko + 11..?!/2 and ko = 0,2,4, "', 
then hk is given by 

hk = tPk' k = 0,2, ... ,ko - 2, 

hk =tPk+2' k= ko,ko+ 2, ... , (9) 

and the hk for k = 1,3,S are determined from Appendix A. If 
in the second casec = (ko + 1)1[/2 and ko = 1,3,S, .. · thenh k 

is given by 

hk = tPk, k = 1,3,S,···ko - 2, 

hk = tPk + 2' k = ko,ko + 2,... (10) 

and the hk for k = 0,2,4,,,, are determined from Appendix 
A. In other words, in the second case a total basis for V is 
found by simply eliminating the tPk" function from Eq. (S). 
The functions Hk for the second case found from the Fourier 
transform of(9) and (10). 

m. DOUBLY ORTHOGONAL FUNCTIONS 

By using the theory in Ref. 9 the set off unctions (h k (t ) J 
may be used to construct a set of doubly orthogonal 
functions 

In(t) = !.' X;,nh;(t), (11) 
;=0,1 

"', 
F,,(u) = 2: X;,nH;(u), (12) 

;=0,1 

from the extremal functions of the functional [Q] of Eq. (1). 
The set of coefficients X;,n are derived from the matrix 
equation 

(13) 

where 

G I ... = f~y-U2)-1I2H*k'HkdU, (14) 

G2kk , = i [(U Z - 1) -112 + !(u2 - 1) - 3/2] 
lui> I 

XH*k,Hk du. (IS) 

The matrices [Gtl and [Gz] are Hermitian and positive 
definite and the matrix elements are zero whenever k ' is even 
or k is odd or vice versa. 

The functions F" satisfy the double orthogonality 
relations 

r [(u 2 _ 1) -112 + Mu2 - 1) - 3/2]F:'Fn du 
)Iul> I 

= QnNn!)m,n' 

fl (1 - u2) - 112F:'F" du = N"!)",,n , 
-I 

where Nit is a positive normalization constant. 

(16) 

(17) 

The eigenvalues Qn(c)al/BW are shown as a function 
of c, the electrical length of the antenna in Table I. Harwell 
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subroutine EA 12 AD was used to solve the eigenvalue Eq. 
(13) on an IBM 360-1S8 computer. The matrices [G l ] and 
[Gz] were truncated at values of k = 49. 

It is interesting and also an excellent verification ofthe 
numerical procedures used here that the Q for the l.S00sn 
case (using the hk functions of Appendix A) compares so 
closely with the Q for the l.S1I. case [(using Eq. (9)] despite 
the fact that totally different bases were used in each case. 
This also seems to indicate that the minimum Q is not sensi­
tive to the aperture width when the aperture width assumes 
integral or half integral values of the wavelength. 

IV. SYNTHESIS PROCEDURE 

We will now be concerned with using thel" functions in 
a constraint synthesis procedure. The synthesis procedure 
will consist of the minimization of a least-square error func­
tional of the form 

E = f~ I (1 - u2) - 112IF(u) - F(uW du 

+,u[G2(F)-QR GI(F)], (18) 

where G I (!) and G2(F) are the functionals ofEq. (1). In this 
equation Fis an ideal, desired far-field radiation pattern 
which is to be approximated, F is the radiation pattern ap­
proximation given by Eq. (2), QR is a prescribed value of the 
Q (or B W) to which the approximate pattern F (u) is to corre­
spond, E represents the error between the ideal and approxi­
mate radiation patterns, and,u is a Lagrange multiplier. This 
equation forms the basis of a constraint procedure which was 
first given by Rhodes8 and later applied by him to the E­
plane strip source antenna based on his observable energies. 
This equation has also been used in Ref. 10 for the H-plane 
strip source antenna. 

The minimization of E is accomplished by expanding 
F(u) in a series of the doubly orthogonal functionsFn ofEqs. 
(16) and (17) and then varying E with respect to each of the 
coefficients in this series. The double orthogonality proper­
ties of the functionsFn reduce Eq. (18) to a simple sum of the 
squares of the coefficients of the series of Fwhich can then be 
minimized easily. The details of the minimization are given 
in Refs. 8 and 10 and are not repeated here. 

Figure 1 illustrates the success of this procedure when 
applied to an ideal cosecant pattern with c = 2.S 7r and 
QR = 10. -

V. CONCLUSION 

The minimization of the quality factor of the E-plane 
strip source antenna has been found for the first time with 
respect to the restricted class of aperture functions V in 
L 2[ - 1,1] which (i) vanish at the aperture edges, and (ii) 
whose pattern space factor vanishes at the boundary of the 
visible and invisible radiation ranges. The minimization was 
performed by constructing a total basis (h k J for V, express­
ing the quality factor functional [Q] in a matrix quadratic 
form with respect to this basis, and then minimizing the qua­
dratic form. By using the associated matrix eigenvectors, a 
set of doubly orthogonal functions was contructed and these 
doubly orthogonal functions were used as a set of basis func-
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tions with which a constrained aperture synthesis procedure 
was implemented. 

In conclusion, this author believes that the minimum 
quality factor which was obtained by minimizing Eq. (1) with 
respect to the functions in V, is also the minimum quality 
factor that would be obtained ifEq. (1) was minimized with 
respect to all functions in L 2[ - 1.1]. This conclusion is 
reached since any function which is a member of L 2[ - 1,1] 
and not a member of V would make the [Q] ofEq. (1) infinite. 

APPENDIX A 

We will derive the coefficients a i•k for the even hk func­
tions first and later only state results for the odd hk func­
tions. Let h r .h ~ ... and H r ,H ~ , ... be the unnormalized se­
ries given by 

n 

h ~ = ¢o + I Ai,n¢2i 
;= 1 

n 

H~ = f/10 + I Ai,nf/12i n = 1,2,3 .. ·. 
i=1 

The coefficient A I, I is chosen so that H r (1) = 0 or 

(AI) 

(A2) 

AI,I = - f/10(1)/f/12(1). (A3) 

The coefficient A 1,2 andA 2.2 are chosen so that Sl_ I h r h ~ dt 
= (h r.h ~) = 0 and H;(I) = 0, which implies that 

A I ,2 = - lIAI,1 and 

[f/1~(I) + f/1~(I)] 
A2,2 = - f/1

0
(1)f/1

4
(1) . (A4) 

To proceed further we note that for n;;;.3 the conditions 
(h ~,h~) = 0, for i = 1, ... , n - 2 leads to the conclusion 
(after use of the orthogonal properties of the ¢k functions) 
that 

AI,n =AI,n_1 = ... =AI,2, 

A2,n =A 2,n_1 = ... =A2,3. 

(AS) 

A,,_2,n =An- 2,n-1 n;;;.3. 

This then implies that the series for h ~ may be given by 
n-I 

h~ =¢o+ IA i,i+I¢2i +An,n¢2n' 
i= I 

(A6) 

Let us suppose that the coefficients of h ~ _ I' h ~ _ 2'"'' hI 
have all been found for n;;;'3. Then to determine the coeffi­
cients of h ~ we need only determine An _ I,n and An,n as 
A i,i + I for i = 1 ..... n - 2 are known. By using the condition 
(h ~,h ~ _ I ) = 0 and H ~ (I) = 0 and a little algebraic manip­
ulation we find for n;;;. 3. 

(A7) 

(A8) 

As can be seen Eqs. (A 7) and (A8) provide a simple 
recursion relation for which the coefficients of An _ I,ll and 
An,n may be found for any order n;;;.3. Equation (AS) gives 
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the remaining coefficients for order n. We also note that 
since f/1dl):;60ifc:;6(k + 1)"/2 [as can be seen from Eq. (6)] 
that this implies thatAI,1 .A I ,2.AZ,2 :;60. This in conjunction 
with the fact that all of the f/1d1)#0, implies that Ai,k #Ofor 
all i and k. 

The coefficients for the odd h k functions may be found 
if we let h ? ,h ~ , ... and H? ,H ~ , ... be the unnormalized series 
given by 

n 

h ~ = ¢I + I Bi,n¢Zi+ I , 
i= I 

n 

H~ = f/11 + I Bi,n f/12i + I n = 1.2.3, ... , (A9) 
i=1 

and we apply the conditions H ~ (1) = 0 and (h ~ ,h 7) = 0, 
i = 1 •...• n - 1 to these series. The analysis is similar to the 
even case and the coefficients are found to be given by the 
equations 

BI,I = - f/11 (1)1f/13(1), 

B I ,2 = - lIBI,1 , 

B2,2 = - [f/11(1) +BI ,2f/13(1)]/f/1s(1). 

For n;;;.3 

BI,n =BI,n_1 =.··=BI,2, 

B2,n = B2,n_1 = ... = B2,3' 

B n _ 2,n = B n - 2,11 - I , 

1 [ n-2 ] 
B 1 + .2: B ~i + I , 

11-I,n-1 1= I 
Bn-I,n = 

1 [cP2n _ dl) ] 
Bn_I,n_1 cP2n + dl) 

[ 
n-2 ] 

X 1 + .2: B 7.i + I + B ~ - I,n - I . 
,=1 

(AI0) 

In the above expressions we note that all of the ratios 
cP I (I)/cPs(l) and cP2n _ I (1)/cP2n + I (1) for n = 1,2 ... · are real 
since cPn is purely imaginary for n = 1,3,5, .... 

If we normalize the coefficients Ai,,, and Bi,n and also 
reorder the indices to conform with Eq. (7) we find for 
n = 1.2,3 ... 

aO,2n _ 2 = I/sn • 

a2i,2n _ 2 = Ai,nlsn i = 1,2, .. ·n • 

al,2n-1 = I/'n • 

a2i + 1,2n _ I = Bi.nl'n i = 1,2, .. ·n , 

where 

[ 

n ] 1/2 

Sn = 1 + .2: A ~n 
1=1 

and 

'n = [1 + it! BZn r2 

• 

The above scheme has been used to generate numerical­
ly all the coefficients up to h49 (t) for many values of'c. The 
scheme is very stable and satisfies condition (ii) and the orth­
ogonality requirement very accurately. 
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ERRATA 

Erratum: On the coupling of self-conjugate systems with SL(3,R) symmetry 
[J. Math. Phys. 20, 1615 (1979)] 

J. A. Castilho Alcaras 
Instituto de Ffsica Teorica,. Sao Paulo. Brasil 

l. C. Biedenharn 
Department of Physics. Duke University. Durham. North Carolina 27706 

(Received 22 July 1980; accepted for publication 31 July 1980) 

(I) In Eq. (2.1) the first commutator is between Jo and 
J±!. 

(2) In the definition of JJTin the second ofEqs. (2.3) 
there is an overall factor of 6 missing on the right­
hand side. 

(3) In Eq. (2.5), on the left-hand side the bra SO(2) label 
is M' and the last ket on the right-hand side must be 
IJ'M'}. 

(4) In Eq. (2.6) the first factor under the square root 
should read: (2e + I). 

(5) In Eq. (2.19) under the square root symbol one 
should have (21 + I). 

(6) In the second ofEqs. (2.21) (the last equation on page 

1617) the first factor in the denominator should be 
(21 + I) (not 21 + 3 as printed) while in the third 
equation (top of page 1618) the complete numerator 
under the square root should be 2(2/)(2J + 2). 

(7) In Eq. (2.22), the first ket on the right-hand side 
should read: l0olL!; J!M!}. 

(8) In Eq. (2.23): "'3 should be replaced by JL3' 
(9) In Eq. (2.24): Delete the first ket on the right-hand 

side. The sum is over a. 
(10) In Eq. (2.31) forf4

JJ there is an overall minus sign 
missing; for f4 JJ + 4 a left parenthesis is missing in 
the factorial appearing in the numerator. 

Erratum: Five-term WKBJ approximation 
[J. Math. Phys. 21,90 (1980)] 

R. N. Kesarwani 
Department of Mathematics. University of Ottawa. Ottawa. Canada KIN 9B4 

Y. P. Varshni 
Department of Physics. University of Ottawa. Ottawa. Canada KIN 9B4 

P. 91, Eq. (10): In the expression for Is, the second term 
in the first integrand should read 2065 V,2V" V(4) instead of 
2065 V "2V(4). 
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